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Abstract: By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N)
films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow
rate on the electrical properties, crystal structure, elemental composition, and optical properties of
Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show
that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases,
the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes
the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences
in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and
different N2 flow rates, depending on the crystal size and crystal phase structure.

Keywords: tantalum nitride; electrical properties; structural properties; elemental composition;
spectroscopic ellipsometry; optical properties

1. Introduction

Transition metal nitrides, especially tantalum nitride (TaN), are in high demand
for a wide range of applications due to their high melting point, hardness, excellent
wear and corrosion resistance, refractory character, mechanical and high-temperature
stability, chemical inertness, and histocompatibility [1–6]. Some prominent examples of
such applications are as a protective coating material against oxidation and corrosion [7],
as a diffusion barrier for Al and Cu metallization in advanced microelectronics [8–11], in
phosphide and nitride optoelectronics as ohmic contact [3,4], in artificial heart valves as
histocompatibility materials [12], thin film resistors [13], as ceramic pressure sensors [14],
and also different mechanical applications [5,6]. The large interest for TaN arises since it is
considered recently as a high thermal conductive material in microelectronic chips for the
θ-TaN phase [15].

Furthermore, TaN belongs to the class of complex nitride phases of compounds
which can vary from stoichiometry due to lattice vacancies. Diversifications in phase
structure are common in TaN, from hexagonal-Ta2N, cubic-TaN, hexagonal-TaN, hexagonal-
Ta5N6, tetragonal-Ta4N5, and orthorhombic-Ta3N5 including TaN, which led to large
differences in physical, chemical, and mechanical properties. The TaN alloy forms a
variety of phases depending on the deposition technique and growth conditions [16,17].
Numerous reports have been published to characterize sputtered TaN films based on
various sputtering parameters such as nitrogen (N2) partial pressure ratio [18,19], N2/Ar
flow rate ratio [20–22], sputtering power [23], and substrate temperature [24] during
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deposition. By controlling these different parameters, their influence on the structural,
chemical, electrical, and optical properties of the TaN film have been investigated.

Among them, there are quite a few studies on how the N2 flow or N2/Ar flow rate ratio
and the N2/(N2 + Ar) partial pressure ratio affect the properties of TaN film. Chen et al. [25]
used a magnetron sputtering low-power radio frequency deposition method with variable
nitrogen flow rate to deposit TaNx barrier layers on silicon. They found that as the N2 flow
rate increases, the surface roughness of the deposited TaNx film is slightly increased, and
the amorphous structure of TaNx is formed with good thermal stability. Zaman et al. [26]
prepared a TaN film with a 3% to 25% N2/(N2 + Ar) ratio on Si substrate by reactive
magnetron sputtering and studied the effect of N2 partial pressure on the crystal structure
and hardness of the TaN film. It was found that the deposited films with 5% and 3% N2
content show the highest hardness (33 Pa).

Although sputtered TaN films have been widely investigated for their different prop-
erties, their optical properties have not yet been analyzed as much. Recent studies show
that spectroscopic ellipsometry (SE) can be used to characterize and measure thin film
thickness because of its fast and non-destructive nature [2,27–29]. Aouadi et al. [2] have
studied the effects of varying N2 flow rates from 1 to 4 sccm on the structural and optical
properties of TaN thin films. They report that the optical constants (ε1, ε2) may be used
in conjunction with real-time SE to monitor and control the growth of tantalum nitride
films. Cherfi et al. [30] deposited TaN films with an N2 flow rate of 0–12 sccm on Si (100)
and glass substrates by DC magnetron sputtering to show the influence of nitrogen flow
on the crystal structure and optical properties of TaN. It was shown that for low N2 flow
(1 and 2 sccm), the TaN films show good conductor performance; a further increase of
N2 flow shows non-metallic behavior. At the same time, samples with similar structural
properties have similar behaviors in terms of optical properties. Waechtler et al. show
that SE can be used to examine the optical properties of Ta and TaN thin films from 75 to
380 nm thickness. They found a good agreement of optical properties with narrow-band
data available for similar thin films. It was also shown that the optical properties of the
films strongly depend on both substrate and film thickness [27]. Ma et al. studied the
temperature-dependent dielectric function of TiN films by SE [28]. Recently, Xu et al. [31]
used the method of comparing the measured the refractive index of low-k film under the
Ta(N) diffusion barrier with the refractive index of the blank low-k film to study the in-
tegrity of the Ta(N) diffusion barrier using the approach developed by Shamiryan et al. [32].
The abbreviation Ta(N), used hereinafter, refers to the complex films containing both Ta
and TaN with different nitrogen concentrations. The Ta/TaN stacks are used, for instance,
as metal diffusion barriers in advanced microelectronics.

However, there has been limited study of the optical behavior of the different stoi-
chiometries of thicker TaN films by SE with varying N2 flow rates in conjunction with
electronic, structural, and chemical composition. The study of the optical properties of
TaN can provide us with more information about TaN films and some potential possibil-
ities for the development of new applications. Thus, the systematic study of TaN films
for understanding the electrical, structural, chemical composition, and optical properties
are required.

Therefore, we first focused our attention on the optical properties of TaN films by
SE, a non-destructive testing method. By examining the optical properties of the sample,
it can provide some guidance for the deposited sample. However, past studies did not
focus on the influence of process conditions on either the refractive index (n) or extinction
coefficient (k), which are important optical parameters for Ta and TaN films because n
and k are regarded as “fingerprints of thin film materials”. Then, the effects of deposition
rate and N2 flow on the deposition of Ta(N) films on the electrical, structural, and optical
properties (n & k), as well as the elemental composition, of TaN films were studied by using
the four-probe method, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy. The
observation of different phases and chemical composition evaluation observed by XRD,
XPS were correlated with optical properties.
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2. Materials and Methods

Ta(N) films were synthesized using a standard magnetron sputtering (JS35-80G)
system. The Ta(N) films were deposited on Si (100) wafers using magnetron sputtering of
a Ta target (8.0 cm in diameter and 6.0 mm thick) of 99.95% purity. The substrate holder
(located in the center of the chamber) was a 25 cm diameter plate, with rotation set to
10 rpm without heating the substrate for all of the depositions to improve the uniformity
of the films. The target-to-substrate distance was 13.0 cm, and a negative bias was applied
to the Ta target. After placing the Si (100) substrate in the deposition chamber, the chamber
was evacuated to 9.6 × 10−4 Pa (by a turbo-molecular pump, Beijing Taiyueheng Vacuum
Technology Research Institute, Beijing, China), the background vacuum was sufficient
to ensure the vacuum required for Ta(N) film sputtering. Ar (99.999% purity) and N2
(99.999% purity) were introduced into the reaction chamber through a mass flow controller
(Beijing Qixing Huachuang Electronics Co., Ltd., Beijing, China) and used as sputtering
and reaction gases, respectively. The Ta target and the Si-substrate were sputter cleaned
with Ar plasma before the Ta(N) films deposition for 5 min. Following cleaning, Ta(N) film
was deposited at 9.56 × 10−4 Pa background pressure and 200 W DC power was applied
in a mixture of Ar and N2.

To study the influence of different N2 flow rates on the properties of the sputtered
Ta(N) film, in all sputtering processes, the flow rate of Ar was fixed at 58 sccm with various
N2 flow rates from 0 to 58 sccm. The ratio of the reactive gas (N2, 0–58 sccm) to the sputter
gas (argon, 58 sccm) were varied from 0 to 0.20, 0.29, 0.43, 0.65, and 1.00. The deposition
time was also varied from 10 to 30 min to study whether the thickness of the film affects
the optical properties, among other properties, of Ta(N) under each N2 flow rate. However,
when the N2 flow was 12 and 17 sccm, the sputtering process commenced for only 10 min.

The thickness of the film was measured by a German Bruker Dektak step meter (Berlin,
Germany). The resolution of the Dektak profilometer was 4 angstroms. The thickness
was determined from the step height between the film and a masked substrate area. The
resistivity of the sample was measured by a double-electric four-point resistance resistivity
tester (FT-341) and was obtained from the current between two external probes and by
measuring the voltage through the internal probes.

The crystallographic structure of the sputtered Ta(N) films was measured by an X-ray
diffractometer (Rigaku Ultima IV, Tokyo, Japan) using a θ–2θ scan with a 1.54 Å wavelength
Cu Kα radiation, at room temperature, working at 40 kV and 30 mA, which recorded the
diffraction intensity in the scattering angle range of 20◦–60◦.

X-ray photoelectron spectroscopy (XPS) was used to investigate the elemental compo-
sition and chemical states in Ta(N) films using PHI 5300 (PerkinElmer, Fremont, CA, USA)
with an Mg Kα (1253.6 eV) excitation source. This source was operated using a voltage
of 12.5 kV and an emission current of 20 mA. The films were sputter cleaned in an Ar+

environment with 89.45 eV pass energy for 5 min prior to measurement. Survey scans were
conducted in the 0–1100 eV range.

The optical characterization of the films was carried out using a SENpro spectroscopic
ellipsometer (SENTECH, Berlin, Germany) to measure phase (∆) and amplitude ratio (Ψ)
changes in the reflected light. The incident angle was fixed at 70◦ in the spectral range from
400 to 1050 at 5 nm increments. In all cases, the ellipsometric data were processed using
SpectraRay/3 software (SpectraRay/3 V2022-125) for the data analysis. By treating the
Ψ−∆ spectra, the refractive index (n) and extinction coefficient (k) of the corresponding
Ta(N) films were extracted by using E. Kondoh ELLIPSHEET [33] for an infinitely thick
film. The validity of this approach is proved below in the ellipsometry part of this paper.
The specific details and film thicknesses are given in Table 1.
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Table 1. The thickness, sheet resistance, and resistivity of Ta(N) film deposited with different N2 flow
rates and different sputtering times.

Film Sputtering Time
(min)

Argon Flow
(sccm)

N2 Flow
(sccm)

Thickness
(nm)

Sheet Resistance
(Ω/sq)

Resistivity
(µΩ·cm)

Ta
10

58 0
223.18 8.67 193.5

20 449.63 4.39 197.4
30 664.35 2.92 193.9

TaN 10 58 12 159.00 33.03 524.00
TaN 10 58 17 150.00 47.18 738.00

TaN
10

58 25
161.07 63.23 1018.4

20 282.08 55.57 1567.5
30 439.51 32.10 1410.8

TaN
10

58 38
129.84 2090.0 27,136.6

20 246.84 1020.0 25,177.7
30 399.00 174.83 6975.7

TaN
10 – – 97.64 160.70 1568.9
20 58 58 195.93 7480 146,555.6
30 – – 305.19 13,200 402,850.8

3. Results and Discussion
3.1. Deposition Rate and Resistivity

The deposition rate of Ta(N) films, sheet resistance, and resistivity depend on the flow
of nitrogen. The film thickness decreases with an increasing flow of nitrogen, as shown
in Figure 1a. The increase of sputtering time from 10 to 30 min makes the film thicker.
However, the deposition rate does not depend on the sputtering time (Figure 1b). With
the increase of nitrogen flow in the sputtering atmosphere of ionized Ar+, the intensity of
ion bombardment of the Ta target decreases due to the reduction of the mean free path
length. The number of sputtered Ta atoms also decreases, leading to a gradual reduction
in deposition rate [34]. In addition, since there are a large number of active N atoms in
the sputtering atmosphere (an increase of the N2 flow rate), the number of active N atoms
in the atmosphere gradually increases, which increases the chemical reaction between
active N atoms and the surface of the Ta target. There is a possibility of the TaN compound
causing a slight poisoning of the target [35,36] and thereby reducing the sputtering rate.
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The electrical resistivity of pure Ta films sputtered for 10, 20, and 30 min are nearly the
same (193.5, 197.4, and 193.9 µΩ·cm, respectively (Table 1)). It is interesting to notice that
the measured resistivity for pure Ta films is similar to the values reported for tetragonal
crystalline Ta (β-Ta) films (165 µΩ·cm, Schauer et al. [37]; 210 µΩ·cm, Cuong et al. [38])
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and 242 µΩ·cm, Arshi et al. [39]). Therefore, our pure Ta films are most likely β-Ta. The
electrical resistivity of Ta(N) films deposited with different nitrogen flows is shown in
Figure 2. It can be seen that the resistivity of TaN is higher than the resistivity of pure Ta
observed at zero nitrogen flow. The introduction of nitrogen increases resistivity, changing
linearly (embedded graph), with the thinner film offering lower resistivity. The trend of
increased resistivity can be attributed to the decreasing of the low resistivity Ta phase in
the deposited Ta-N films and the increasing of the low resistivity N-rich TaN phase. A
much more dramatic change of resistivity is observed in the films deposited with 58 sccm
N2 flow, especially after 30 min deposition (relatively thick films, see Table 1).
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Further increase of N2 flow increases the resistivity of Ta(N) film and may depend
on the formation of different surface topographies, grain sizes, changes of composition,
amorphous structure formations, and defects/imperfections (scattering from grain bound-
ary) [40]. The resistivity of TaN films in the current work is similar to the values reported
in the literature [40,41]. When the N2 flow rate is 12 sccm, the resistivity of the sputtered
TaN film is increased to 524 µΩ·cm and close to FCC TaN [42–45], or cubic TaN(111) [39],
or Ta3N5, or Ta5N6 [46–48]. After a further increase in the nitrogen flow to 25 sccm, the
resistivity of the sputtered TaN film is close to the resistivity of Ta3N5 (1126 µΩ·cm, [39]).
Remarkably, when the increase of N2 flow is increased to 38 and 58 sccm, the resistivity
of the sputtered TaN films drastically increases, with the only exception being the 10 min
deposition TaN films. Normally, this can be explained by increasing electron scattering
from interstitial N atoms. [39]. However, this model does not explain so strong a difference
between the films deposited with 38 and 58 sccm [49]. It is also well-known that an excess
of N2 flow rate will decrease the mean free path of ionized Ta atoms, disturb the formation
of TaN structures [40,50], and also increase electron scattering from interstitial N atoms.
Therefore, the phase of the TaN film generated under our N2 flow rate will also be different.
The existence of N-rich phases in the TaN films at higher nitrogen flows is consistent with
both the XRD patterns and the XPS analysis.

3.2. Structural Properties (XRD Analysis)

Figure 3 shows the X-ray diffraction (XRD) patterns of the Ta(N) films deposited for
10, 20, and 30 min with different N2 flows in the gas mixture varying from 0 to 58 sccm.
The XRD spectra of the Ta films (N2 flow rate is 0) shows a mixed phase of β-Ta (221),
β-Ta (002), β-Ta (330), and Ta (110). The diffraction intensity of (002) is the highest, and
the peak area of the diffraction peak is the largest, which indicates that the Ta film that
was sputtered is mainly β-Ta (002) preferred orientation (PDF#: 04-0788). Peaks at 35.40◦,
37.04◦, and 41.20◦ are indexed to be the TaN (111), TaN (111) [39], and TaN (200) (PDF#:



Coatings 2021, 11, 937 6 of 14

49-1283) structures respectively (Figure 3a). The peaks at 31.86◦, and 35.10◦ correspond to
Ta3N5 (123) and Ta3N5 (130) or (040) compounds respectively [51].
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When the N2 flow rate is 12 and 17 sccm, a mixed phase of TaN (111) and TaN (200)
appears, and the diffraction peak of Ta3N5 (023) also appears when the N2 flow rate is
17 sccm. However, the diffraction peak of TaN (111) is the highest, and the diffraction
peak area is also the largest, which indicates that the preferred orientation of the TaN film
under these two flow rates is TaN (111). Similarly, when the N2 flow rate is 38 and 58 sccm,
the TaN film has a preferred orientation of Ta3N5 (130,040). At the same time, when the
N2 flow rate increases, the diffraction peaks gradually widen, indicating that the grain
size is gradually decreasing, leading to high resistivity (Table 1). Correspondingly, this
could be attributed to the mixture of fcc TaN and its amorphous structure [46,52,53]. These
phenomena observed by XRD are in line with our previous conjectures in the section on
resistivity and are similar to those reported in an earlier study [43,44].

When the nitrogen flow rate is increased, the phase of the film evolves gradually from
TaN (111) to Ta3N5 (130), or Ta3N5 (040) (35.40◦ to 35.03◦) [51]. Furthermore, the TaN (200)
peaks are gradually decreasing. A broad peak corresponding to Ta3N5 appears for the
58 sccm sample and significant broadening of the peaks may be due to the formation of a
two-phase nanocomposite structure. This may be attributed to the high nitrogen fraction,
which is known to inhibit the crystallization of nitrogen-rich TaNx sputtered films. At
the same time, the XRD patterns of TaN films with a nitrogen flow rate of 25–58 sccm
and a sputtering time of 10–30 min were compared (Figure 3b,c), and it was found that
the XRD patterns of TaN films with the same nitrogen flow rate but different sputtering
times/different thicknesses did not change much, showing that the thickness of the film
does not affect the formation of the crystal structure of the film. Generally, the films
deposited with 58 sccm of nitrogen do not have pronounced patterns and this suggests that
the films are losing their crystalline structure and becoming more amorphous (Table 2). The
full width at half maximum (FWHM) was obtained by Gaussian fitting and corresponding
crystallite size was calculated by a Debye–Scherrer equation (D = 0.9λ/βcosθ), where D is
the crystal size, λ is the wavelength of X-ray, θ is the Braggs angle in radians, and β is the
FWHM of the peak in radians. For each peak of XRD spectra one sample was used. The
crystallite sizes presented in Table 2 are obtained from Figure 3a samples.
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Table 2. Calculated crystallite sizes of Ta and TaN films.

Flow Rate of
N2 (sccm) Peaks Peak Position,

2θ (deg)
FWHM, θ

(deg)
Average Crystalline

size (±0.5 nm)

0 β-Ta(002) 33.72 0.266 31.22
12 TaN(111) 35.40 0.340 24.54
17 TaN(111) 35.28 0.394 21.15
25 Ta3N5(130,040) 35.04 0.543 15.34
38 Ta3N5(130,040) 35.12 0.890 9.37
58 Ta3N5(130,040) 34.24 3.394 2.45

3.3. Elemental Composition (XPS Studies)

XPS spectra were obtained to ascertain the elemental composition of the deposited
TaN films. Figure 4 illustrates an evolution of the XPS survey spectrum of the deposited
TaN films as a function of N2 flow rate in the binding energy range of 0–1150 eV and show
the Ta, O, N, and C signals. It is confirmed that the survey does not contain additional
components that arise in the Si2p spectrum because our films were thicker. The O and C
signal in these spectra might come from the ambient atmosphere and/or the presence of
background oxygen in the sputtering chamber during sputtering, and/or from organic
residues during the storage, as already reported in the literature [35,39,53], which may
vary depending on the different sputtering instruments used. There is a chemical shift for
both O and C in the lower binding energy with an increase in the N2 flow rates due to the
formation of Ta2O5 (Figure 5a,b). It can be assumed that the most probable origin of these
residues is associated with impurities present in the nitrogen and/or a decrease in the Ta
sputtering rate, which increases the effect of residual gases.
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The XPS core-level spectra of Ta4f, Ta4d, and N1s for different N2 flow rates (12–58 sccm)
are shown in Figure 6a–c, respectively. Figure 6a shows the XPS region of Ta4f, revealing
that it is composed of three overlaying bonding environments: Ta4f5/2 of Ta-Ox (Ta bonded
with O), Ta4f7/2,5/2 of Ta-N, and Ta4f7/2 of Ta-N located at 30.25, 28.15, and 25.97 eV,
respectively. As shown in Figure 6a, increasing the flow of N2 from 12 to 58 sccm is likely
to chemically shift the Ta4f7/2 peaks from 25.97 to 25.78 eV, which were attributed to TaN
Ta4f5/2 peaks. Furthermore, the chemical shift from 30.25 to 29.81 reveals that O-rich films
composed of Ta2O5 with an increase of N2 flows were observed.
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Figure 7 shows the deconvoluted spectra of Ta4f for the TaN films with an N2 flow
of 12 sccm. Compared with the referred Ta binding energy values of TaN and TaOx, the
binding energy values in the Ta4f spectrum (Ta4f7/2 = 25.7 eV and Ta4f5/2 = 27.7 eV)
accorded with the chemical state of Ta in Ta–O binding [54]. The Ta4f doublet at binding
energy Ta4f7/2 = 27.3 eV and Ta4f5/2 = 29.0 eV matched Ta5+ state in Ta2O5 [55,56], while
the corresponding Ta4f doublet peaks are located respectively at Ta4f7/2 = ~25.1 eV and
Ta4f5/2 = ~27.3 eV that should be attributed to N-rich TaN phase [57,58]. The existence
of the Ta–N bonding in the film is further confirmed by the N1s peak located around
397.0 eV [59]. As the nitrogen flow rate increases, more Ta–N bonds form and the N 1s
peak also increases. This is consistent with the XRD spectra. It can be seen from Figure 6c
that the N1s peak shifts from 397.55 to 398.85 eV for nitrogen flow from 12 to 58 sccm,
while the Ta4p3/2 peak also shifts from 406.4 to 404.95 eV. It is noteworthy that there are
uncertainties on the exact value for Ta4p binding energy. Nyholm et al. reported a Ta4p
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value of 400.9 eV [60] and Tian et al. [61] reported a relatively high value of 406.0 eV. This
shift in the binding energy for the N1s peaks toward lower values are in agreement with a
previous study [35,39], while the binding energies for the Ta4f doublets also shift toward
lower energy values and do not agree with previous studies.
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3.4. Optical Properties

Spectroscopy ellipsometry (SE) is broadly used as an important tool for thin films
thickness, refractive indices and optical properties analysis, and its basic principle is shown
elsewhere [62]. In this study, the films were optically thick and the measured Ψ and ∆ of all
Ta films and TaN films were used for direct calculation of optical characteristics by using
the substrate model. The n and k values of the corresponding film were obtained by using
E. Kondoh ELLIPSHEET [33]. For each curve (n and k) of SE, one sample was used for
the calculation.

Figure 8a,b depict the complex refractive index (n) and extinction coefficient (k),
respectively for Ta films and with a comparison with the literature report. After comparing
with the data of Tompkins et al. [63]. and Waechtler et al. [27], it is found that the changing
trends of n and k of Ta films with different thicknesses are roughly the same, and the
thickness does have an effect on the optical properties of Ta films. This is different to
Waechtler et al., who reported the same n, k of Ta films with different thicknesses.

In Figure 9, we compare the refractive index (n) and extinction coefficient (k) of our
sputtered TaN film with an N2 flow rate of 12–58 sccm with the data of Aouadi et al. [2]
and Waechtler et al. [27]. Also, it is found that when the N2 flow rate is 12 and 17 sccm, the
n and k of our sputtered TaN film are close to the values in the reference. However, as the
N2 flow rate increases, the n and k values of our sputtered TaN film become further from
the n and k values in the references (Figure 9a,b). Furthermore, different N2 flow rates
and different thicknesses of TaN films have significant differences in n and k, which shows
that both N2 flow rate and thickness affect the optical properties of TaN. In addition, we
can see that there are differences in the n and k values and curve shapes of TaN films with
different crystal structures. The influence of N2 flow rate on the n and k of TaN film may
be caused by the different crystal structures and grain sizes of TaN film deposited with
different N2 flow rates. It is interesting that the extinction coefficient of TaN films deposited
at high nitrogen flows (38 and 58 sccm) decreases starting from 700 nm and especially from
900 nm. The reduction of the extinction coefficient suggests that the films are becoming
more dielectric-like and explains the drastic increase of their resistivity (Figure 2).
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In this work, we used optically thick films to extract optical characteristics. The
thicknesses of these films are measured by using a Bruker Dektak step meter that is used
only for relatively thick film. However, many applications of Ta and TaN layers need
very low thickness. For instance, when they are used as diffusion barriers in advanced
microelectronics. Taking this into account, we examined the applicability of ellipsometry
to measure the thickness of the thin Ta and TaN layers. For this purpose, we used the
values of the optical characteristics of these layers found in literature and measured in
our work. Then we calculated ∆–Ψ trajectories for the films with different thicknesses
(Figure 10). The presented curves demonstrate that Ta(N) film thickness can be measured
by ellipsometry when d ≤ 100 nm. The sensitivity is reduced with thickness, but it can be
very good for evaluation of Ta(N) films deposited as diffusion barriers for microelectronics
application (d < 10 nm). It is also apparent that ellipsometry may be efficient for evaluation
of d < 100 nm films, as it was in [31,32].
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4. Conclusions

The Ta(N) film with different N2 flow rates (0–58 sccm) and sputtering times of
10–30 min was deposited by the DC reactive magnetron sputtering method, and it was
found that the Ta(N) film deposition rate, electrical, structural, chemical and optical prop-
erties depend on N2 flow rate. As the N2 flow rate increases from 0 to 58 sccm, the crystal
structure of the sputtered film transitions from β-Ta to TaN (111) and finally becomes the
N-rich phase Ta3N5 (130) or Ta3N5 (040). When the N2 flow rate increases, the diffraction
peaks gradually widen, which indicates that the grain size is decreasing, leading to higher
resistivity (Table 1), and so correspondingly could be attributed to the mixture of fcc TaN
and its amorphous structure The films deposited with 58 sccm of nitrogen lose specific
crystallographic patterns and therefore become amorphous. In studying the optical prop-
erties, we can see that both the thickness and the N2 flow rate affect the refractive index
(n) and extinction coefficient (k) of TaN film, and have a greater impact on k. The curve
shapes of n and k of similar crystal structures have a small difference. The influence of
N2 flow rate on the refractive index and extinction coefficient of TaN film may be caused
by the different crystal structures and grain size of TaN film deposited with different
N2 flow rates. The extinction coefficient of the films deposited with 58 sccm of nitrogen
decreases, which suggests the formation of a more dielectric-like nature of the deposited
films. This fact explains the drastic increase in the resistivity of the films shown in Figure 2.
The reason for the transformation to the dielectric state is the incorporation of Ta oxide
that can be seen from XPS data. When the nitrogen flow is so large, it reduces the free
path length of sputtered atoms, poisons the Ta target and therefore reduces the effective
deposition rate. As a result, the role of the residual oxygen is drastically increased and
the deposited film becomes tantalum oxynitride with much higher resistivity. This effect
becomes more pronounced when the deposition time is longer, which is the reason for
the strong difference in resistivity between the films deposited during 10 and 30 min. If
deposition time is short, the target poisoning might be negligible.

Finally, the presented results suggest the resistivity of TaN films deposited by mag-
netron sputtering can be precisely controlled by changing nitrogen concentration during
deposition. It is also important to note that too high a concentration of nitrogen may have
the negative effect of increasing the impact of gas phase impurities.
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