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Abstract: The study of fluid flow upon an exponentially stretching surface has significant importance
due to its applications in technological phenomena at the industrial level. These applications include
condensing process of fluid film, heat exchanger processes, extrusion of plastic sheet in aerodynamics,
cooling process of metal sheet, and growth of crystals, etc. Keeping in view all these applications, in
this paper, we have discussed the magnetohydrodynamic flow of Maxwell fluid past an exponentially
stretching sheet. The stretching surface is considered to be slippery by imposing the velocity slip
condition. The magnetic field impact is taken into consideration. Furthermore, heat radiation, Joule
heating, Brownian motion, and thermophoresis are also considered. The modeled system is reduced
to ordinary differential equations with the help of similarity variables. For the analytical solution,
we have used the homotopy analysis method. Furthermore, HAM is compared with the shooting
method and found to be in great agreement. The squared residual error of the fluid flow problem at
15th order of approximations for Newtonian and non-Newtonian cases has been investigated. It is
found that the fluid flow problem converges quickly for the case of non-Newtonian fluid as compared
to Newtonian fluid. In addition, the velocity profile increases while the thermal and concentration
profiles reduce with greater values of Darcy number. The thermal profile is the increasing function of
the Brownian motion parameter and Eckert number whereas the concentration profile is the reducing
function of the Brownian motion parameter and Eckert number. With the augmentation in Darcy
number, the permeability strength of porous medium increases which concludes the increasing
conduct of thermal and mass transportation.

Keywords: Maxwell fluid; exponentially stretching sheet; velocity slip condition; porous medium;
MHD

1. Introduction

The effect of magnetohydrodynamic (MHD) fluid flow is a physical property that
describes the movement of an electrically conducted fluid with the impact of externally
applied magnetic effects. The salt water, electrolytes, and plasma, etc. are MHD fluids.
MHD fluid flow has plentiful industrial applications, for instance, drug targeting and
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cooling of reactors, etc. MHD is based upon the induction of electric current by applied
magnetic field through a conducted moving fluid. The idea of MHD was first floated by
Swedish electrical engineer Alfven [1], a developer of Alfven’s waves. Many investigators
have used the concept of MHD in various investigations. Turkyilmazoglu [2] has inspected
the thermal characteristics for MHD fluid flow upon stretching a rotary disk by using Joule
heating and viscous dissipation in the thermal equations. In this study, it has been noticed
that an augmentation in magnetic effects has opposed the flow of fluid and has supported
the thermal flow. Kumar et al. [3] investigated the influences of thermal radiations upon
MHD fluid flow over an exponential stretched sheet. A comparison has been accumulated
in this work with a fine agreement between the claimed and established results. Khan
et al. [4,5] have established incredible results for MHD fluid flows and heat transfers by
employing different flow conditions. The authors have proven that the augmented values
of the magnetic field have enhanced the transmission of heat while they have decreased
the flow behavior.

The fluid that exhibits viscoelastic characteristics, which is fluid with the behavior
of viscosity as well as elasticity, is termed as Maxwell fluid. The Maxwell fluid model
was proposed first by James Clerk Maxwell [6]. Due to its importance, many researchers
have used Maxwell fluid in the investigation of mass and heat transfer. Islam et al. [7]
inspected the impact of thermal radiations on Maxwell nanoparticle flow upon a stretching
cylinder. Semi-numerical technique has been used in the study and has established that
due to enhancement in Maxwell parameter, the stress relaxation phenomenon has been
augmented, due to which the flow of fluid has declined. Shehzad et al. [8] have discussed
the forced convection Maxwell fluid flow with the impact of thermophoresis particle
movements past a spinning disk. Khan et al. [9] have analyzed the MHD Maxwell fluid
flowing on the stretched surface. In this examination, the heat and mass transmission
have been investigated by using the impacts of variations in thermal conductivity and the
Cattaneo–Christove effects. It has been noticed in this work that, with an augmentation
in Deborah number, more resistance has been offered to the fluid flow particles that have
decreased the flow and concentration of fluid and have enhanced the thermal characteristics.
Ahmad et al. [10] have inspected the unsteady Maxwell fluid flow past a time-dependent
stretching sheet and have established that augmented values of Brownian motion have
jumped up the thermal profile and have jumped down the flow and concentration of fluid.
Farooq et al. [11] inspected the MHD and Maxwell fluid flow over the exponential stretched
surface by using the famous Boungiorno model.

The study of fluid flow upon the exponentially stretching surface is of significant
importance due to its applications in technological phenomena at the industrial level. These
applications comprise condensing process of fluid film, heat exchanger processes, extrusion
of plastic sheet in aerodynamics, cooling process of metal sheet, and growth of crystals,
etc. After the revolutionary work of Sakiadis [12,13], many investigators have carried out
different examinations for fluid flow upon exponentially stretching surfaces with a prime
focus upon the mass and thermal flow. Nadeem et al. [14] have discussed the influences of
slip effects over nanoparticle flow over a stretching sheet. The authors of this investigation
have observed that with augmentation of stretching parameter, the microorganism and
Nusselt numbers have enhanced while the skin fraction has declined with this increase.
Lund et al. [15] examined the MHD fluid flow upon an exponentially stretching surface
with the suction condition. Waini et al. [16] have inspected the mixed convective flow
of hybrid nanofluid over an exponentially stretched medium and have established that
the solid nanoparticles have decreased the flow profiles and have increased the thermal
transmission. Patil et al. [17] inspected the influences of roughness upon mixed convection
nanoparticle flow over an exponentially stretched surface. It has been observed in this
work that the thermal flow rate of the wall is considerably controlled by the addition of
nanoparticles. The topic can be further studied in the Refs. [18–23].

A surface that contains void spaces is termed a porous surface such as rubber, some
rocks, woods, and sponges, etc., which are available in nature. Normally, a porous surface



Coatings 2021, 11, 1009 3 of 18

is described by the porosity of that surface. Some porous surfaces are manmade, such
as ceramics and cements, etc. There are various applications of porous media in applied
sciences and engineering, for instance, rock mechanics, geomechanics, petroleum geology,
geophysics, and biophysics, etc. Because of its importance, many investigations have
been conducted by different researchers. Alazmi and Vafai [24] have analyzed the thermal
and fluid flow upon a porous medium in the combination of the fluid layer. Fatunmbi
et al. [25] have discussed micropolar MHD fluid flow past a porous medium using slip
conditions. It has been observed in this work that augmentation in stretching parameter
has adverse effects upon the flow and thermal profiles. Krishna et al. [26] have inspected
the time-dependent MHD flow of micropolar fluid upon permeable surface using the
influence of ion slip and Hall current. In this investigation, the effects of Sherwood
and Nusselt numbers have been investigated numerically with the influence of different
physical parameters. Hayat et al. [27] have inspected the time-dependent nanoparticle fluid
flow upon a permeable surface using different flow conditions and characteristics. In this
investigation, Darcy–Forchheimer and Boungiorno’s models have also been incorporated
by the authors in the flow problem. It has been noticed in this study that augmented values
of Darcy number and inertia parameters have enhanced the thermal profiles and have
decreased the flow profiles. These same effects have also been observed for augmentation
in Brownian effects. Asjad et al. [28] inspected the MHD fluid flow in a permeable medium
with the help of fractional order derivatives. The authors have used the transform method
to determine the exact solution. Khan et al. [29] have inspected the generation of entropy
for thermos-solutal convection problems over porous medium. In this study, a newer mass
Bejan number has been described for the first time using two salt concentrations. Jafar
et al. [30] discussed MHD nanoparticle flow over a permeable and stretching surface with
thermal radiation. The authors have used the Keller Box technique for the approximate
solution of the problem.

In light of the above literature review, we are interested to investigate the Maxwell
fluid flow through an exponentially stretching surface with first-order velocity slip condi-
tion using the porous medium. The homotopy analysis method is employed in order to
investigate the proposed model analytically. Furthermore, heat radiation, Joule heating,
Brownian motion, and thermophoresis are also considered.

2. Problem Formulation

Consider a laminar, two-dimensional, and incompressible MHD Maxwell fluid flow
past an exponentially stretching sheet with first-order velocity slip condition. The flow of
Maxwell fluid is submerged in a porous medium. The stretching velocity of the surface
is considered as Uw = U0 exp(x/L) along x− direction, whereas y− direction is perpen-
dicular to the stretching sheet. Furthermore, the heat radiation, Joule heating, Brownian
motion, and thermophoresis phenomena are also considered.

In view of the above assumptions, the leading equations take the form:

∂u
∂x

+
∂v
∂y

= 0, (1)
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where u and v are the velocity components, ρ is the fluid density, B0 is the strength of
magnetic field, λ is the relaxation time, qr = −4σ∗/3k∗

(
∂T4/∂y

)
is the radiative heat

flux, K is the permeability, cp is the specific heat, α = k/ρcp is the thermal diffusivity, DB,
DT are the Brownian and thermophoresis coefficients, U0 is reference velocity, T is the
temperature, T0, T∞ are the reference and ambient temperatures, C is the concentration, C0
is the reference concentration, and C∞ is the ambient concentration.

The boundary conditions are defined as: u = Uw +
µ

L1

∂u
∂y

, v = 0, C = Cw, T = Tw at y = 0,

u→ 0, C → C∞, T → T∞ as y→ ∞.

 (5)

Here, µ is the viscosity coefficient, L1 is the slip length, Tw = T∞ + T0 exp(x/2L) and
Cw = C∞ + C0 exp(x/2L) are the varying temperature and concentration.

The similarity variables are defined as:

u = U0 exp
( x

L

)
f ′(ξ), v = −

√
νU0

2L
exp

( x
2L

)
( f (ξ) + ξ f ′(ξ)), θ(ξ) =

T − T∞

T0
exp

(
− x

2L

)
,

φ(ξ) =
C− C∞

C0
exp

(
− x

2L

)
, ξ = y

√
U0

2νL
exp

( x
2L

)
, ψ =

√
2νLU0 exp

( x
2L

)
f (ξ).

(6)

where L is the reference length.
Using the above similarity transformations, Equation (1) is obvious and Equations

(2)–(5) are transformed as:

f ′′′ + f f ′′ − 2 f ′2 + β

(
ξ

2
f ′2 f ′′ + 3 f f ′ f ′′ − 2 f ′3 − 1

2
f 2 f ′′′

)
−
(

M +
1

Da

)
f ′ = 0, (7)

(1 + Rd)θ′′ + Pr
(

f θ′ − f ′θ + Ec
(

M + 1
Da

)
f ′2 + Ec f ′′ 2 + 2Sθ + Nbθ′φ′ + Ntθ′2

)
= 0, (8)

φ′′ +
Nt
Nb

θ′′ + PrLe
(

f φ′ − f ′φ
)
= 0, (9)

f (0) = 0, f ′(0) = 1 + λ1 f ′′ (0), θ(0) = 1, φ(0) = 1, f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0. (10)

In the above system of equations, β = λUw/L is the Maxwell parameter, Prandtl num-
ber is Pr = µcp/k, M = 2LσB2

0/ρUw is the magnetic parameter, Nt = τDT(Tw − T∞)/νT∞
and Nb = τDB(Cw − C∞)/ν are thermophoresis and Brownian parameters, the Lewis
number is Le = ν/DB, Da = KUw/2νL is the Darcy’s number, Ec = U2

w/cpTw is the Eckert
number, S = QL/Uwcp is heat source/sink parameter, and thermal radiation parameter is
Rd = 16σ∗T3

∞/3kk∗.
The quantities of engineering interest are described as:

Nux = − x(1 + Rd)
Tw − T∞

∂T
∂y

∣∣∣∣
y=0

,

Shx = − x
Cw − C∞

∂C
∂y

∣∣∣∣
y=0

.

 (11)

In view of Equation (6), Equation (11) is reduced as:

Nux√
xRex

2L

= −(1 + Rd)θ′(0),

Shx√
xRex

2L

= −φ′(0),


(12)

where Rex = Uwx/ν describes the local Reynolds number.
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3. HAM Solution

In order to solve Equations (7)–(9) along with the respective boundary conditions
defined in Equation (10), homotopy analysis method is applied. The initial guesses and
linear operators are defined as:

f0(ξ) =
1

1 + λ1
(1− exp(−ξ)),

θ0(ξ) = exp(−ξ),
φ0(ξ) = exp(−ξ).

 (13)



L f =
∂3 f
∂ξ3 −

∂ f
∂ξ

,

Lθ =
∂2θ

∂ξ2 − θ,

Lφ =
∂2φ

∂ξ2 − φ.


(14)

with the properties: 
L f (x1 + x2 exp(−ξ) + x3 exp(ξ)) = 0,
Lθ(x4 exp(−ξ) + x5 exp(ξ)) = 0,
Lφ(x6 exp(−ξ) + x7 exp(ξ)) = 0,

 (15)

where xi(i = 1− 7) are the arbitrary constant.

4. Results and Discussion

The purpose of this section is to examine the impact of embedding factors on different
profiles of the flow system. The current study’s findings are presented graphically. It
should be noted that we have chosen some suitable values for emerging parameters like
β = 0.1, M = 0.2, Da = 0.5, Rd = 0.3, Pr = 1.0, Ec = 0.1, S = 0.1, Nb = 2.0, Nt = 0.5,
Le = 1.0, and λ = 0.5.

Figures 1–3 show the effect of Darcy number on velocity, thermal, and concentration
profiles, respectively. The velocity profile augments while the thermal and concentration
profiles reduce with the greater Darcy number. Darcy number is the characterization of
the permeability strength of the porous medium. As we increase the Darcy number, the
permeable strength of the porous medium becomes greater, which consequently increases
the velocity profile. However, the layers of thermal and concentration boundaries reduce
with the greater Darcy number. Thus, the thermal and concentration profiles are the
reducing functions of the Darcy number. Figure 4 shows the effect of Deborah number
on velocity profile. The greater Deborah number reduces the velocity profile. The maxi-
mum influence of Deborah number is perceived at the surface of the fluid flow; however,
this impact reduces gradually, and the properties of the non-Newtonian fluid shift to
Newtonian fluid. Thus, as we increase the Deborah number, the velocity profile reduces.
Figures 5–7 depict the impact of magnetic field on velocity, thermal, and concentration
profiles, respectively. The velocity profile reduces while the thermal and concentration
profiles augment with a greater magnetic field parameter. The greater magnetic field
parameter yields to the Lorentz force which always opposes the flow of fluid. Thus, a
reducing impact is observed here. Furthermore, the temperature and mass profiles are
the augmenting functions of the magnetic field. Figures 8 and 9 portray the impact of
thermophoretic parameters on thermal and concentration flow profiles. Both the thermal
and concentration profiles are increasing functions of thermophoresis parameter. This
behavior is because the greater thermophoresis parameter moves the nanoparticles of fluid
from hot to colder region which results in increasing the temperature of the fluid flow.
Thus, an increasing impact of thermophoresis parameter on thermal profile is depicted
here. A similar impact of thermophoresis parameter on concentration profile is observed.
Figures 10 and 11 show the influence of Brownian motion on thermal and concentration
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profiles, respectively. Brownian motion is responsible for augmentation in thermal profile
and a reduction in concentration profile. The greater Brownian motion parameter heats
up the concentration boundary layer thickness, which moves the fluid nanoparticles from
the exponentially extending surface to motion less fluid. Therefore, the concentration
profile reduces with greater Brownian motion parameter. Figures 12 and 13 signify the
outcome of Eckert number on thermal and concentration profiles. The thermal profile is the
increasing function, while the concentration profile is the reducing function of the Eckert
number. Eckert number is mostly utilized in nuclear engineering systems for compressible
flow at high speeds. The increasing Eckert number heightens the internal energy which
consequently increases the temperature of the fluid. A very slight diminishing influence of
Eckert number on concentration profile is depicted. Figure 14 shows the impact of Lewis
number on concentration profile. The greater Lewis number reduces the concentration
profile. The greater Brownian motion diffusion coefficient is responsible for the reduction
in concentration of the fluid flow because the Brownian motion diffusion coefficient is
inversely related to Lewis number. Thus, the reducing impact in concentration profile is
depicted. Figures 15–17 demonstrate the comparison of HAM and numerical methods for
velocity, thermal, and concentration functions respectively. Figures 18–20 show the squared
residual error of the fluid flow problem at 15th order of HAM for Newtonian (β = 0.0)
and non-Newtonian (β = 0.5 and β = 1.0) cases. The fluid flow problem converges
quickly for the case of non-Newtonian fluid when β = 1.0 as compared to Newtonian
fluid. Table 1 shows the comparison of the current analysis with previous studies. Here,
we have found great agreement of our current study with previously published results.
Table 2 shows the squared residual errors along with CPU time for velocity, temperature,
and concentration profiles. Tables 3 and 4 show the impacts of different embedded factors
on thermal and mass transfer rates. It is observed that the radiation parameter augments
the values of Nux and Shx. It is obvious that the higher thermal radiation escalates the
heat transfer rate while an opposite impact is observed against mass transfer rate. The
heat transfer rate is a declining function of Nb and Nt. As a result, both Brownian motion
and thermophoresis processes in the current work tend to push the nanoparticles away
from the stretching surface. Moreover, increasing Brownian motion or thermophoresis
parameters accelerates the nanoparticles’ diffusion into the boundary layer, lowering the
heat transfer rate. Moreover, a decreasing impact of Nb on mass transfer rate is observed
while the thermophoresis parameter has increasing impact on mass transfer rate. It is
observed that the higher Darcy number augments both these rates. Actually, the greater
values of Da designates the porousness of porous media. Therefore, as we increase the
Darcy number, the permeability strength of porous media increases, which concludes
the increasing conduct in transportation rates of mass and heat. It is perceived that the
higher magnetic parameter jumps down Nux and jumps up Shx. Physically, the addition
of magnetic effects to the fluid flow creates the resistive force at the surface of the fluid
flow which raises the skin friction, but at the same time, the heat transfer rate reduces. In
addition, it is found that Shx augmenting function of magnetic parameter is at the surface
of the fluid while after some time the mass transfer rate is declined. It has been noticed
that the higher Eckert number reduces the heat and mass transfer rates. Actually, the
greater Eckert number increases the thermal and nanoparticle boundary layer thicknesses,
which consequently reduce the thermal and mass transportation rates. Tables 5–7 show the
comparison of HAM and numerical method for velocity, temperature, and concentration
profiles, respectively. These tables are associated with Figures 15–17.
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Table 1. Comparison of the current analysis with previous studies.

Pr Ref. [31] Ref. [32] Present Values

1.0 0.9547 0.9547 0.9548
2.0 1.4714 1.4714 1.4715
3.0 1.8961 1.8961 1.8961

Table 2. Squared residual errors using a different order of approximations when β = 0.1, M = 0.2,
Da = 0.5, Rd = 0.3, Pr = 1.0, Ec = 0.1, S = 0.1, Nb = 2.0, Nt = 0.5, Le = 1.0, and λ = 0.5.

Order of
Approximations

CPU Time
(in Seconds) Velocity Function Temperature

Function
Concentration

Function

1 0.1404 0.007052 0.003414 0.000974
3 1.6224 0.001049 0.000100 0.000046
5 7.8936 0.000245 0.000018 0.000014
7 22.0584 0.000041 2.1494 × 10−6 4.0166 × 10−6

9 52.3537 0.000015 3.8766 × 10−7 7.6049 × 10−7

11 111.166 2.8658 × 10−6 7.1641 × 10−8 1.3424 × 10−8

13 218.307 5.8343 × 10−7 1.0756 × 10−8 3.1915 × 10−8

15 324.307 5.8343 × 10−8 1.0756 × 10−8 3.1915 × 10−8

20 932.471 5.8343 × 10−8 1.0756 × 10−8 3.1915 × 10−8
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Table 3. Numerical values of local Nusselt number via different embedded factors.

Rd Nb Nt Da M Ec Nux

0.1 0.887516
0.2 1.010560
0.3 1.175030

0.1 0.957536
0.2 0.543257
0.3 0.295332

0.1 0.943168
0.2 0.558536
0.3 0.296429

0.1 0.347954
0.2 0.360895
0.3 0.386636

0.1 0.469674
0.2 0.396361
0.3 0.336873

0.1 0.465363
0.2 0.446376
0.3 0.420874

Table 4. Numerical values of Sherwood number via different embedded factors.

Rd Nb Nt Da M Ec Shx

0.1 0.373181
0.2 0.351389
0.3 0.345457

0.1 0.423488
0.2 0.409932
0.3 0.380207

0.1 0.359858
0.2 0.371503
0.3 0.405051

0.1 0.405019
0.2 0.457856
0.3 0.511508

0.1 0.358505
0.2 0.363773
0.3 0.372853

0.1 0.697364
0.2 0.664374
0.3 0.635633

Table 5. Comparison of HAM and numerical methods for velocity function when β = 0.1, M = 0.2,
Da = 0.5, Rd = 0.3, Pr = 1.0, Ec = 0.1, S = 0.1, Nb = 2.0, Nt = 0.5, Le = 1.0, and λ = 0.16.

ξ HAM Numerical Absolute Error

0.0 0.828818 0.795797 0.033021
0.5 0.448207 0.347478 0.100729
1.0 0.253278 0.146868 0.106410
1.5 0.147001 0.061207 0.085794
2.0 0.086806 0.025356 0.061451
2.5 0.051930 0.010475 0.041456
3.0 0.031469 0.004316 0.027153
3.5 0.019403 0.001766 0.017638
4.0 0.012300 0.000699 0.011601
4.5 0.008160 0.000232 0.007929
5.0 0.005809 −0.000013 0.005821
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Table 6. Comparison of HAM and numerical methods for temperature function when β = 0.1,
M = 0.2, Da = 0.5, Rd = 0.3, Pr = 1.0, Ec = 0.1, S = 0.1, Nb = 2.0, Nt = 0.5, Le = 1.0, and λ = 0.16.

ξ HAM Numerical Absolute Error

0.0 1.000000 1.000000 0.000000
0.5 0.861734 0.890063 0.028329
1.0 0.742111 0.790668 0.048557
1.5 0.322220 0.692580 0.060360
2.0 0.528143 0.592819 0.064677
2.5 0.428540 0.491288 0.062748
3.0 0.333315 0.389007 0.055692
3.5 0.242911 0.287353 0.044442
4.0 0.157949 0.187751 0.029802
4.5 0.079048 0.091556 0.012508
5.0 0.006738 −7.975410 × 10−7 0.006739

Table 7. Comparison of HAM and numerical methods for concentration function when β = 0.1,
M = 0.2, Da = 0.5, Rd = 0.3, Pr = 1.0, Ec = 0.1, S = 0.1, Nb = 2.0, Nt = 0.5, Le = 1.0, and λ = 0.16.

ξ HAM Numerical Absolute Error

0.0 1.000000 1.000000 2.220450 × 10−16

0.5 0.833150 0.833913 0.000762
1.0 0.694178 0.694714 0.000536
1.5 0.574847 0.574322 0.000525
2.0 0.470337 0.468678 0.001659
2.5 0.377196 0.374759 0.002437
3.0 0.292759 0.289950 0.002809
3.5 0.214934 0.211942 0.002993
4.0 0.142097 0.138718 0.003379
4.5 0.073006 0.068553 0.004453
5.0 0.006738 −6.874450 × 10−8 0.006738

5. Conclusions

This work describes MHD Maxwell fluid flow through an exponentially stretching
sheet. The fluid’s particles are immersed by a permeable surface. The flow has been
analyzed with viscous dissipation, thermal radiation, Joule heating, Brownian motion, and
thermophoresis phenomena. HAM has been employed for the solution of leading equations
of the proposed model. The impact of numerous variables upon the flow system has been
described theoretically. After an in-depth investigation of this work, the forthcoming points
have been observed:

• The flow profile increases while the thermal and concentration profiles reduce with
greater Darcy number.

• The greater Deborah number augments the velocity profile.
• The augmentation in magnetic parameter reduces the velocity profile, while the tem-

perature and concentration profile increases with the increasing magnetic parameter.
• Both the thermal and concentration profiles are the increasing functions of the ther-

mophoresis parameter.
• The thermal profile is the increasing function of the Brownian motion parameter

and Eckert number, whereas the concentration profile is the reducing function of the
Brownian motion parameter and Eckert number.

• With the augmentation in Darcy number, the permeability strength of porous media
increases, which concludes the increasing conduct of thermal and mass transportation.

• In this investigation, the higher Eckert number reduces the heat and mass transfer rates.
• Growth in magnetic parameter reduces the heat transfer rate while it increases the

mass transfer rate.
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• The comparison between HAM and numerical solutions ensures the validity of the
solution.
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Nomenclature

Symbol Description
(u, v) velocity components
ρ Fluid density
λ relaxation time
g Force of gravity
α thermal diffusivity
ρcp Heat capacitance
DT Thermophoresis coefficient
T Temperature
T∞ Ambient temperature
C0 Reference Concentration
β Maxwell parameter
M Magnetic parameter
Nb Brownian parameter
Da Darcy’s number
S Heat source/sink parameter
Rex Local Reynolds number
B0 strength of magnetic effects
Uw Stretchable velocity
K Permeability
cp specific heat
k thermal conductivity
DB Brownian coefficient
T0 Reference temperature
U0 Reference velocity
C Concentration
C∞ Ambient concentration
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Pr Prandtl number
Nt Thermophoresis parameter
Le Lewis number
Ec Eckert number
Rd Radiation parameter
L Reference length
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