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Abstract: Machine learning (ML) and deep learning (DL) for big data (BD) management are currently
viable approaches that can significantly help in high-temperature materials design and development.
ML-DL can accumulate knowledge by learning from existing data generated through multi-physics
modelling (MPM) and experimental tests (ETs). DL mainly involves analyzing nonlinear correlations
and high-dimensional datasets implemented through specifically designed numerical algorithms.
DL also makes it possible to learn from new data and modify predictive models over time, identifying
anomalies, signatures, and trends in machine performance, develop an understanding of patterns of
behaviour, and estimate efficiencies in a machine. Machine learning was implemented to investigate
the solid particle erosion of both APS (air plasma spray) and EB-PVD (electron beam physical
vapour deposition) TBCs of hot section components. Several ML models and algorithms were used
such as neural networks (NNs), gradient boosting regression (GBR), decision tree regression (DTR),
and random forest regression (RFR). It was found that the test data are strongly associated with
five key factors as identifiers. Following test data collection, the dataset is subjected to sorting,
filtering, extracting, and exploratory analysis. The training and testing, and prediction results
are analysed. The results suggest that neural networks using the BR model and GBR have better
prediction capability.

Keywords: machine learning; solid particle erosion; APS-TBC; EB-PVD TBC; elevated temperatures

1. Introduction

Thermal barrier coatings (TBCs) are applied on the surface of hot hardware parts
of gas turbine engines to increase the turbine efficiency by providing thermal insulation
and protection from the harsh environment. The industry generally uses TBCs processed
by two technologies: namely, electron beam physical vapour deposition (EB-PVD) or air
plasma spray (APS). The EB-PVD is widely used to deposit ceramic coatings on combustor
cans, ductwork, platforms, and other hot gas path components. The EB-PVD, due to its
unique columnar structure, offers satisfactory levels of resistance to damaging and failure
for aerofoil applications. TBCs exhibit two primary modes of failures, namely by oxidation
(TGO, i.e., thermally grown oxide growth at the bond coat–top coat interface) and by
erosion (impact by projectiles ingested into the gas stream) [1]. For erosion, turbine blades
have a tip velocity in the order of 300 m/s and suffer rapid erosive wear upon impact
by small hard particles (1–30 µm) entrained within the combustion gases of the turbine.
In turbomachinery, particle impacts are known to increase tip clearances and blade surface
roughness and produce changes in the blade profiles (leading and trailing edges) [2].

Erosion refers to the progressive loss of material from the surface of TBCs while
maintaining the integrity of the components. Damage occurs under small particle impacts
where the near-surface region (5 to top 20 µm) of the individual columns are cracked,
as it is very difficult to remove all solid particles from the gas stream without taxing the
performance of gas turbine engines [3,4]. Cracks generally initiate at the elastic/plastic
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interface under the impacting particles [5]. Foreign object damage (FOD), on the other hand,
involves gross plastic damage, the bending of columns, and ultimately the propagation of
shear bands down to the ceramic bond coat interface. TBC erosion is detrimental to the
thermal protection of rotating hardware, e.g., turbine blades [2]. TBC damage could be
very significant and life-limiting for highly loaded and rotating turbine components when
the engine operates under erosive environments such as flying over a desert area or near
an active volcanic or offshore ocean environment.

The top ceramic coating is typically made of yttria-stabilised zirconia (YSZ) for low
thermal conductivity and high thermal-expansion coefficient. The bond coat is typically
made of MCrAlY (M: Ni, Co and Ni + Co) for its good oxidation resistance. It is well
recognised that the erosion rate (ER) of TBCs is affected by many factors that could be
broadly classified into three types: impingement, particle, and materials variables. The im-
pingement factors mainly consist of particle velocity, particle concentration, and the angle
of incidence. The particle variables include particle shape, size, and hardness. Materials
variables involve target material properties, such as hardness, microstructure, and porosity.
The higher the TBC micro-hardness, the lower the erosion rate. The room temperature
erosion rate of an EB-PVD thermal barrier ceramic using 100 µm Al2O3 was observed to
be an order of magnitude lower than the ER for APS [6]. Experimental studies show that
the erosion rates increase with an increased impingement angle, impact velocity, and tem-
perature. The laser-glazing process increases the micro-hardness from about 550 HV for
the as-sprayed layer to about 1550 HV for the as-glazed layer [7]. The impingement angle
increased the ER for both plasma-sprayed and laser-glazed TBCs. Laser glazing enhanced
the erosion resistance (lower ER) of plasma-sprayed TBCs by about 1.5 to 3 times with
the impingement angle ranging between 30◦ and 75◦, while the erosion resistance did not
significantly improve when the impingement angle reached 90◦. Hence, the higher fracture
toughness favors superior erosion resistance [3]. Many methods were proposed to improve
the erosion resistance of TBCs, such as laser glazing and re-melting of ceramic coating and
doping of rare earth material such as gadolinia [8].

Early research focused on the effect of variables such as velocity, impact angle, and ero-
dent properties on ER, while recent work has examined erosion mechanisms [5] and the
effects of ageing and dopant additions. Microstructures and ageing conditions are known
to greatly affect the erosion behaviour of TBCs. The ability of the columnar boundaries in
the EB-PVD ceramic microstructure (and the vertical micro-cracks in the segmented APS
TBC) limits crack propagation and accounts for its improved erosion resistance over the
conventional APS microstructure. The sintering of columns occurs in EB-PVD TBCs, giving
rise to larger ‘columns’, resulting in greater material removal per impact as cracks are initi-
ated in the coating. Sintered column boundaries no longer inhibit crack growth, and cracks
propagate further across the near-surface region of the TBC. In contrast, the removal of
material for plasma-sprayed coatings occurs through poorly bonded splat boundaries,
and hence, larger volumes of material are easily lost, resulting in higher erosion rates.
The ability of the columnar boundaries in the EB-PVD ceramic microstructure (and the
vertical micro-cracks in the segmented APS TBC) to limit crack propagation is thought to
account for its improved erosion resistance over the conventional APS microstructure.

Recent observations indicate that the erosion resistance of many new lower thermal
conductivity TBCs is worse than the commercial 7YSZ materials [8], and that during service,
the erosion resistance of EB-PVD TBC-coated parts can degrade by up to a factor of ×4 due
to the ceramic sintering process [8].

For life-critical applications, erosion of the ceramic topcoat is perceived as a potential
problem, whether for aero- or industrial applications. TBCs are more susceptible to erosion
than fully dense ceramics because the coating microstructures contain many crack-like
features. Erosion rates are highly dependent on a number of material properties, which in-
clude Young’s modulus, hardness, and fracture toughness, all of which are temperature
dependent. In contrast to TBC oxidation failure mechanisms, the erosion problem has
received far less attention with regard to experimental studies, analytical and computation
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modelling, prediction, and life analysis. With the advent of artificial intelligence technology,
this problem needs to be researched for more in-depth understanding and erosion damage
prediction for conventional and new advanced TBCs. A prediction model for erosion rate
as a function of key variables will be a designing asset for reliable lifetime analysis.

Loss of material from gas turbines hardware surfaces by a solid-particle erosion
mechanism is considered as one of the principal causes for limiting the durability of TBCs.
However, no serious efforts towards the deeper understanding of the erosion behaviour and
towards the development of any prediction modelling have been attempted. The research
project in collaboration with NRC, Ottawa has been undertaken on this topic in order to
realise the following major objectives:

1. Identifying key variables having dominant influences on the erosion loss during
the gas turbine operation at high temperature and in the presence of corrosive and
hazardous environments. For instance, such factors include solid erosive particle size,
velocity, as well as angle of incidence on the TBC surface.

2. Compiling, classifying, and processing erosion damage data for TBCs through ex-
tensive survey of published literatures. The dataset collected will consist of both
mechanical material loss in terms of weight or thickness, and secondly, microstructural
degradation and changes due to erosion.

3. Establishing reliable prediction modelling and methodology using the erosion rate data
and the significant variables identified. Artificial intelligence (AI) technology comprising
of machining learning (ML) and deep learning (DL) has emerged as the most powerful
prediction tool in recent times. Various AI-based models will be identified and used to
determine the most valid and suitable ones for the prediction of the erosion rate.

In order to realise the objectives, the work needs to focus on the following:

1. Coating—6%–8% conventional YSZ TBC processed by electron beam physical vapour
deposition (EB-PVD) or air plasma spray (APS).

2. Literature survey—compilation and classification of relevant data and information on
the hard particle erosion process, behaviour, mechanisms, and rate.

3. Exploratory data analysis.
4. Principal component analysis for feature extraction.
5. Correlation coefficient analysis for model performance evaluation.
6. Neural network modelling approach and analysis.
7. Gradient boosting regression approach.
8. Decision tree regression approach.
9. Random forest regression approach and analysis.
10. Microstructural image collections for various erosive conditions and surfaces.
11. DL-based modelling approach and analysis for structural features e.g., porosity con-

tent, size, crack size, grain size, hardness, etc.

2. Literature Review on Current Research Status of Erosion Rate of TBCs and
Data Collecting
2.1. Literature Review

The main focus of the first task in this project is to review existing literature on the current
status of erosion rate of TBCs, and the outcomes of this review are outlined in Table 1.

Table 1. Summarised experimental research studies on erosion rates of TBCs.

Ref. No. Year Author Material Research Topic

[9] 1998 Davis
6.6%–20% Y2O3-ZrO2 and of

four and eight layers of
Al2O3-ZrO2

Erosion rate vs. TBC Thickness, TBC Surface roughness,
Impact particle size, Particle velocity, Impingement angle,

Test temperature (Room temp)

[10] 1998 Bruce 7% Y2O3-ZrO2

Erosion rate vs. TBC Thickness, Impact particle size, Particle
velocity, Impingement angle, Test temperature;

Equivalent equations
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Table 1. Cont.

Ref. No. Year Author Material Research Topic

[11] 1998 Nicholls APS and EB-PVD 7%
Y2O3-ZrO2

Erosion rate vs. TBC Thickness, TBC Surface roughness,
Impact particle size, Particle velocity, Impingement angle,

Test temperature, and Erodent types

[12] 1999 Eaton APS 7.5% Y2O3-ZrO2

Erosion rate vs. TBC Thickness, Impact particle size, Particle
velocity, Impingement angle, Test temperature

Function of erosion rate as velocity

[5] 1999 Janos APS 7.5% Y2O3-ZrO2

Erosion rate vs. TBC Thickness, Hardness, Impact particle
size, Particle velocity, Impingement angle, Test temperature,

Erodent types, Porosity, Ageing temp and time.
Function of erosion rate as micro-hardness

[13] 1999 Nicholls EB-PVD 8% Y2O3-ZrO2
Erosion rate vs. Impact particle size, Particle velocity,
Impingement angle, Test temperature, Erodent types

[14] 2003 Nicholls EB-PVD 8% Y2O3-ZrO2
Erosion rate vs. Impact particle size, Particle velocity,
Impingement angle, Test temperature, Erodent types

[15] 2009 Wellman APS and EB-PVD 7%
Y2O3-ZrO2

Erosion rate vs. Impact particle size, Particle velocity,
Impingement angle, Test temperature, Erodent types

[16] 2011 Cernuschi APS and EB-PVD 7.5~8%
Y2O3-ZrO2

Erosion rate vs. TBC Thickness, hardness, Impact particle
size, Particle velocity, Impingement angle, Test temperature,
Erodent types, Porosity, Ageing temp and time.; Function of

erosion rate as micro-hardness

[17] 2018 Shin and
Hamed APS 7% Y2O3-ZrO2

Erosion rate vs. TBC Thickness, hardness, Impact particle
size, Particle velocity, Impingement angle, Test temperature,
Erodent types, Porosity, Ageing temp and time.; Function of

erosion rate as micro-hardness

2.2. Data Collection
2.2.1. Basic Information Gathering

Accurate data collection and accurate information classification are the key to maintain
the integrity of the research. The first step of data collecting was reviewing the papers
and gathering basic information about their research, including the material information,
manufacturing methods, measurement of erosion rate with variation, and different test
conditions, including temperature, or other parameters.

Taking the work of Shin [17] as an example, the procedure used for this research is
explained below. This paper presents the results of an experimental investigation of the
effect of a topcoat microstructure on the erosion resistance of air plasma-sprayed 7 wt.% YSZ
thermal barrier coating (TBC) at high temperature. Two sets of air plasma-sprayed YSZ
TBCs of differing microstructures (porosities of 12.9% ± 0.5% and 19.5% ± 1.2%) were
tested in a high-temperature erosion tunnel to simulate a modern gas turbine engine’s
operating conditions. The tests were conducted over a range of temperatures between
537 and 980 ◦C, gas velocities between 122 and 305 m/s, and impingement angles between
20◦ and 90◦. The two types of erodent powders used in the erosion tests were nominal
27 µm white-fused alumina and nominal 15 µm A3 test dust. The results demonstrated
reduced erosion resistance associated with increased porosity in the topcoat layer.

Erosion tests were conducted in a high-temperature erosion test facility at the Univer-
sity of Cincinnati. The particle feed rates are controlled by a volumetric single screw-type
particle feeder with a high-pressure air supply and kept constant during each test. After the
erosive particles are introduced in the tunnel, they are dispersed to achieve a uniform
distribution by the time they reach the test section. Particle velocities were experimentally
measured for the nominal 27 µm alumina particles at room temperature. It was determined
that the particle velocities reach 96% of the flow velocity of 91 m/s at the test section.
Further analysis was conducted to estimate particle velocities under high-temperature gas
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flow test conditions. The analysis was based on the particles being accelerated by drag
force associated with velocity differences between particles and gas flow. The tests were
conducted at gas temperatures ranging between 537 and 980 ◦C, gas velocities of 122, 231,
and 305 m/s, and a 20◦ impingement angle.

2.2.2. Data Extracting

The second step was extracting data from the plots. For most of the published research
papers, the data are provided as plots of erosion rate (ER) with variation of the impact
velocity, impact angle, measurement temperature, or other parameters. In our present
work, the data extracting was performed using PlotDigitizer, which is an open-source
Java program that allows the user to digitise data points off of scanned plots, scaled
drawings, or orthographic photographs. The source codes of the tool are available at
http://plotdigitizer.sourceforge.net/ since 2001.

Information of the authors are listed as follows: Joseph A. Huwaldt
(jhuwaldt@users.sourceforge.net) and Scott Steinhorst (scottsteinhorst@users.sourceforge.net).
The process of data extracting using PlotDigitizer includes four steps:

Step 1: Importing plot
Step 2: Calibrating x- and y-axis
Step 3: Digitising data points set
Step 4: Exporting dataset

All plots related to the erosion rates in the reference papers listed in Table 1 are
digitised using the PlotDigitizer tool. Then, all the data points are put in a big table to
be sorted based on all possible measurements information. The total number of the data
points is 247. For all these 247 data points extracted, the values of ER and impact velocity
and measured temperature are recorded. A lot of effort has been made to obtain important
parameters related to the ER of TBC, such as thickness of TBC, hardness of TBC, erodent
type, and all those available information is stored in a large table.

2.2.3. Dataset Used in the Present Study

It must be noted here that not all parameters (TBC thickness of TBC, hardness, total test
time, erodent information) are available for all of the 17 reference papers. In order to prepare
the datasets to be used for the machine learning test, one dataset was collated based on the
big table data and is summarised and explained in Tables 2 and 3. This dataset contains
six variables (wt.% of Y2O3, impact angle, impact velocity, particle size, measurement
temperature, and erosion rate) and the total number of samples is 245. In order to study
the different patterns of erosion rates of APS and EB-PVD TBC, the samples are separated
into two different groups to perform prediction separately.

Table 2. Summarised data of EB-PVD YSZ TBC.

Ref. No. Year Author APS Sample No. EB-PBD Sample No. Total

[9] 1998 Davis 12 1 13
[10] 1998 Bruce 0 45 45
[11] 1998 Nicholls 14 14 28
[12] 1999 Eaton 28 0 28
[5] 1999 Janos 12 0 12

[13] 1999 Nicholls 10 0 10
[14] 1999 Nicholls 16 14 30

[15] 2009 Wellman 1 20 21
[16] 2011 Cernuschi 5 9 14
[17] 2017 Shi 44 0 44
total - - 142 103 245

http://plotdigitizer.sourceforge.net/
http://plotdigitizer.sourceforge.net/
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Table 3. Summarised experimental research on erosion rates of TBCs.

Variables Unit Description Function

Material W/(m·K) wt.% of Y2O3

Inputs

Impact Angle Degree Impact angle of particles

Impact Velocity m/s Impact velocity of particles

Particle Size micron Diameter of erodent particles

TestTemp ◦C Temperature during measurement

Target ER g/kg Erosion rate of TBC Output

The source data fed into the machine learning model are called input, with the goal
of making a decision or prediction about the data. The data are broken down into binary
signals to allow it to be processed by single neurons—for example, an image is input as
individual pixels. In the present work, five variables are adopted as inputs. The outputs (or
called target) of the machine learning framework can be a discrete value (for example, a cat-
egory ID). In the present work, ER is the subject investigated and the output. In summary,
the following set of input and output variables was prepared:

• Input variables for prediction of erosion rates:

# wt.% of Y2O3
# Impact angle
# Impact velocity
# Particle size
# Measurement temperature

• Output: erosion rate

3. Prediction of Erosion Rates of TBCs Using Machine Learning
3.1. Exploratory Data Analysis

Before machine learning modelling was used for predictions, exploratory data analysis
(EDA) was used. In statistics and scientific research, EDA is a way to analyse the collected
dataset to summarise their main characteristics and to discover patterns to foster hypothesis
development and refinement [18]. In addition, EDA is useful to uncover the underlying
structure, to extract important variables, to detect outliers and anomalies, and so on.

The major objective in many applications of PCA is to replace the m elements of the
original data by a much smaller number p of principal components (PCs) while discarding
very little information. In the present work, the number of inputs is not large (five).
The main purpose of using PCA here is to get statistic information of all variables and get
an idea of how many original input variables are needed to retain much of the variation
within the original data.

For the PCA analysis in this study, the five inputs along with the output of ER are
included. The resulting matrix of correlation coefficients are found in Tables 4–6. It is
observed from Table 4 that for all data points together, the input variables impact velocity,
particle size, and impact angle have enough correlations with the output variable ER such
that they can be identified as relevant inputs. For APS TBC data, besides impact velocity,
particle size, and impact angle, the test temperature also shows enough correlation with
the output variable ER such that the four can be identified as relevant inputs. As for the
EB-PVD data, test temperature shows the largest correlation with the ER, and the impact
velocity and particle size also show enough correlation with the output.



Coatings 2021, 11, 845 7 of 35

Table 4. Correlation coefficients for all TBC data.

Parameters Material Impact Angle Impact V Particle Size Test Temp Erosion Rate

Material 1 −0.03194 −0.09196 −0.04592 −0.26285 −0.02612
Impact Angle −0.03194 1 −0.42818 0.356322 −0.04395 −0.13179

Impact V −0.09196 −0.42818 1 −0.48263 0.374805 0.54068
Particle Size −0.04592 0.356322 −0.48263 1 0.186174 −0.24137
Test Temp −0.26285 −0.04395 0.374805 0.186174 1 0.049198

Errosion Rate −0.02612 −0.13179 0.54068 −0.24137 0.049198 1

Table 5. Correlation coefficients for APS TBC data.

Title Material Impact Angle Impact V Particle Size Test Temp Errosion Rate

Material 1 0.142241 −0.18374 0.332938 −0.24079 −0.08089
Impact Angle 0.142241 1 −0.32357 0.310126 −0.2549 0.229697

Impact V −0.18374 −0.32357 1 −0.47894 0.640075 0.495648
Particle Size 0.332938 0.310126 −0.47894 1 −0.30445 −0.21112
Test Temp −0.24079 −0.2549 0.640075 −0.30445 1 0.145308

Errosion Rate −0.08089 0.229697 0.495648 −0.21112 0.145308 1

Table 6. Correlation coefficients for EB-PVD TBC data.

Parameters Material Impact Angle Impact V Particle Size Test Temp Errosion Rate

Material 1 −0.30787 0.034516 −0.15291 −0.30402 0.061988

Impact Angle −0.30787 1 −0.12055 0.205277 0.257427 0.004347

Impact V 0.034516 −0.12055 1 −0.70291 0.013128 0.242658

Particle Size −0.15291 0.205277 −0.70291 1 0.358358 −0.30279

Test Temp −0.30402 0.257427 0.013128 0.358358 1 −0.59386

Errosion Rate 0.061988 0.004347 0.242658 −0.30279 −0.59386 1

3.2. Preliminary Quick Test on Prediction of Erosion Rate Using Different ML Models

There are usually several suitable candidate models for a particular type of problem.
In order to select the suitable learning methods from a set of eligible machine learning
methods, a preliminary quick test on the prediction of ER of TBC was performed using the
Tecsis Model Selection Tool (MST).

The Model Selection Tool (MST) is built using Python (Version 3.7, in Spyder/Anocoda
Navigator), and the main Graphical User Interface (GUI) can be seen in Figure 1. The fol-
lowing are the five major modules on the interface:

i. Data: Load data file into the tool (.csv file)
ii. Input and Output: Choose inputs and output; add extended terms; plot data
iii. Pre-process: Normalise inputs
iv. Data Analysis: Predict target (output) by inputs using different models
v. Results Ranking: Rank results using different methods (single metric, aggregated,

MCDM) and provide the best model.

In the Data Analysis module, ten regression models (algorithms) are imbedded into the
model library. The list of the models is shown in Figure 1. As a preliminary work, the ER
data (including all TBC, APS, and EB-PVD, summarised and explained in Tables 2 and 3)
are input into the MST to perform the quick test. The results of the quick test are listed
in Tables 7–9, for all, APS, and EB-PVD TBC data, respectively. The gradient boosting
regression (GB), random forest regression (RF), decision tree regression (DT), and AdaBoost
classifier (AC) approaches provide relatively good prediction. The neural network (NN)
approach is a promising model, which is mainly used in many applications. A case study is
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presented in the following section to highlight the ML approach to determine and predict
the erosion rates of TBC using the following methodology:

1. Neural network
2. Gradient boosting regression
3. Decision tree regression
4. Random forest regression
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Features RAlg MSE MAE R2 AdjR2 PRESS BIC GCV

5 LR 6315.652 60.1596 0.4588 0.439 62.7441 1281.14 983,977.6

5 GB 3552.395 45.6964 0.6956 0.6845 47.4223 1198.856 553,462.5

5 RF 1454.941 24.0177 0.8753 0.8708 24.9086 1071.206 226,679.5

5 DT 1115.415 17.1148 0.9044 0.9009 17.7995 1033.206 173,781.5

5 KNN 5812.361 55.3393 0.5019 0.4837 57.6708 1269.264 905,564.9

5 RIDGE 7960.008 68.9798 0.3178 0.293 71.7985 1314.23 1,240,168

5 LASSO 9680.04 78.8275 0.1704 0.1402 82.1582 1342.206 1,508,149

5 AB 3142.537 46.3897 0.7307 0.7209 48.2247 1181.325 489,606.7

5 SV 7627.288 58.6225 0.3464 0.3225 60.8968 1308.124 1,188,330
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Table 9. Quick test results for EB-PBD TBC data.

Features RAlg MSE MAE R2 AdjR2 PRESS BIC GCV

5 LR 84.191 6.5402 0.4797 0.4526 7.5648 479.9248 9694.465

5 GB 58.5397 5.0387 0.6382 0.6194 5.6239 442.8598 6740.761

5 RF 42.2348 3.4883 0.739 0.7254 3.6952 409.5608 4863.272

5 DT 34.6876 2.4219 0.7856 0.7745 2.5633 389.4808 3994.224

5 KNN 70.8368 5.2107 0.5622 0.5394 5.5297 462.3084 8156.746

5 RIDGE 105.8371 7.8759 0.3459 0.3119 9.432 503.2637 12,186.97

5 LASSO 161.8108 10.4959 0 −0.0521 12.5985 546.5655 18,632.27

5 AB 55.6216 4.5628 0.6563 0.6384 4.8273 437.6442 6404.744

5 SV 68.6382 4.0034 0.5758 0.5537 4.2498 459.0924 7903.579

The following performance measures are adopted in the present study to evaluate
prediction models using different datasets:

• Coefficient of Determination (R2)

In statistics, the coefficient of determination (R2) is a measure of how well the regres-
sion predictions approximate the real data points. An R2 of 1 indicates that the regression
predictions perfectly fit the data.

The most general definition of the coefficient of determination is:

R2 = 1− SSres

SStot
(1)

SSres = ∑n
i = 1(yi − fi)

2 (2)

SStot = ∑n
i = 1(yi − y)2 (3)

where n represents the total number of observations, yi are the real data points, and fi are
the predicted values. The values close to 1 for the coefficient of determination indicate a
good deal of predictive power of selected inputs for the output variable, while values close
to 0 indicate little predictive power.

• Mean Squared Error (MSE)

In statistics, Mean Squared Error (MSE) is a common measure of the difference between
the predictor (value predicted by the model), or an estimator and the observed value.
MSE is a measure of the quality of an estimator, and the values closer to zero are better.
Usually, MSE is good to use if we have a lot of outliers in the data. MSE is given by:

MSE =
∑n

i = 1( fi − yi)
2

n
. (4)

• Maximum Absolute Error (MAXE)

Absolute error is defined as the absolute value of the difference between the measured
value and the measured true value, and it has the same as the unit of measurement.
The maximum absolute error usually can be considered as the maximum possible error
given a measuring tool’s degree of accuracy:

MAXE = max(| fi − yi|). (5)



Coatings 2021, 11, 845 10 of 35

3.3. Neural Network Model
3.3.1. Neural Network Description

Artificial neural networks are computational models, which work similar to the func-
tioning of a human nervous system. There are several kinds of artificial neural networks.
These types of networks are implemented based on the mathematical operations and a set
of parameters required to determine the output.

The neural network model was comprised of three parts: one input layer, one (some-
times two or three) hidden layer (layers), and an output layer, as illustrated in Figure 2.
Multiple-layer networks are quite powerful. For instance, a network of two layers,
where the first layer is sigmoid and the second layer is linear, can be trained to approxi-
mate any function (with a finite number of discontinuities) arbitrarily well. This kind of
two-layer network is used extensively in backpropagation algorithms [19].
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Figure 2. Structure of neural network in the present work.

In the present study, the input layer has five neurons, which conform to five variables
extracted from previous BR measurement research: material, impact angle, impact velocity,
particle size, and test temp, as shown in Figure 2. The output layer contains one neuron
representing the target of the prediction: erosion rate. For the hidden layer, we tried
single-layer and two-layer settings with different numbers of neurons. The number of
layers and number of nodes in each layer were used to determine the topology of the ANN
model. More details will be provided in the “Training Parameters Setting” section.

3.3.2. Training Algorithms

In function optimisation problems with neural networks, the training algorithm is
designed to determine the best network parameters in order to minimise network error.
Various function optimisation methods can be applied to neural network model training.
Considering a multi-layer feedforward network, pi = (pi1, pi2, . . . piI) contained values for I
input (independent) variables from individual i. The input variables are associated with
each of N neurons in a hidden layer by using weights (wkj, k = 1, 2, . . . , N), which are
specific to each independent variable (j) to neuron (k) connection. The mapping has two
forms for the relationship between output t̂ and independent input variables [20]:

Hidden Layer n(1)
k =

R

∑
j = 1

ω
(1)
k pj + b(1)k ; a1

k = flevel−one

(
n(1)

k

)
(6)

Output Layer n(2)
k =

R

∑
j = 1

ω
(2,1)
k a1

k + b(2)1 ; t̂i = a(2)k = flevel−two

(
n(2)

k

)
(7)
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For an M layer network with N neurons, the biases are b(1)k (k = 1 ~ N). After the end of
the training process, this activated quantity is carried out again with function g, which can
be expressed as:

g

[
N

∑
j = 1

ω′k fk(·) + b(2)k

]
= fk

(
n(2)

k

)
(8)

Then, the estimated target variable value of ti in the training dataset can be ex-
pressed as:

t̂i = g

{
N

∑
j = 1

ω′k f

(
R

∑
j = 1

ωkj pj + b(1)k

)
+ b(2)

}
(9)

in which, j = 1, 2, . . . , R and k = 1, 2, . . . , N.
The task of the network is to use an algorithm to learn the connection between the

specified set of input–output pairs of a dataset. In machine learning, specifically deep learn-
ing, backpropagation is a widely used algorithm in training feedforward neural networks
for supervised learning. Backpropagation is shorthand for “the backward propagation of
errors”, since an error is computed at the output and distributed backwards throughout
the network’s layers.

In the training process, a common performance function is used for computing the
distance between real and predicted data. This function can be expressed as follows [16,17]:

F = ED(D|ω, M) =
1
N

n

∑
i = 1

(
t̂i − ti

)2 (10)

in which ED is the mean sum of squares of the network error, D is the training set with
input–target pairs, and M is the number of neural networks.

Backpropagation was created by generalising the Widrow–Hoff learning rule to
multiple-layer networks and non-linear differentiable transfer functions [18]. Input vectors
and the corresponding target vectors are used to train a network until it can approximate a
function, associate input vectors with specific output vectors, or classify input vectors in an
appropriate way as defined. Backpropagation is closely associated with the Gauss–Newton
algorithm and is part of continuing research in neural backpropagation. Backpropagation
is a special case of a more general technique called automatic differentiation.

Properly trained backpropagation networks tend to give reasonable answers when
presented with inputs that they have never seen. Typically, a new input leads to an output
similar to the correct output for input vectors used in training that are similar to the new
input being presented. This generalisation property makes it possible to train a network on
a representative set of input/target pairs and get good results without training the network
on all possible input/output pairs [21].

There are many variations of the backpropagation algorithm. In the present study,
Bayesian regularisation was adopted, which is a backpropagation algorithm. In this
training process, an adaptive parameter called mu (Marquardt adjustment parameter) [22]
was used with a default value of 0.005, and this parameter is adapted (by decreasing
and increasing its value) using two other parameters: mu decrease ratio = 0.1 and mu
increase ratio = 10. We used the tanh activation function (implemented using the ‘tansig’
function in MATLAB) in the hidden layers and the linear activation function in the output
layer. This choice is motivated by the fact that using the tanh activation provides a greater
activation output range (compared to the case of using the sigmoid activation function),
which leads to larger derivatives, thus helping with faster convergence to the minimum cost
function. More details of Bayesian regularisation can be found in the previous Tecsis-NRC
report (2020).

In the present study, no validation subset is needed for the BR training algorithm.
Thus, the training set makes up approximately 70% of the full dataset, testing making up
approximately 30% of the dataset.
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3.3.3. Neural Network Results

The performance of ER prediction using a single-layer NN model with a BR algorithm
can be found in Tables 10–12. For the APS + EB-PVD TBC data case, the R2 values are
around 0.49, which is deficient. The best prediction performance is obtained for APS TBC
data cases, which provide overall good prediction performance, whose values of R2 are all
around 0.84. The EB-PVD TBC case also obtains relatively good results like in Figures 3–5.

Table 10. Performances of ER prediction using the NN approach for APS + EB-PVD TBC data.

Hyper-Parameters Train Test All

Number of Nodes Repeat R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

10 100 0.4740 4570.4 327.79 0.3329 6031 261.04 0.4463 4791 348.23
20 100 0.4636 4649.6 334.95 0.3240 6786.9 269.54 0.4306 4972.3 357.01
30 100 0.5627 3735.4 290.14 0.2789 9322 322.22 0.4847 4579.1 372.07
40 100 0.5310 4013 306.53 0.3377 6865.9 289.63 0.4871 4443.8 355.04
50 100 0.5436 3891.7 298.03 0.3211 8374.8 317.36 0.4838 4568.7 373.41
60 100 0.5371 3988.7 300.58 0.3021 7824.4 298.21 0.4767 4567.9 364.35

Table 11. Performances of ER prediction using the NN approach for APS TBC data.

Hyper-Parameters Train Test All

Number of Nodes Repeat R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

5 100 0.8340 1958.3 159.21 0.6473 4388 178.58 0.8034 2317.6 192.14
10 100 0.8540 1732.2 155.81 0.6524 4196.8 181.08 0.8219 2096.7 190.42
15 100 0.8419 1851.3 157.04 0.6554 4394 180.7 0.8108 2227.4 190.86
20 100 0.8687 1535.6 149.59 0.6991 3946.7 170.84 0.8400 1892.2 184.01
25 100 0.8510 1750.6 158.41 0.6701 4022.3 171.5 0.8227 2086.5 187.81
30 100 0.8428 1849.8 158.17 0.6625 4391.2 178.8 0.8116 2225.6 194.69
35 100 0.8549 1702.6 152.25 0.6816 4211.6 172.59 0.8245 2073.6 188.45
40 100 0.8459 1843.8 157.39 0.6146 4737.9 191.73 0.8078 2271.8 204.34

Table 12. Performances of ER prediction using the NN approach for EB-PVD TBC data.

Hyper-Parameters Train Test All

Number of Nodes Repeat R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

5 100 0.7106 46.684 27.339 0.6039 83.216 22.887 0.6802 52.004 28.305
10 100 0.7147 46.416 27.294 0.5868 81.478 22.99 0.6827 51.522 28.253
15 100 0.7118 46.457 27.529 0.5893 86.439 23.182 0.6786 52.28 28.627
20 100 0.7027 47.918 27.771 0.5909 79.554 22.685 0.6765 52.525 28.602
25 100 0.7025 48.234 27.534 0.6146 75.217 21.724 0.6782 52.164 28.384
30 100 0.6983 48.857 27.83 0.6253 73.212 21.032 0.6769 52.403 28.321
35 100 0.6983 48.895 27.917 0.6162 72.445 21.073 0.6767 52.324 28.502
40 100 0.6938 50.019 27.534 0.6465 70.822 20.763 0.6729 53.049 28.303
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3.4. Gradient Boosting Approaches
3.4.1. Gradient Boosting Algorithm and Settings

Gradient boosting is a powerful machine-learning algorithm, which is widely used
in application of regression, classification, and ranking. As its name implies, gradient
boosting is the combination of gradient descent with boosting [23]. Boosting is an effective
procedure to blend multiple base classifiers to produce a new form of committee, which can
result in significantly better performance than any base classifier. The key concept of
boosting is adding new models to the ensemble sequentially. At each specific iteration,
a new base-learner model is trained regarding the error of the entire group learner so far.

Here, we present the basic methodology and learning algorithms of the GBR, which is
derived first by Friedman [24]. The following three key components are involved in GBR:

1. A loss function to be optimised.

The loss functions applied can be arbitrary, but to give better intuition, if the error
function is the classic squared-error loss, the learning procedure would result in consecutive
error-fitting. In general, the choice of the loss function is up to the researcher, with both a
rich variety of loss functions derived so far and the possibility of implementing one’s own
task-specific loss.

2. A weak-learner or base-learner model to make prediction.

It is common to constrain the base learners in specific ways, such as a maximum
number of layers, nodes, splits, or leaf nodes. This is to ensure that the learners remain
weak but can still be constructed in a greedy manner.

3. An addictive model to add base learners to minimise the loss function.

The basic idea behind this algorithm is to build the new base learners to be maximally
correlated with the negative gradient of the loss function, which is associated with the
whole ensemble [Brownlee, web reference]. Generally, this approach is called functional
gradient descent or gradient descent with functions.

Friedman’s gradient boost algorithm can be summarised as the following steps [24]:
Inputs:

• Input data (x, y)N
i = 1

• Number of iterations M
• Choice of the loss-function ψ(y, f )
• Choice of the base-learner model h(x, θ)

Algorithm:

1. Initialise f̂0 with a constant
2. For t = 1 to M,

a. Compute the negative gradient gt(x)
b. Fit a new base-learner function h(x, θt) for this iteration
c. Find the best gradient descent step-size ρt:

ρt = argminρ

N

∑
i = 1

ψ
[
yi, f̂t−1(xi) + ρh(xi, θt)

]
d. Update the function estimate f̂ t ← f̂ t−1 + ρth(xi, θt)

3. End for

The main advantages of GBR includes:

• Natural treatment of data of varied types
• High predictive power
• Robustness to outliers in output space (via robust loss functions),
• Supports different loss functions.
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The main disadvantage of GBR is scalability; due to the sequential nature of boosting,
it can hardly be parallelised. Furthermore, GBR is slow to train.

3.4.2. Gradient Boosting Regression (GBR) Topology and Details

In the present work, the prediction of ER using GBR is performed in Python using
scikit-learn library. First, an import of the library needs to be done:

import numpy as np
import numpy.ma as ma
import matplotlib.pyplot as plt
import csv
import xlsxwriter
import pandas as pd
from sklearn.ensemble import GradientBoostingRegressor as gbr
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error as mse, r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV,

cross_val_score
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_validate
from sklearn.model_selection import ShuffleSplit
from sklearn.preprocessing import StandardScaler.

Importing data and setting up the input and output dataset is the second step. In this
study, we tried two different inputs settings for the GBR approach. The first one is the orig-
inal five input variables (T Material, ImpactAngle, ImpactVelocity, ParticleSize, and Test-
Temp). The other input setting is using five input variables and their second-degree
polynomial terms. Codes regarding the data reading and setup are given as follows:

data = pd.read_csv(“NRC2020_Data_ML_EBPVD_Corrected_Nor.csv”, header = 0)
X0 = data.iloc[range(103),0:4] # five inputs
y = data.iloc[range(103),5]
sc = StandardScaler()
Xn = sc.fit_transform(X0)
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree = 2, include_bias = False)
X = poly_features.fit_transform(Xn)
X, y = shuffle(X, y, random_state = 13)
X = X.astype(np.float32)

Then, the gradient boosting regression model can be done using the following codes:

params = {‘n_estimators’: 500, ‘max_depth’: 4, ‘min_samples_split’: 6, ‘learning_rate’: 0.1,
‘loss’: ‘ls’}

clf = gbr(**params)
clf = clf.fit(X_train,y_train)
scoring = [‘r2′]

More information about hyper-parameters settings is in the following Table 13. It has
to be noted that there are more hyper-parameters for the model than are listed in the table;
the details can be found in the scikit-learn 0.23.2 help document: https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html since 2007.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
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Table 13. Values of parameters of GBR.

Parameters Description Options or Values Default Values

loss Loss function to be optimised String, ‘ls’, ‘lad’, ‘huber’,
‘quantile’ ls

learning_rate Learning rate shrinks the contribution of
each tree float, optional 0.055

n_estimators The number of boosting stages to perform int 400

subsample The fraction of samples to be used for fitting
the individual base learners float 1.0

min_samples_split The minimum number of samples required
to split an internal node int, float, optional 4

min_weight_fraction_leaf
The minimum weighted fraction of the sum

total of weights (of all the input samples)
required to be at a leaf node.

float, optional 0

max_depth Maximum depth of the individual regression
estimators integer, optional 4

min_impurity_decrease
A node will be split if this split induces a
decrease of the impurity greater than or

equal to this value
float, optional 0

min_impurity_split Threshold for early stopping in tree growth float 1 × 10−7

validation_fraction The proportion of training data to set aside
as the validation set for early stopping float 0.1

tot Tolerance for the early stopping float, optional 1 × 10−4

ccp_alpha Complexity parameter used for minimal
cost-complexity pruning non-negative float, optional 0.0

3.4.3. Prediction Results Using Gradient Boosting Regression (GBR)

In our present study, three cases of prediction of ER using the GBR approach were per-
formed for all, APS, and EB-PVD TBC data, respectively. Similar to neural network, the per-
formance of ER prediction was evaluated using R2, MAXE, and MSE. For model validation,
a holdout cross-validation is used by randomly splitting the data into 80% for training and
20% for testing, and this holdout cross-validation is repeated 10 times. The training and
testing results are averaged for evaluating all the model candidates.

The performance results of ER prediction using GBR with different hyper-parameter
settings are listed in Tables 14–16. The best prediction performance (using all subset results
for each case) is obtained for APS TBC data cases, which provide overall good prediction
performance, whose values of R2 are all around 0.85. The EB-PVD TBC case also obtains
relatively good results. However, for all the TBC data cases, the R2 values are around 0.55,
which are not satisfactory enough.

Table 14. Performances of ER prediction using the GBR approach for all TBC data.

Hyper-Parameters Train Test All

N of
Est.

Max
Dep.

Min Sample
Split

Learning
Rate Repeat R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

500 4 6 0.01 10 0.6499 2906.54 265.85 0.2498 7390.64 370.12 0.5547 3814.25 378.42
500 4 2 0.01 10 0.6509 2898.25 263.29 0.2359 7531.86 377.20 0.5521 3836.23 383.77
100 4 6 0.01 10 0.5136 4029.38 322.12 0.2876 7036.15 347.88 0.4585 4638.04 397.26
1000 4 6 0.01 10 0.6531 2880.90 258.56 0.2116 7760.85 380.09 0.5483 3868.74 384.41
500 4 6 0.1 10 0.6533 2878.55 256.78 0.1973 7879.10 380.96 0.5457 3890.80 384.03
500 2 6 0.01 10 0.5846 3447.75 314.67 0.3552 6359.93 333.17 0.5286 4037.26 386.36
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Table 15. Performances of ER prediction using the GBR approach for APS TBC data.

Hyper-Parameters Train Test All

N of
Est.

Max
Dep.

Min Sample
Split

Learning
Rate Repeat R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

10 4 6 0.2 10 0.8484 1785.11 157.87 0.6208 3959.35 170.14 0.8093 2229.15 179.94
500 4 6 0.2 10 0.8815 1395.88 146.29 0.6595 3447.56 161.86 0.8447 1814.88 163.96
500 4 6 0.01 10 0.8792 1422.32 147.88 0.6679 3403.43 159.31 0.8437 1826.91 166.05
500 4 2 0.2 10 0.8815 1395.88 146.29 0.6548 3534.03 167.08 0.8432 1832.54 170.08

500 6 6 0.2 10 0.8815 1395.88 146.29 0.6229 3853.18 175.80 0.8376 1897.72 176.89

500 2 6 0.2 10 0.8815 1395.90 146.29 0.6632 3518.42 168.74 0.8435 1829.37 171.89

Table 16. Performances of ER prediction using the GBR approach for EB-PVD TBC data.

Hyper-Parameters Train Test All

N of
Est.

Max
Dep.

Min Sample
Split

Learning
Rate Repeat R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

500 4 2 0.01 10 0.7705 34.98 29.52 0.4736 100.51 27.88 0.7000 48.34 30.83
500 6 2 0.01 10 0.7709 34.91 29.51 0.4707 103.48 28.04 0.6966 48.89 31.00
1000 4 2 0.01 10 0.7710 34.90 29.44 0.4709 100.89 27.82 0.6999 48.35 30.75
500 4 6 0.01 10 0.7702 35.02 29.55 0.4681 101.86 27.87 0.6981 48.65 30.81
500 4 6 0.1 10 0.7710 34.90 29.43 0.4652 102.33 27.72 0.6981 48.65 30.73
500 2 6 0.1 10 0.7420 39.30 30.62 0.4846 100.19 27.25 0.6791 51.72 31.12

Comparison of predicted and measured ER values and distribution of predicted error
using GBR are illustrated in Figures 6–8 for all, APS, and EB-PVD TBC data, respectively.
It appears that predictions using APS TBC data show good consistency with actual mea-
surement data throughout the data range. For EB-PVD TBC, relatively better agreement
between predicted and actual measurement data can be found for lower values of ER.
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3.5. Decision Tree Regression (DTR) Approaches
3.5.1. Decision Tree Regression Algorithm and Settings

Decision tree is a supervised machine learning model for predicting goals by learning
decision rules from features. As the name implies, this model decomposes users’ data
by making decisions based on a series of questions. The decision tree algorithm typically
consists of three steps: feature selection, decision tree generation, and decision tree prun-
ing [25]. In a decision tree, each internal node is associated with a feature test also known
as a split, and data falling into this node will be split into different subsets according to
their different values on the feature test. Each terminal or leaf node is associated with a
label, which will be assigned to data instances falling into this node. When new data are
presented, the decision algorithm performs a series of feature tests starting from the root
node, and the result is obtained when a leaf node is reached.

Although the concept of a decision tree is mainly based on the classification objective
(classification), the same concept applies if our objective is real numbers (regression).

The process of solving regression problem with decision tree using Scikit Learn is
performed by using the DecisionTreeRegressor class of the tree library:

from sklearn.tree import DecisionTreeRegressor

Similar to the GBR approach, after importing data, the gradient boosting regression
model can be done using following codes:
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clf = DecisionTreeRegressor(min_samples_split = 2,min_samples_leaf = 1, min_weight_fraction_leaf = 0,
min_impurity_decrease = 0, min_impurity_split = None, ccp_alpha = 0)

clf = clf.fit(X_train,y_train)
scoring = [‘r2′].

More details of the hyper-parameters settings of DTR approach can be found in
Table 17. In addition, it should be pointed out that there are more hyper-parameters for the
model than are listed in the table; details can be found in the scikit-learn 0.23.2 help docu-
ment: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegr-
essor.html since 2007.

Table 17. Hyper-parameters of DTR.

Parameters Description Options or Values Default Values

criterion The function to measure the quality of a split. “mse”, “friedman_mse”,
“mae” ”mse”

Splitter The strategy used to choose the split at
each node. “best”, “random” ”best”

max_depth

The maximum depth of the tree. If none,
then nodes are expanded until all leaves are

pure or until all leaves contain less than
min_samples_split samples.

integer, optional None

min_samples_split The minimum number of samples required
to split an internal node. int, float, optional 2

min_samples_leaf The minimum number of samples required
to be at a leaf node. int, float, optional 1

min_weight_fraction_leaf
The minimum weighted fraction of the sum

total of weights (of all the input samples)
required to be at a leaf node.

float, optional 0

max_depth Maximum depth of the individual
regression estimators. integer, optional None

min_impurity_decrease
A node will be split if this split induces a
decrease of the impurity greater than or

equal to this value.
float, optional 0

min_impurity_split Threshold for early stopping in tree growth. float 0

random_state Define the random number generator. int, RandomState instance or
none, optional none

max_features The number of features to consider when
looking for the best split.

nt, float, string or none,
optional none

max_leaf_nodes Grow trees with max_leaf_nodes in
best-first fashion. int or none, optional none

tot Tolerance for the early stopping. float, optional 1 × 10−4

ccp_alpha Complexity parameter used for Minimal
Cost-Complexity Pruning. non-negative float, optional 0.0

3.5.2. Decision Tree Regression (DTR) Results

The performance results of ER prediction using DTR with different hyper-parameter
settings are found in Tables 18–20. Comparable with the BR model, it can be seen that the
best prediction performance (using all subset results for each case) is obtained for APS TBC
data cases, which provide overall good prediction performance, whose values of R2 are all
around 0.8377. The EB-PVD TBC case also obtains relatively good results. However, for the
EB-PVD + APS TBC data case, the best R2 values are around 0.54, which are mediocre.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegr-essor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegr-essor.html
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Table 18. Performances of ER prediction using the DTR approach for all TBC data.

Hyper-Parameters Train Test All

Min Sample
Split

Min Samples
Leaf

Min Weight
Fraction Leaf

Min Impurity
Decrease CCP Alpha R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

2 (def) 1 (def) 0 (def) 0 (def) 0 (def) 0.6533 2878.55 256.77 0.1407 8428.65 385.56 0.5327 4002.05 388.63
4 1 0 0 0 0.6510 2897.31 259.24 0.1711 8149.88 385.56 0.5376 3960.58 391.09
6 1 0 0 0 0.6402 2987.76 263.82 0.1745 8114.65 359.30 0.5300 4025.59 363.85
2 2 0 0 0 0.6311 3063.11 258.91 0.2243 7638.51 355.67 0.5342 3989.31 361.50
2 4 0 0 0 0.5753 3524.22 304.93 0.2163 7730.95 354.78 0.4891 4375.78 396.79
2 1 0.1 0 0 0.4510 4556.44 332.56 0.2946 6887.12 328.96 0.4129 5028.24 398.04
2 1 0 0.1 0 0.6533 2878.77 256.77 0.1351 8484.42 385.36 0.5314 4013.52 388.43
2 1 0 0.5 0 0.6531 2880.49 256.77 0.1313 8547.40 387.86 0.5297 4027.64 390.83
2 1 0 0 0.1 0.6533 2878.72 256.77 0.1413 8423.97 386.98 0.5328 4001.24 390.05

Table 19. Performances of ER prediction using the DTR approach for APS TBC data.

Hyper-Parameters Train Test All

Min Sample
Split

Min Samples
Leaf

Min Weight
Fraction Leaf

Min Impurity
Decrease CCP Alpha R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

2 (def) 1 (def) 0 (def) 0 (def) 0 (def) 0.8815 1395.88 146.29 0.6165 3846.94 178.08 0.8377 1896.45 178.55
4 1 0 0 0 0.8660 1570.00 146.00 0.6180 3840.00 175.00 0.8260 2040.00 176.00
6 1 0 0 0 0.8475 1801.79 148.55 0.5798 4204.34 181.52 0.8039 2292.45 184.13
2 2 0 0 0 0.8511 1752.10 146.45 0.6365 3637.31 170.61 0.8172 2137.11 173.96
2 4 0 0 0 0.7605 2825.72 180.90 0.5668 4430.75 184.93 0.7302 3153.51 204.16
2 1 0.1 0 0 0.5477 5354.25 302.01 0.3449 6983.93 211.96 0.5134 5687.07 311.16
2 1 0 0.1 0 0.8814 1395.96 146.29 0.6001 3983.24 180.32 0.8354 1924.35 180.85
2 1 0 0.5 0 0.8814 1396.75 146.29 0.6152 3846.68 177.98 0.8377 1897.09 178.52
2 1 0 0 0.1 0.8814 1395.96 146.29 0.6027 3973.13 172.68 0.8355 1922.29 174.17
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Table 20. Performances of ER prediction using the DTR approach for EB-PVD TBC data.

Hyper-Parameters Train Test All

Min Sample
Split

Min Samples
Leaf

Min Weight
Fraction Leaf

Min Impurity
Decrease CCP Alpha R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

2 (def) 1 (def) 0 (def) 0 (def) 0 (def) 0.7710 34.90 29.43 0.4369 110.31 28.39 0.6880 50.27 31.07
4 1 0 0 0 0.7655 35.76 29.43 0.4118 113.58 29.02 0.6796 51.62 31.07
6 1 0 0 0 0.7512 37.85 29.43 0.4335 110.41 28.67 0.6733 52.64 31.07
2 2 0 0 0 0.7382 39.97 29.45 0.4635 104.07 28.30 0.6709 53.04 30.94
2 4 0 0 0 0.6951 46.55 29.35 0.4574 106.00 27.65 0.6359 58.67 30.89
2 1 0 0.5 0 0.7619 36.27 29.34 0.3928 118.04 28.51 0.6715 52.94 31.01
2 1 0 0 0.1 0.7695 35.13 29.41 0.4147 112.96 28.79 0.6835 51.00 31.07
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Comparison of predicted and measured ER values and distribution of predicted error
using decision tree are illustrated in Figures 9–11 for all, APS, and EB-PVD TBC data,
respectively. It appears that the predictions using three sets of data using DTR are very
similar to those using GBR.
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3.6. Random Forest Approaches
3.6.1. Random Forest Regression (RFR) Algorithm and Settings

A major drawback of the decision tree algorithm is that it leads to overfitting. This prob-
lem can be reduced or limited by implementing random forest regression instead of deci-
sion tree regression. It can be called the “forest” of trees and called “random forest” [26].
The term “random” is due to the fact that this algorithm is a forest of “randomly created
decision trees”. A random forest is an integrated technique that is capable of performing
regression and classification tasks using multiple decision trees and a technique called
bootstrap aggregation.

Similar to the GBR and DTR approach, the prediction of ER using the RFR approach
was performed using Python codes. The process of solving a regression problem with
random forest using Scikit Learn is performed by using the RandomForestRegressor class
of the ensemble library:

from sklearn.ensemble import RandomForestRegressor as rfr

After importing data, the gradient boosting regression model can be done using the
following codes:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = seed)
clf = rfr(n_estimators = 500, min_samples_split = 2, min_samples_leaf = 1, ccp_alpha = 0)
clf = clf.fit(X_train,y_train)
scoring = [‘r2′].

More details of the hyper-parameters settings of the RFR approach can be found
in Table 21. In addition, it should be pointed out that there are more hyper-parameters
for the model than are listed in the table; details can be found in the scikit-learn 0.23.2
help document: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html since 2007.

Table 21. Hyper-parameters of RFR.

Parameters Description Options or Values Default Values

n_estimators The number of trees in the forest. int 0

min_samples_split The minimum number of samples required
to split an internal node. int, float 2

min_samples_leaf The minimum number of samples required
to be at a leaf node. int, float 1

min_weight_fraction_leaf
The minimum weighted fraction of the sum

total of weights (of all the input samples)
required to be at a leaf node.

float, optional 0

max_depth The maximum depth of the individual
regression estimators. integer, optional None

min_impurity_decrease
A node will be split if this split induces a
decrease of the impurity greater than or

equal to this value.
float, optional 0

min_impurity_split Threshold for early stopping in tree growth. float 0

random_state Define the random number generator. int, RandomState instance or
none, optional none

max_samples If bootstrap is true, the number of samples to
draw from X to train each base estimator. nt, float none

max_leaf_nodes Grow trees with max_leaf_nodes in
best-first fashion. int or none, optional none

tot Tolerance for the early stopping. float, optional 1 × 10−4

ccp_alpha Complexity parameter used for Minimal
Cost-Complexity Pruning. non-negative float, optional 0.0

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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3.6.2. Random Forest Regression (RFR) Results

The performance of ER prediction using RFR using different hyper-parameter settings
can be found in Tables 22–24. Comparable with the BR model, it can be seen that the best
prediction performance (using all the subset results for each case) is obtained for APS TBC
data cases, which provide overall good prediction performance, whose values of R2 are all
around 0.8209. Meanwhile, this value is a little bit lower than the best R2 values provided
by the GBR and DTR models.

Table 22. Performances of ER prediction using the RFR approach for all TBC data.

Hyper-Parameters Train Test All

N of
Est.

Max
Depth

Min Sample
Split

Min
Samples

Leaf

CCP
Alpha R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

10 None 2 1 0 0.6192 3160.65 285.89 0.2861 6938.43 322.91 0.5417 3925.38 351.92

100 None 2 1 0 0.6370 3013.81 281.62 0.2951 6921.69 342.92 0.5557 3804.88 369.92

200 None 2 1 0 0.6388 2998.72 274.95 0.2884 6981.54 345.30 0.5557 3804.96 366.62

500 None 2 1 0 0.6392 2995.33 271.86 0.2952 6913.27 344.76 0.5577 3788.44 361.61

500 4 2 1 0 0.5982 3330.92 273.38 0.3112 6760.09 342.04 0.5300 4025.08 357.77

500 None 4 1 0 0.6344 3035.32 281.25 0.3063 6801.32 339.83 0.5566 3797.67 365.95

500 None 2 2 0 0.6173 3176.67 296.32 0.3232 6643.01 332.11 0.5472 3878.35 374.16

500 None 2 1 0.1 0.6393 2995.18 270.86 0.2904 6975.11 345.43 0.5562 3800.83 362.98

Table 23. Performances of ER prediction using the RFR approach for APS TBC data.

Hyper-Parameters Train Test All

N of
Est.

Max
Depth

Min Sample
Split

Min
Samples

Leaf

CCP
Alpha R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

10 None 2 1 0 0.8392 1895.39 161.97 0.6250 3866.68 161.25 0.8034 2297.98 179.14

10 4 2 1 0 0.7973 2388.49 158.98 0.5914 4259.93 164.94 0.7629 2770.68 180.05

100 None 2 1 0 0.8540 1721.07 145.01 0.6503 3637.27 162.41 0.8193 2112.40 172.57

200 None 2 1 0 0.8544 1715.10 146.13 0.6582 3583.94 163.83 0.8206 2096.76 173.64

500 None 2 1 0 0.8543 1717.74 146.05 0.6598 3558.09 159.80 0.8209 2093.59 170.63

500 None 4 1 0 0.8406 1881.33 155.41 0.6531 3621.78 161.01 0.8086 2236.77 177.53

500 None 2 2 0 0.8167 2162.93 186.94 0.6549 3664.26 163.54 0.7887 2469.54 205.84

500 None 2 1 0.1 0.8548 1710.61 146.14 0.6548 3617.42 160.30 0.8203 2100.03 171.64

Table 24. Performances of ER prediction using the RFR approach for EB-PVD TBC data.

Hyper-Parameters Train Test All

N of
Est.

Max
Depth

Min Sample
Split

Min
Samples

Leaf

CCP
Alpha R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

10 None 2 1 0 0.7369 39.98 29.59 0.5000 99.22 26.31 0.6770 52.05 30.17

100 None 2 1 0 0.7468 38.54 29.60 0.5189 95.16 26.37 0.6892 50.09 30.45

200 None 2 1 0 0.7465 38.58 29.42 0.5171 94.80 26.49 0.6894 50.04 30.18

500 None 2 1 0 0.7473 38.47 29.46 0.5175 94.83 26.40 0.6900 49.96 30.25

500 4 2 1 0 0.7274 41.47 29.41 0.5244 93.29 26.37 0.6771 52.04 30.18

500 None 4 1 0 0.7405 39.49 29.39 0.5196 94.17 26.27 0.6857 50.64 30.18

500 None 2 2 0 0.7236 42.03 29.45 0.5265 92.58 26.60 0.6752 52.33 30.26

500 None 2 1 0.1 0.7468 38.54 29.45 0.5184 94.54 26.42 0.6900 49.96 30.25

Comparisons of predicted and measured ER values and distribution of predicted
error using decision tree are illustrated in Figures 12–14 for all, APS, and EB-PVD TBC
data, respectively. It appears that predictions using three sets of data using RFR are very
similar to those using GBR and DTR. However, it can be clearly seen that for APS data,
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the predicted value for the largest valued data point is much lower than the actual data,
which reflects that RFR has no advantage over the other three models.
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3.7. Summary of Prediction of Erosion Rates Using Machine Learning

In the present study, the prediction of erosion rate of APS and EB-PVD TBC from
five input variables was investigated using four different machine learning approaches.
The original dataset was gathered from experimental measurements of previous related
research in the past three decades. This dataset contains six variables (impact angle, impact
velocity, particle size, measurement temperature, and erosion rate) and the total number of
samples are 245 for APS and EB-PVD TBC together.

Four machine learning algorithms were adopted, including Bayesian regularisation
(BR) neural network (NN), gradient boosting regression (GBR), decision tree regression
(DTR), and random forest regression (RFR). The comparisons of four approaches adopted in
the present work are summarised in Tables 25–27 for the APS + EB-PVD, APS, and EB-PVD
TBC cases, respectively.

Table 25. Comparison of ER prediction using different approaches for APS + EB-PVD TBC.

All Train Test All

Model R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

NN 0.5436 3891.7 298.03 0.3211 8374.8 317.36 0.4838 4568.7 373.41

GBR 0.6499 2906.54 265.85 0.2498 7390.64 370.12 0.5547 3814.25 378.42

DTR 0.6510 2897.31 259.24 0.1711 8149.88 385.56 0.5376 3960.58 391.09

RFR 0.6392 2995.33 271.86 0.2952 6913.27 344.76 0.5577 3788.44 361.61

Table 26. Comparison of ER prediction using different approaches for APS TBC.

APS Train Test All

Model R2 MSE MAXE R2 MSE MAXE R2 MSE MAXE

NN 0.8687 1535.6 149.59 0.6991 3946.7 170.84 0.8400 1892.2 184.01

GBR 0.8815 1395.88 146.29 0.6595 3447.56 161.86 0.8447 1814.88 163.96

DTR 0.8815 1395.88 146.29 0.6165 3846.94 178.08 0.8377 1896.45 178.55

RFR 0.8392 1895.39 161.97 0.6250 3866.68 161.25 0.8034 2297.98 179.14

Table 27. Comparison of ER prediction using different approaches for EB-PVD TBC.

EB-PVD Train Test All

Model R2 MSE MAXE Model R2 MSE MAXE Model R2

NN 0.7147 46.42 27.294 0.5868 81.48 22.99 0.6827 51.52 28.25

GBR 0.7705 34.98 29.52 0.4736 100.51 27.88 0.7000 48.34 30.83

DTR 0.7710 34.90 29.43 0.4369 110.31 28.39 0.6880 50.27 31.07

RFR 0.7473 38.47 29.46 0.5175 94.83 26.40 0.6900 49.96 30.25

The results suggest that for APS TBC, all four approaches show overall good prediction
performance on the erosion rates. In addition, the GBR approach needs a relatively short
computing time and better results. For EB-PVD TBC, the results of the GBR approach also
showed better agreement with real measurement data. When APS and EB-PVD data are
considered together, the results of prediction are unsatisfactory, indicating the importance
of the TBC types on the erosion rate. In summary, machine learning is a promising tool for
material science predictions, especially for the highly complex TBC system.

4. Exploration of Application of Deep Learning on Erosion Rates of TBCs

Research was done to create qualitative and quantitative characterisation of the mi-
crostructural features of TBCs, which can be applied to the study the erosion rates.
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4.1. Literature Review on Characterisation for the Microstructural Features of TBCs Using
Machine-Learning and Deep-Learning Approaches

The primary motivation for exploring the use of ML and DL models in this project is
to expedite the prediction of microstructure mechanical properties of TBCs compared to
more expensive simulations involving physics-based constitutive models.

The microstructural characterisation and identification of TBCs is an extremely chal-
lenging task. Each microstructure is an integral part of TBCs and is required to provide
thermal conductivity and to accommodate operational thermal stresses and reduce erosion
of the TBCs. Accurate characterisation of the TBCs microstructure is difficult due to the
complex pore morphology and ultra-thin coating thickness. Usually, gathering and analy-
sis of the coating microstructural features are performed experimentally and analytically.
Of all this experimental and analytical work, image analysis is one of the most important
steps. Image analysis can be defined as different computer-based levels for identification,
description, and diagnosis of the elements from an image. During the past few years,
machine-learning (ML) and deep-learning (DL) approaches have made incredible progress
and have been widely utilised for prediction. In the material science, ML and DL have also
been used by many researchers and have been proven to be able to provide satisfactory
accurate results when adopted for the microstructure characterisation and quantification.
In this section, a survey and literature review will be given on characterisation for the
microstructural features of TBCs using machine-learning and deep-learning approaches or
deep-learning based models.

4.1.1. Support Vector Machine Method Optimised by the Cuckoo Search
Algorithm (CS-SVM)

A novel hybrid machine-learning method was proposed by Ye et al. [27] to predict
the microstructural features of TBCs using thermal spray processing parameters based
on a support vector machine method optimised by the cuckoo search algorithm (CS-
SVM). In this work, atmospheric-plasma-sprayed (APS) TBCs samples with multifarious
microstructural features were acquired by modifying the spray powder size, spray distance,
and spray power during thermal spray processing. The processing parameters were used as
the inputs for the CS-SVM model. Then, the porosity, the pore-to-crack ratio, the maximum
Feret’s diameter, the aspect ratio, and the circularity were counted and treated as the targets
for the CS-SVM model.

The cuckoo search algorithm is a meta-heuristic algorithm developed by Xin-she
Yang and Suash Deb in 2009 [28]. The algorithm was developed based on the parasitic
reproduction strategy possessed by the cuckoo population itself [28]. The CS algorithm
uses egg nests on behalf of the solutions. In the oversimplified case, there is one egg per
nest, and the cuckoo’s egg signifies a new solution. The aim is to adopt new and latently
better solutions instead of suboptimal solutions.

The predicted results obtained after the optimisation and training procedure of the
CS-SVM model were compared to the results of experimental data. As a result, the squared
correlation coefficient (R2) of CS-SVM model showed that the prediction accuracy was
over 95%, and the root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) were less than 0.1. All these metrics verified the reliability
of the CS-SVM model.

4.1.2. K-Means Clustering Algorithm

The K-means clustering algorithm, which retains the spatial information of the con-
stituent phases, was used by Vignesh et al. [29] to deconvolute the data to determine the
phase-level properties. The details of the K-means clustering algorithm were described
in the work of Hartigan and Wong [30]. The main principle of k-means is to partition ‘n’
observations into ‘k’ clusters. K-means is an iterative refinement technique. It moves the
center of the cluster to a new point, k cluster centers are randomly initialised, and then,
we minimise the sum of square distances within the cluster in each iteration. When the
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distance within the cluster cannot be reduced, this iterative process converges, thus sep-
arating the data into a predetermined number of clusters. The number of clusters into
which the data has to be binned can be determined either by prior knowledge of the num-
ber of phases present in the mapped region or by iteratively running the algorithm for a
different number of clusters and picking the optimal number by error minimisation. As the
algorithm partitions the data in such a way that the data points within the same cluster
are more similar than those in other clusters, it is expected that each cluster represents a
distinct phase/feature in the spatial map. Once clustered, the mean and standard deviation
of the data points in each cluster can be used as a quantitative measure of the property of
the corresponding phase. This method of deconvolution has been applied to all spatial
property maps acquired from the bond coat, top coat, and bond coat–top coat interface
regions to obtain the properties of individual phases/features (β-NiAl, γ/γ′-Ni, YSZ, TGO)
present in them. Unlike the Gaussian deconvolution-based methods, this method preserves
the spatial information of each constituent phase, which is useful for studying the evolution
of a local mechanical property.

The high speed nanoindentation results obtained by Vignesh et al. [29] show good
agreement with existing literature and experimental results. The phase-level characteristics
obtained by using this approach can be easily used for microstructure-based finite element
analysis, and the large datasets obtained using extensive mapping can also be used to
develop data-driven models and to predict the remaining life of TBCs.

4.1.3. Constructed BP-GPR Algorithm Was Presented Based on URCAS Technique

A novel method for characterising the TBCs porosity through a BP neural network
optimising the Gaussian process regression (GPR) algorithm, which is termed the BP-GPR
algorithm and based on a ultrasonic reflection coefficient amplitude spectrum (URCAS),
was presented and reported by Ma et al. [31–33]. First, the characteristic parameters of
the URCAS are optimised using BP neural network combined with high determination
coefficient R2 rules. Then, the optimisation parameters are used to train the GPR algorithm
for predicting unknown TBCs porosity.

The BP-GPR method was demonstrated through a series of finite element method
(FEM) simulations, which were implemented on random pore models (RPMs) of a plasma
spraying ZrO2 coating with a thickness of 300 µm and porosities of 1%, 3%, 5%, 7%, and 9%.
Simulation results indicated that the relative errors of the predicted porosity of RPMs were
6.37%, 7.62%, 1.07%, and 1.07%, respectively, which have 32% and 48% higher accuracy
than that predicted only by the BP neural network or GPR algorithm. It is verified that the
proposed BP-GPR method can accurately characterise the porosity of TBCs with complex
pore morphology.

4.1.4. Convolutional Neural Networks (CNNs)

Different types of deep neural networks were studied for surface defect analysis,
in which the optimal structure was obtained for the best performance [34]. Among many
deep neural network models, convolutional neural networks (CNNs) are commonly ap-
plied to analyse visual imagery and have achieved much success in image classification.
Recently, CNNs have also been utilised to study the effective characteristics of complex ma-
terials and showed much potential for the efficient and accurate prediction of a material’s
effective properties from its structure (e.g., presented in the form of images). Convolutional
neural networks (CNNs) are representative deep learning architectures that have been
used for defect detection due to their strong feature extraction capabilities [35]. Based on
convolutional neural networks, the method of defect segmentation in manufacturing is
also proposed, especially to deal with this situation when the dataset is small scale [36].

Azimi et al. [37] propose a deep learning method for microstructural classification
in the examples of certain microstructural constituents of low-carbon steel. This novel
method employs pixel-wise segmentation via fully convolutional neural network (FCNN)
accompanied by a max-voting scheme.
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Wu et al. [38] report their application of deep learning methods for predicting the
effective diffusivity (De) of two-dimensional porous media from images of their structures.
Pore structures are built using reconstruction methods and represented as images, and their
effective diffusivity is computed by lattice Boltzmann (LBM) simulations. The datasets thus
generated are used to train convolutional neural networks (CNNs) models and evaluate
their performance.

Some research also proved that CNNs are able to achieve satisfied accuracy re-
sults when deployed for microstructure quantification within thermal spray coatings.
Chen et al. [39] collected the ground truth of the porosity mask on two full-size images and
then randomly selected pixels in the top coat layer (TCL) to form sub-images centred at the
pixel and with different sizes to train convolutional neural networks (CNNs) with various
architecture. Their proposed approach was evaluated on a dataset of 150 images of size 100
by 100 randomly selected from a set of 30 high-resolution thermal barrier coating images.
Their results indicate that the CNN-based models achieved higher average classification
accuracy of 100% at the confidence level of 90% for a VGG16-based model and a lower
average relative error (ARE) of 0.113.

The work of Chen et al. was enhanced by Lu et al. [40]. An improved CNNs method-
ology was proposed by implementing some additional operations, including data augmen-
tation and transfer learning. In their work, the images collected correspond to coatings
from three types of powders generated by (1) Type A: Metco 601NS, (2) Type B: Metco
995C, and (3) Type C: Metco 204BNS. The size of our dataset is 159 raw images, where the
number of Type A, Type B, and Type C images are 50, 49, and 60 respectively.

The overall training process proposed by Lu et al. [40] can be summarised in the
following seven steps:

1. Procure ground truth mask of a raw image by manually labelling each pixel as one
of the four classes, including (1) mount material, (2) top coat layer—microstructure,
(3) top coat layer—coating material, and (4) substrate.

2. Extract the topcoat layer (TCL) from the raw image according to the ground truth mask.
3. Choose a sub-image size, and then, randomly select pixels in the TCL and use the

individual pixel selected as the center to crop sub-images in the chosen size.
4. Augment the cropped sub-images by mirroring and rotating sub-images to form a

training dataset.
5. Resize the sub-images and feed them into CNNs with pre-trained parameters to train

CNN models;
6. Select the best CNN model;
7. Recognise microstructure/coating material in a pixel-wise manner in the TCL area,

which was obtained according to the ground truth mask, by applying the CNN model
on sub-images extracted from the TCL area to evaluate the performance of the CNN
model for microstructure and coating material classification.

The CNN model that gives the highest classification accuracy among the five models
corresponding to that combination of CNN model and sub-image size was assumed as the
best model.

4.1.5. Image Processing Tools

ImageJ (ImageJ software, NIH, Bethesda, MA, USA) is an open-source code software
that was used by a lot of researchers in the field of material science [41]. The source codes
and more information are available at https://imagej.nih.gov since 2011.

Ghai et al. developed five-phase model of thermal conductivity of porous thermal
barrier coatings. The flowchart describing the process to obtain the thermal conductivity of
a coating can be seen in Figure 15. As the first step to propose the model, the length, height,
and orientation angle of the defects from the SEM images of TBCs were obtained using
Image J software.

https://imagej.nih.gov
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Bolelli et al. [42] studied how the nanomechanical properties of thermal barrier coat-
ings (TBCs) vary during thermal cycling, as a way to shed new light on their failure
mechanisms. In Section 2.2 of the paper of Bolelli et al., the image processing of SEM micro-
graphs was provided. The thickness of the TGO scale developed on top of the bond coat
in the thermally cycled samples was measured by image analysis (ImageJ software, NIH,
Bethesda, MA, USA) using ten 4000× FEG-SEM micrographs acquired in backscattered
electrons (BSE) contrast mode. The porosity of thermally cycled top coats was measured on
polished cross-sections by image analysis (Leica Application Suite software), using three
100× optical micrographs each covering a field of view of 1.36 mm.

4.2. Using Deep Learning Methods for Prediction
4.2.1. Convolutional Neural Networks (CNNs) in Python with Karas

The long-term goal of application deep learning is collecting SEM images of TBCs
and processing the images using the deep learning approach to extract information from
the microstructure of the TBCs, including the porosity, pore-to-crack ratio, and pore size
(equivalent diameter), and applying those microstructure features to the prediction or
evaluation of TBC thermal-mechanical properties and life prediction.

We mainly focus on the prediction of porosity and data augment. Possible ML and
DL modelling approaches (multiple linear regression (MLR), backpropagation (BP) neural
network, support vector machine (SVM), and convolutional neural networks (CNNs))
might be the candidates to characterise the microstructural features.

In this work, convolutional neural networks (CNNs) are chosen as a deep learning
tool because it is the most influential and successful innovation in the field of computer
vision. CNNs have shown their success in many practical case studies and applications.

In our present work, a preliminary test of CNNs is inbuilt by using Python (Version 3.7,
in Spyder/Anocoda Navigator), and the steps are briefly described below:

1. The first step is collecting data. Since this is the preliminary test case, the dataset
adopted here is the Fashion-MNIST dataset, which is a dataset of Zalando’s article
images, with 28 × 28 grayscale images of 70,000 fashion products from 10 categories
and 7000 images per category.

2. The second step is importing libraries including Tensorflow (an open-source software
library for dataflow programming across a range of tasks), Keras (an open-source
neural network library written in Python), and CNN (convolution neural network,
a class of deep, feed-forward artificial neural networks). The codes used to import
libraries can be seen below:
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import keras
from keras.models import Sequential,Input,Model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
import numpy as np
from keras.utils import to_categorical
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras.datasets import fashion_mnist.

3. The third step is splitting the dataset: the training set has 60,000 images, and the test
set has 10,000 images. The codes related to data splitting are listed below:

train_X,valid_X,train_label,valid_label = train_test_split(train_X, train_Y_one_hot,
test_size = 0.2, random_state = 13)

print(‘Training data shape: ‘, train_X.shape, train_Y.shape)
print(‘Testing data shape: ‘, test_X.shape, test_Y.shape).

4. Then, the CNN model is built by three sub-steps: convolution, polling, and flattening.
Codes related to the building of CNN models are

batch_size = 64
epochs = 20
num_classes = 10
fashion_model = Sequential()
fashion_model.add(Conv2D(32, kernel_size = (3, 3),activation = ‘linear’,padding = ‘same’,

input_shape = (28,28,1)))
fashion_model.add(LeakyReLU(alpha = 0.1))
fashion_model.add(MaxPooling2D((2, 2),padding = ‘same’))
fashion_model.add(Dropout(0.25))
fashion_model.add(Conv2D(64, (3, 3), activation = ‘linear’,padding = ‘same’))
fashion_model.add(LeakyReLU(alpha = 0.1))
fashion_model.add(MaxPooling2D(pool_size=(2, 2),padding = ‘same’))
fashion_model.add(Dropout(0.25))
fashion_model.add(Conv2D(128, (3, 3), activation=‘linear’,padding = ‘same’))
fashion_model.add(LeakyReLU(alpha=0.1))
fashion_model.add(MaxPooling2D(pool_size = (2, 2),padding = ‘same’))
fashion_model.add(Dropout(0.4))
fashion_model.add(Flatten())
fashion_model.add(Dense(128, activation = ‘linear’))
fashion_model.add(LeakyReLU(alpha = 0.1))
fashion_model.add(Dropout(0.3))
fashion_model.add(Dense(num_classes, activation = ‘softmax’))
fashion_model.compile(loss = keras.losses.categorical_crossentropy, optimizer = keras.optimizers.

Adam(),metrics = [‘accuracy’]).

5. Then, the CNN model can be trained and tested using image data, and predicted
results can be printed, exported, and analysed. In this preliminary test case, it can
be seen from Figure 16 that the test loss and accuracy is improved by using a larger
epochs number.

• epochs = 4
Test loss: 0.2750724524140358
Test accuracy: 0.8963000178337097
Found 8897 correct labels
Found 1103 incorrect labels
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• epochs = 10
Test loss: 0.23426873979568483
Test accuracy: 0.9126999974250793
Found 9081 correct labels
Found 919 incorrect labels
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4.2.2. Work Plan for Next Steps

• Image Collecting

Possible image sources include TBC SEM micrographs collected from the literature
and experimental images from NRC. Based on the information gathered from the literature
review, the amount of image data to be collected should not be less than 200.

• Image data augmentation

Overfitting refers to the phenomenon in the process of ML or DL with a very large
amount of data and very high variance such as to perfectly model the training data. On the
contrary, many application domains cannot access big data, such as topics related to TBC
microstructures. Image data augmentation is a technique that can be used to artificially
expand the size of a training dataset by creating modified versions of images in the dataset.

• Perform data training using available data and a CNNs model to obtain porosity data
or porosity classification information.

• Check ImageJ software source codes to optimise the image acquisition and procession
by utilising ML and DP approaches.

5. Conclusions

Artificial intelligence technology comprising of machine learning (ML), deep learning
(DL), and big data (BD) treatment approaches have been evolving at a rapid pace to facilitate
material designing, developments, and property prediction. This project has undertaken
the prediction of erosion rate (ER) for two types of thermal barrier coatings (EB-PVD and
APS) using machine learning models and methodology. In addition, some efforts have been
made to explore the possibility of the application of DL approaches to the microstructure
characterisation of TBCs.

1. Experimental erosion rate (ER) data have been compiled from literature for YSZ
TBCs and EB-PVD TBCs used for the training, testing, and validation of ML models.
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A dataset was collected containing five inputs (wt.% of Y2O3, impact angle, impact
velocity, particle size, and measurement temperature) and the total number of sam-
ples is 245. Following data collection, the dataset is subjected to sorting, filtering,
extracting, and exploratory analysis. PCA analysis in this study shows that APS
TBC data, impact velocity, particle size, and impact angle show enough correlation
with the output variable ER. Regarding the EB-PVD data, test temperature shows the
largest correlation with the ER.

2. A quick analysis was performed to check ten ML models using the Tecsis Model
Selection Tool (MST). It can be seen that the gradient boosting regression (GB), random
forest regression (RF), decision tree regression (DT), and Adaboost classifier (AC)
approaches provide a relatively good prediction.

3. Based on the results of the quick analysis, the prediction of erosion rates of two
types of TBCs was performed using four approaches, namely neural networks (NNs),
gradient boosting regression (GBR), decision tree regression (DTR), and random
forest regression (RFR). The training and testing and prediction results are analysed,
presented, and discussed at length in the report. The results indicate that for APS
TBC, all four approaches show overall good prediction performance on the erosion
rates. In addition, the GBR approach needs a relatively short computing time and
better results. For EB-PVD TBC, the results of the GBR approach also showed better
agreement with real measurement data. When APS and EB-PVD data are considered
together, the results of prediction are unsatisfactory, indicating the importance of the
TBC types on the erosion rate prediction. In brief, machine learning is a promising
tool for material science predictions, especially for the highly complex TBC systems.

4. A preliminary exploration of applications of deep learning approaches on the charac-
terisation of microstructures of TBCs was also performed. A review and survey work
have been performed on the available research on the evaluation and prediction of
materials’ microstructure properties, especially on the porosity using deep learning
approaches in the past several years. The review work helps us understand what
types of deep learning approaches can be adopted to improve the accuracy of measure-
ments and prediction of microstructure properties. In addition, a preliminary deep
learning case using CNNs models was studied in the Python and Keras environment.

6. Future Work

This research work is part of collaborations between Tecsis and the Aerospace Di-
vision, National Research Council of Canada (NRC, Canada) to study the application of
machine learning in predicting thermomechanical properties (including thermal conduc-
tivity, erosion rates) and microstructures for TBC applications. The possible extensions of
this preliminary work reported here are as follows:

• In this work, four different machine learning methods, including feedforward neural
networks (NNs), gradient boosting regression (GBR), decision tree regression (DTR),
and random forest regression (RFR), were investigated for the prediction of erosion
rates of different types of TBCs. It will be desirable to investigate various other
advanced regression models and algorithms such as support vector regression (SVR),
Gaussian process regression (GPR), and radial basis function (RBF) neural networks
for the prediction of TBC conductivity.

• Hyper-parameters (for example, the number of hidden layers and nodes of neural
networks, maximum depth in the case of the decision tree) setting is a key step in
the process of machine learning and deep learning and has a big influence on the
performance of machine learning algorithms. In the materials science application
of machine learning algorithms, these hyper-parameters are generally chosen by
trial-and-error methods or based on experience. In this work, we have adopted trial
and error experiments or simple grid searches to determine these hyper-parameters.
For future work, it will be beneficial to investigate ways to perform hyper-parameters
optimisation (best hyper-parameters searching) for the above-mentioned advanced
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regression models and algorithms using some global optimisation techniques such
as the genetic algorithm, genetic programming (GP), differential evolution (DE),
the evolution strategy (ES), and evolutionary programming (EP) [43].

• Collecting SEM images of TBC and gathering enough ground truth (information
provided by direct observation) on the raw images is the first and important step of
creating qualitative and quantitative characterisation for the microstructural features
of TBCs. More efforts will be made in this step to generate a TBC SEM images database.

• Study the data augmentations based on deep learning is also a research direction that
has received much attention. To build useful deep learning models, the validation
error must continue to decrease with the training error. For TBC microstructure
applications, data augmentation is a very powerful method in the condition of limited
numbers of images. In the future, a study will be performed to study different image
data augmentations techniques including flipping, color space, cropping, translation,
noise injection, color space transformation, etc.

• In addition to the CNNs model, some new background subtraction DL algorithms [44,45],
such as Generative Adversarial Networks (GANs), Foreground Generative Adver-
sarial Network (FgGAN), and Deep Auto Encoder Networks (DAE) can be applied
to the prediction/measurement of porosity (or other microstructure of TBC from
SEM images.
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