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Abstract: Iron–copper bimetallic nanoparticles (Fe-Cu BNPs) were prepared via a green synthesis
route. Ixora finlaysoniana has been used in this study as a capping and stabilizing agent in the
modification of Fe-Cu BNPs. As-synthesized BNPs were characterized using different techniques
including UV/Vis spectrophotometry, FTIR, XRD and SEM. A particle size analyzer and SEM studies
indicated the particle size to be in the range of 50–200 nm. In addition, degradation of MB dye in an
aqueous system and radical-scavenging potential in a DPPH assay were also examined using BNPs.
Methylene blue dye degradation in 17 min was monitored with UV/Vis spectrophotometry, which
exhibited the efficiency of Fe-Cu BNPs. Bimetallic nanoparticles were also found to be efficient in
neutralizing DPPH free radicals. Furthermore, kinetic studies of both dye degradation and radical
scavenging potential are reported in this article. Subsequently, Fe-Cu BNPs synthesized via a green
and sustainable method can be employed for dye degradation and free radical-scavenging activities.

Keywords: bimetallic nanoparticles; kinetics; antioxidant studies; catalytic activity

1. Introduction

Water pollution has always been a great concern over the years due to a decrease in
water levels and an increase in pollution over time [1,2]. Among the many pollutants, dyes
are one of the major contributors to water pollution [3,4]. Both cationic and anionic dyes as
pollutants are a real threat to human life. Textile dyes can cause different diseases, such
as cancer [5], cardiac problems [6] and lethal paraphernalia on cells [7]. These dyes stop
sunlight reaching marine life, which results in a decrease in photosynthesis processes under
water [8]. Therefore, the removal of such hazardous contaminants from water is of major
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interest [9]. For this purpose, a multitude of techniques have been employed for dye degra-
dation, among which nanoparticles of various kinds have gained a lot of attention [10,11].
Many methods have been reported for the modification of nanoparticles, such as thermal
and photochemical decomposition, chemical reduction, electrochemical reduction, the
sol–gel method, sputtering, the micro-emulsion method, the hydrothermal method, the
chemical precipitation method, the green method and the biological method, are frequently
used routes for their synthesis [12,13]. Initially, the synthesis of monometallic nanoparticles
was focused on by scientists and researchers. Recently, bimetallic nanocomposites have
attracted attention due to their synergistic effects in many applications, especially dye
degradation [14,15]. Osama Eljamal and coworkers reported the synthesis and characteri-
zation of iron–copper bimetallic nanoparticles (Fe-Cu BNPs) for an increase in the yield of
methane and to enhance biogas production [16]. Recently, Jianlong Wang and Juntao Tang
(2020) introduced novel Fe-Cu BNPs by the solvo-thermal method and used these BNPs in
the reduction of sulfamethoxazole (a pharmaceutical pollutant) [17]. In addition, Fe-Cu
BNPs have been used for the removal of chromium from waste water [18].

Moreover, copper and iron nanoparticles are both commercially important as their
annual production amounts to millions of tons and, due to their uses in various industries,
their production is likely to increase every year [19,20]. Unfortunately, other methods pro-
duce various pollutants as precursors that are highly damaging to the environment [21,22].
Therefore, it is necessary to find alternative ways under the umbrella of green chemistry to
meet the demand for these nanoparticles in a better and safer way [18]. In green chemistry,
there are various ways by which their production can be achieved, including biological
waste [22] and plant extracts [23]. Looking at the vast and easy availability of plants, the
plant-mediated method was considered for the production of these Fe-Cu BNPs [23].

Herein, Ixora finlaysoniana, also known as jungle flame, was used as a plant source in
order to achieve our aim of synthesizing Fe-Cu BNPs in a natural and sustainable way. It is
a shrub of the Rubiaceae family normally found in South East Asia, China, India and the
Philippines [24].

This family is quite abundant, comprising more than 13,000 species found globally.
Due to its medicinal impact, it has been used medically in various parts of the world. Vari-
ations in conditions and concentrations were made in order to optimize the most suitable
method. This method is both economical and environmentally friendly with the most suit-
able condition [25]. 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) is a nitrogen-centered
radical with a maximum absorbance at 517 nm, which is converted to 1,1, diphenyl-2-picryl
hydrazine when reacting with electron-accepting species. This hydrogen donation ability
leads to the formation of a stable complex of free radicals, resulting in termination of free
radical-based reactions [26]. The objectives of the present study were to synthesize Fe-Cu
BNPs using a green method followed by characterization using UV/Vis spectrophotometry,
XRD, FTIR and SEM. In addition, antioxidant and catalytic activities of the synthesized
Fe-Cu BNPs were determined.

2. Materials and Methods
2.1. Chemicals and Reagents

Methylene blue (99.9%) was purchased from Fisher Scientific, Altrincham, UK and
sodium borohydride (99%), DPPH (99.5%), FeSO4 (99%) and CuSO4 (99%) were acquired
from Sigma-Aldrich, Taufkirchen, Germany and methanol (98%) was used as a solvent and
was purchased from Unichem, Wuxi, China. All the chemicals and metal precursors were
used as received without any further heating or purification treatment.

2.2. Preparation of Plant Extract

Ixora plants were collected from WAPDA Town, Model Town and Kalma Chowk
nurseries of Lahore, Pakistan. After washing, plants were dried in the shade. In order
to attain a constant weight, plants were placed in hot air oven for 3 h at 60 ◦C, followed
by cutting and grinding. The powdered plant samples were then mixed with methanol
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and the extraction of bioactives was achieved using an orbital shaker for 3 h at 150 rpm.
The filtrate obtained was dried using a rotary evaporator and stored at −4 ◦C prior to
further use.

2.3. Nanoparticle Synthesis

Salt solution was prepared by mixing FeSO4 and CuSO4 in 25 mL of solvent. The
solvent used was a mixture of methanol and water in a 1:3 molar ratio. Similarly, extract
solution was prepared by mixing the extract in methanol. Both solutions were mixed at
different concentrations to make various ppm solutions, ranging from 50 to 250 ppm. The
purpose of making solutions at various concentrations was to find out the best concentration
which gives satisfactory results. The best concentration was found to be 200 ppm after
obtaining its UV/Vis spectra. The selected concentration was then centrifuged and filtered.
The filtered sample containing Fe-Cu BNPs was dried at 65 ◦C in a vacuum oven for 2 h
before further application. Figure 1 shows the Schematic diagram of Fe-Cu BNPs.
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Figure 1. Schematic diagram of Fe-Cu BNPs.

2.4. Characterization of Nanoparticles

Synthesis of Fe-Cu BNPs was immediately confirmed using a UV/Vis spectropho-
tometer and lambda max was recorded on a CECIL-7400ce UV/Vis spectrophotometer
(Cecil Instruments Ltd., Cambridge, UK). Particle size analyzer Lite-sizer 500 software
version 1.8.1, Anton Paar, Graz, Austria) with a measurement time of 10 s at 30 ◦C with a
maximum no of runs (60) was used. FTIR spectra of the Fe-Cu BNPs and aqueous plant
extracts were recorded on an FTIR spectrophotometer (IR Prestige 21, Shimadzu, Kyoto,
Japan). Additionally, the X-ray diffraction (XRD) studies were carried out at a scanning rate
of 0.05 min−1 using a Bruker D8 Advanced (Bruker, Billerica, MA, USA), equipped with a
scintillation counter using Cu Kα radiation (k = 1.5405 Å, nickel filter) at an acceleration
voltage of 30 KV NOVA SEM 450 (FEI, Hillsboro, OR, USA) was utilized to obtain SEM
images of synthesized BNPs and micrographs were obtained at 3 different magnifications.

2.5. DPPH Radical-Scavenging Potential

The antioxidant capacity of the BNPs was studied through the evaluation of the
free radical-scavenging effect on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The
determination was carried out by following an already reported method [27]. Ten milliliters
of BNPs (200, 400 and 600 ppm) was added to three separate flasks and 90 mL of distilled
water was added followed by the addition of 3.9 mL, 25 mM DPPH methanol solution.
The mixture was thoroughly vortexed and kept in the dark for 30 min. The absorbance
was measured later, at 515 nm, against a blank of methanol without DPPH. Results were
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expressed as the percentage of inhibition of the DPPH radical. The percentage of inhibition
of the DPPH radical was calculated according to Equation (1).

DPPH scavenging effect % = [(AD − AS)/AD] × 100 (1)

where AD control is the absorbance of DPPH solution without extracts and AS is the
absorbance value for the sample.

2.6. Catalytic Activity

The catalytic activity for Fe-Cu BNPs was observed following an already published
method [28]. Methylene blue 0.086 mM, NaBH4 26 mM and Fe-Cu BNPs with a 100 ppm
concentration were prepared. In a cuvette of the UV/Vis spectrophotometer, 3 mL methy-
lene blue, which acted as substrate, and 0.4 mL of 26 mM sodium borohydride acting
as a reducing agent were mixed. In this solution containing the substrate and reducing
agent, 0.5 mL Fe-Cu BNP solution was added, which behaved as a catalyst, and all the
observations were recorded at 665 nm, the maximum absorbance (λmax) for methylene blue.

3. Result and Discussion
3.1. UV/Visible Analysis

UV/visible spectrophotometric analysis can be an instant preliminary test for the
confirmation of nanoparticle formation, as metallic nanoparticles show absorbance in the
UV/Vis region. According to the literature, the absorbance range for iron nanoparticles
is 280–350 nm [29], while copper nanoparticles show absorbance from 550–600 nm [30].
During the formation of Fe-Cu BNPs, the shift in absorbance values for iron is 292 nm
and for copper it is 594 nm as compared to their monometallic counterparts that show
absorbance at 325 and 589 nm, respectively, as shown in Figure 2a [31].
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Figure 2. Absorbance peak of Fe-Cu BNPs (a) and particle size distribution of sample (b).

3.2. Particle Size Analysis

This technique is employed to find out about the size and distribution range of
nanoparticles. It also confirms the presence of nanoparticles by describing the range of the
particles. The sample used was in the form of solution and Figure 2b shows the particle size
distribution that was obtained. It contains two parameters, particle diameter (horizontally)
and distribution frequency (vertically). It clearly shows that nanoparticle ranges below and
above 100 nm were present in the sample [32,33].

3.3. FTIR Analysis

The data obtained after FTIR analysis, as shown in Figure 3a, were then compared
with an IR chart for the identification and confirmation of relevant components in the
provided sample. The dip around 3169 cm−1 is due to C–H and hydroxyl and carboxylic
group stretching in phenolic acid, gallic acid and protocatechuic acid present in the plant
extract. The extract could possibly contain some other secondary metabolites or interfering
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compounds but successful extraction depends upon careful handling and preparation of
plant samples. It would also minimize the incorporation of interfering components. FTIR
did not indicate the presence of undesired species in the nanoparticles’ final form. The dip
around 1644 cm−1 is due to C=C stretching which is a basic component of most organic
biomolecules [23]. All this evidence for the presence of phenolic compound peaks confirms
the potential of the extract to reduce Fe/Cu, which is a strong indicator for the synthesis of
target BNPs [26]. In addition, carboxylic acid present at the boundaries of Fe-NPs shows
peaks at almost 800 to 850 cm−1, whereas the peak at 1050 to 1111 cm−1 may represent
C–O–C attached to Cu present in BNPs [34].
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3.4. XRD Analysis

X-ray diffraction is a very effective technique in determining the morphology and
structure of nanoparticles. The peak in Figure 3b at 30.0◦ relates to γ-Fe2O3 and 57.39◦

relates to α-Fe2O3 (JCPDS 39-1346) while 50.24◦ and 74.21◦ correspond to Cu nanoparticles
(JCPDS No: 04.0836) [35,36]. The presence of some minor peaks indicates impurity in
the form of biomoieties. The sharp and intense peaks confirmed the presence of Fe/Cu
nanoparticles and their crystalline nature [35]. Sharp peaks indicated the crystalline nature
of nanoparticles. In conclusion, for as-synthesized Fe-Cu bimetallic nanoparticles, the
existence of both the Fe and Cu peaks was recognized by a diffractogram.

3.5. Scanning Electron Microscopy (SEM)

SEM images of Fe-Cu BNPs were obtained through a NOVA Nano SEM 450. The
sample in powder form was used for taking SEM images. The micrographs in Figure 4a–c
were obtained at different magnifications (30, 50 and 100 nm, respectively). They provide
the data regarding morphology of the nanoparticles and they appear to have a hetero-
geneous surface. The recorded micrographs display a mixed morphology of cubic and
rectangular nanoparticles. The particle and sizes varied depending upon the clumping
of nanoparticles. The surface of the particles did not remain smooth, which may be due
to their interaction with extract biomolecules, however, these nanographs match those of
synthesized Cu NPs [37–39]. However, keeping the SEM results in mind, the predicted size
of the nanoparticles ranged from 50 to 100 nm.
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3.6. DPPH Radical-Scavenging Activity

UV–visible spectra for various plant extract concentrations with Fe-Cu BNPs taken
after adding the BNP solution, at different time intervals, clearly show the potential of
Fe-Cu BNPs, as presented in Figure 5. With the passage of time, absorbance of DPPH
solution decreases and after 30 min, the DPPH solution becomes colorless [40,41]. By
increasing the concentration of BNPs, a sharp decrease in the absorbance of DPPH solution
was observed.
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3.7. Kinetics of DPPH Radical-Scavenging Activity

Kinetics of the radical scavenging activity of BNPs were examined using a UV/Vis
spectrophotometer and an increase in the percentage of scavenging was witnessed. An
efficient response has been observed in the kinetics of antioxidant potential by using
various catalysts [42,43]. Spectra were recorded for reactions between DPPH solution and
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different concentrations of BNPs (200, 400 and 600 ppm) and then percentage of scavenging
was plotted against time, as shown in Figure 6a. The graph in Figure 6b shows the effective
antioxidant nature of DPPH where Fe-Cu BNPs behaved as acceptors. It is evident that at
each concentration of BNPs, the percentage of scavenging increased with time as DPPH
captured the radicals. Additionally, Figure 6b shows that the relative inhibition of DPPH
decreases by increasing plant extract concentration because the DPPH acts as a radical
scavenger, i.e., antioxidant. Additionally, as the plant extract concentration increases, more
DPPH is consumed.
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The kinetics of DPPH as an antioxidant were examined following a pseudo-first order
reaction using the concentration of [DPPH] using the following equation [44].

−d[DPPH]/dt = kapp · [DPPH] (2)

Kinetic parameters, including apparent rate constant “kapp (s−1)” and half life “(t1/2)
(s)”, were determined, as shown in Table 1. It indicates that by increasing the concentration
of BNPs, the rate constant increases, which refers to the increase in antioxidant activity.

Table 1. Different kinetic parameters at various concnetrations of DPPH.

Concentration
(ppm) Slope Apparent Rate Constant

kapp (s−1)
Half Life
(t1/2) (s)

200 −0.0089 0.0089 77.86516
400 −0.0129 0.0129 53.72093
600 −0.0167 0.0167 41.49700

3.8. Catalytic Activity/Dye Degradation
3.8.1. In the Absence of Fe-Cu BNP Catalysts

Different industries are continuously releasing organic dyes into water streams. Being
toxic, carcinogenic and hazardous in nature, these dyes are the biggest threat to living
things. The major source of methylene blue in water is the paper and cloth industry, which
releases approximately 60 g/L annually. The reduction of such pollutants from waste
water is a current topic of research [45,46]. Researchers have reported catalytic degradation
of dyes as one of the best tools for the removal of dyes from a water medium. In the
current study, an attempt was made to remove dye from a water medium using a catalytic
degradation process. In an initial experimental setup, degradation of MB dye was observed
in the presence of NaBH4, as seen in Figure 7a. It is clear that there is no obvious decrease
in the absorbance curves at 665 nm λmax, showing that NaBH4 were unable to reduce the
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cationic dye, although the reaction took place at the surface of the catalyst, which carried
out electron transfer from BH4

− to MB.
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3.8.2. In the Presence of Fe-Cu BNP Catalysts

Degradation of MB dye in the presence of Fe-Cu BNPs was also carried out to evaluate
the catalytic potential of synthesized bimetallic nanoparticles. For this purpose, optimized
conditions were recorded for this reaction, i.e., 26 mM NaBH4, 0.5 mL of 100 ppm Fe-Cu
BNPs and 6.8 pH at 22 ◦C. The results in Figure 7b reveal that the reduction was effective
and occurred within just 17 min, and reduction of MB was monitored every min. The
reduction catalysis of MB occurred by the Langmuir–Hinshelwood (LH) mechanism that
is generally followed by a reduction of organic pollutants [47,48]. According to the LH
mechanism, the role of Fe-Cu BNPs in catalysis could be elucidated by electron transfer
from a donor (NaBH4) to an acceptor (dyes). Additionally, more active sites were available
on the surface of the catalyst for the incoming substrate to adsorb, leading to the reduction
reaction. The heterogeneous Fenton type reaction catalyzed by Fe-Cu BNPs occurs by
surface reactions incorporating both Fe and Cu active sites [47].

The mechanism shows the –N=N– (present in MB) breakage due to an electron pair
from BH4

− on the surface of the Fe-Cu BNP, which acts as an e− transferee. Previously, Yan
Hu and coworkers reported research on the reduction of MB dye by using Fe-Cu BNPs [48],
but they did not focus on the catalytic reduction of MB.

3.8.3. Kinetics of Catalytic Activity

By using the degradation spectra monitored with a UV/Vis spectrophotometer, kinetic
studies were also performed. The reaction between MB and NaBH4 on the surface of Fe-Cu
BNPs was pseudo-first order, in which NaBH4 was taken in large excess as compared to MB
([NaBH4] >>> [MB]). It was found that the catalysis followed the Langmuir–Hinshelwood
mechanism in which NaBH4 and MB react in succession on the surface of the catalyst. The
slope of the graph (ln At/Ao vs. time t) in Figure 8 shows the apparent rate constant from
which we can calculate the rate of reaction. This kapp value determined from the graph is
0.2982 min−1 and shows the effectiveness of Fe-Cu BNPs. It is clear from the results that
there is no decrease in the ln At/Ao value from 1 to 10 min, which is due to the fact that at
the start of the reaction, the substrate and reducing agent diffuse towards the surface of
the Fe-Cu BNP catalyst and this time is known as the induction time. After 10 min, a dip
in the straight line gives the slope value, presented in the inset of Figure 8. This was the
reaction time in which NaBH4 and MB interacted with each other on the Fe-Cu BNPs and
the reaction started. This reaction finally ended at 15 and 16 min when a colorless solution
was obtained, which meant no reactive species were left in the reaction container.
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Ixora finlaysoniana extract, when isolated from the n-hexane mixture, displayed a chem-
ical composition comprising a hydrocarbon alcohol, nonacosanol, amyrin, 3-hydroxyhexan-
5-olide, gallic acid, protocatechuic acid, β-sitostreol glucoside and sitosterol [48]. The
most likely mechanism is based upon both hydrogen bond interactions and electrostatic
interactions between the plant metabolites and bi-metals.

4. Conclusions

The purpose of this research work was to synthesize Fe-Cu bimetallic nanoparticles
(BNPs) by a green method. Ixora finlaysoniana, an East Asian medicinal plant, was used
as a source of biomolecules to synthesize BNPs. The confirmation for the synthesis of
nanoparticles was carried out with a UV spectrophotometer. Their size range was checked
by a size distribution analyzer which confirmed the presence of metal nanoparticles in the
nanosized range. In addition, FTIR analysis, XRD and SEM studies confirmed the formation
and structure of BNPs. The antioxidant potential in terms of radical-scavenging potential
was determined by employing a DPPH assay and synthesized metal nanoparticles exhibited
good antioxidant properties. The catalytic activity was determined using methylene blue
dye as a substrate and sodium borohydride as a reducing agent. Results revealed that BNPs
can effectively degrade the dye present in a water medium. Kinetic studies confirmed
pseudo-first order reactions for both the radical-scavenging and catalytic activity. All the
results of characterization and different studies proved that Fe-Cu BNPs can be successfully
fabricated using Ixora finlaysoniana extract. Furthermore, these BNPs can be employed
for radical scavenging and catalytic activities. Therefore, these Fe-Cu BNPs could attain
much importance because they can meet the increasing demand for efficient and active
nanoparticles in a sustainable, economical and ecofriendly way.
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manuscript. Validation, F.T.J., A.S., Z.A. and A.A.G. did the proofreading. M.O. and M.M.A.-A.
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