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Abstract: Induction heating treatment (IHT) has recently been used to improve the bioactivity and
biocompatibility of titanium and its alloys, greatly related to the formation of the nanoscale oxide
coating. In this work, the effect of ultrasonic on the IHT oxidation behavior of pure titanium has
been investigated. Ultrasonic-assisted IHT of pure titanium was carried out for 13, 20 and 25 s.
Submicro-/nano-scale morphological coatings with rutile and anatase TiO2 were prepared on the
surface of titanium substrates subjected to ultrasonic-assisted IHT. In particular, the TiO2 crystals
were significantly refined by ultrasonic impact. An improvement in hydrophilicity and hardness of
the oxide film was achieved by ultrasonic-assisted IHT. The refinement of TiO2 crystals is suggested
to be caused by ultrasonic induced changes of energy, defect density and their correlation with
diffusion of oxygen. The present study provides a potential method to refine the nanoscale oxide
films on titanium substrates, which is promising for improving the wear resistance and bioactivity of
titanium and its alloys.

Keywords: titanium; induction heating treatment; ultrasonic; grain refinement

1. Introduction

Titanium and its alloys are widely used in biomedical implant field due to their
attractive properties including high strength, good biocompatibility, excellent corrosion
resistance and moderate elastic modulus [1]. However, the bioactivity of titanium surface
needs to be improved to achieve early osteointegration. Cell-to-cell, cell-to-protein, and cell-
to-biological tissue interactions, such as surface sensing and recognition as well as signal
transfer, occur at the molecular level in nanoscale [2–5]. The nanoscale feature of material
surface has significant influence on cell adhesion, migration, proliferation, differentiation
and apoptosis both in vitro and in vivo [6,7]. In addition, the nanoscale feature on implant
surface can promote the adsorption of proteins and stimulate the osteogenic cell migration,
thus leading to rapid osseointegration [8,9]. As a result, adding nanostructure on implant
surface is expected to enhance osteoconductivity and early-stage osseointegration [10].
On the other hand, the wear resistance of titanium-based biomaterials requires special
attention [11]. For example, when the implant made of Ti6Al4V alloy is in contact with
other metals, polyethylene or bone, the abrasion induced by relative motion at the interface
can weaken the passivated titanium oxide, which results in debris and metal ions releasing.

The controlled oxidation is an attractive method for the preparation of micro-/nano-
textured topography. Moreover, oxidation has been proved to be an efficient approach to
improve the wear resistance of titanium and its alloys [12–14]. Induction heating treatment
(IHT) has attracted more attention to produce oxide coating on titanium, due to its fast
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heating, reduced heat loss, cleanness and environmental safety [15]. During IHT process,
due to the skin effect of current, the temperature of the surface increases rapidly, while the
temperature of the inner part rises at a much lower rate [16]. As a result, a layer of titanium
oxide coating forms rapidly on the surface while the intrinsic mechanical properties of
the substrate remain constant. Markovsky and Semiatin [17] found that the tension and
fatigue properties obtained by IHT and aging of Ti6Al4V with an initial microstructure
of fine-grain equiaxed α phase are comparable to the optimal one obtained by rapid bulk
heat treatment of the same alloy. IHT has recently been used to improve the bioactivity
and biocompatibility of titanium and its alloys. Fomin et al. [18,19] preliminarily prepared
titanium dioxide coatings with nanocrystalline structure by IHT and demonstrated the
improved biocompatibility of the involved medical titanium. Li et al. [16,20] also reported
the use of IHT to produce titanium dioxide coatings with a micro- and nano- crystalline
structure and the improved hydroxyapatite (HA) deposition in simulated body fluid (SBF).
We would like to note that, special attention is paid to the enhancement of osteointegration
process by improving the morphology and geometrical characteristics, which depend
primarily on the duration and temperature in the above-mentioned IHT process.

Ultrasonic energy is mechanical energy and the propagation of the ultrasonic wave in
the solids can greatly affect the microstructure of the material [21,22]. Ultrasonic energy
is considered to be absorbed preferentially by lattice defects like dislocations and grain
boundaries, resulting in reduced activation energy for dislocation to overcome obstacles
and enhanced dislocation mobility [23]. Acoustic softening and acoustic residual hardening
effects were modeled based on defect evolution [24,25]. Ao et al. [26] reported that the gra-
dient nanostructure of the β phase in Ti6Al4V alloy subjected to ultrasonic surface rolling
process was formed primarily via dislocation activities. The numerous grain boundaries
and dislocations of titanium surface can accelerate the adsorption of oxygen including
the physical adsorption of oxygen molecules followed by dissociation, chemisorption and
reaction [27]. Moreover, the increased defects with loose atomic arrangement and high
energy facilitate the transformation of ions and electrons during oxidation and then the
preferential nucleation and crystallization of TiO2 crystallites [28]. Zhang et al. [29] demon-
strated that the acceleration of oxidation at initial stage was mainly due to dislocation
accumulation. The ultrasonic-assisted IHT process has been used by Osada et al. [30]
for bonding aluminum structure, via plastic flow in the aluminum structure softened by
ultrasonic energy and disruption of the oxide film.

To the best of our knowledge, no research about ultrasonic-assisted IHT to control
oxide structure has been reported so far. The objective of this work is to study the effects
of ultrasonic, as a kind of high frequency low amplitude mechanical wave, on the IHT
oxidation behavior of titanium, including phase and microstructural evolution during IHT.

2. Materials and Methods
2.1. Sample Preparation

Samples with dimensions of 10 × 20 × 2 mm3 were cut from a commercially pure
titanium (cp-Ti, grade 2) plate using wire electrical discharge machining. Then they were
successively abraded with silicon carbide papers from grade 400 to 1000, and then cleaned
in an ultrasonic cleaner with acetone, ethanol and deionized water, respectively.

2.2. IHT Process of Ti Specimens with Ultrasonic Impact

Ultrasonic-assisted IHT was carried out on an apparatus as shown schematically
in Figure 1. The specimen was clamped onto the upper surface of a transducer with a
power of 50 W. Ultrasonic vibration was provided by an ultrasonic generator working at
28 kHz. The transducer connected to the generator converted the signal to unidirectional
mechanical vibration onto the specimen. The transducer/specimen assembly was then
placed underneath a plane inductor with a frequency of 50 kHz and a power level of
50 kW. The other group prepared without ultrasonic assistance was used as control. The
samples in each group were heated separately for 13, 20 and 25 s and the temperature
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reached 750 ◦C, 800 ◦C and 900 ◦C, respectively. Then the samples were cooled in air. The
samples were recorded as U13s, U20s and U25s for ultrasonic-assisted group and C13s,
C20s and C25s for the control. The sample without subjecting to IHT process was recorded
as Machined.
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Figure 1. Schematic diagram of the experimental set.

2.3. Phase and Microstructural Characterization

X-ray diffraction (XRD, DMAX-2500PC, Rigaku, Tokyo, Japan) was used to identify
the phase compositions of the samples, which was performed using Cu Kα radiation with a
wavelength of 0.154 nm. The goniometer running at 50 kV and 100 mA was used to scan a 2θ
range from 10◦ to 90◦ with a scan rate of 10◦/min. The surface morphologies of the samples
were observed by a field emission scanning electron microscope (FE-SEM, JSM-7800F,
JEOL, Tokyo, Japan). The element distribution was detected by energy dispersive X-ray
spectroscopy (EDS, Oxford XMax-80, Oxford, UK) integrated with SEM. The 3D topography
and roughness were measured using laser scanning confocal microscopy (LSCM, LSM-800,
Zeiss, Oberkochen, Germany) within a horizontal scanned area of 600 × 600 µm2. The
laser wavelength was 405 nm and the root mean squared roughness (Sq) and arithmetic
average roughness (Sa) were calculated from the scanned area using the Zen Blue software.
The cross-sectional microstructure and element distribution were examined using electron
probe microanalysis (EPMA, JXA-8530F Plus, JEOL, Tokyo, Japan). The acceleration voltage
was 10 kV and the electron beam current was 30 nA.

2.4. Contact Angle Measurement

Contact angle measurements were done through the sessile drop method using a
contact angle instrument (DSA100S, Kruss, Hamburg, Germany). A microliter syringe tip
was used to put a 2 µL droplet of distilled water on the surface of each sample which was
pre-adjusted to a certain height to ensure that the droplet made just enough contact with
the surface of the sample. The drop image was recorded by a video camera and processed
by an image analysis software.

2.5. Micro-Hardness Test

The surface micro-hardness (HV) test was performed using a Micro Vickers Hardness
Tester (DHV-1000, Caikon, Shanghai, China) with a diamond indenter at ambient condition.
A static load of 100 g for 10 s was applied to each specimen surface. For each specimen, the
average of five indentations was used for the statistical analysis to ensure acquisition of
reasonably representative value.

3. Results and Discussion
3.1. Phase Composition

The XRD patterns of cp-Ti specimens treated by IHT with and without ultrasonic
assistance are shown in Figure 2. Some diffraction peaks in the C25s group are covered, so
an enlarged diagram is inserted in Figure 2. After IHT for 13–25 s, the diffraction peaks
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from titanium substrate are obviously observed from the XRD spectra. After oxidation for
13 s, rutile phase can be found in both the control and the ultrasonic-assisted sample. After
oxidation for 20 s and 25 s, the XRD patterns exhibit the presence of rutile phase and a small
amount of anatase phase. Moreover, with the increase in IHT period from 13 s to 25 s, the
rutile mainly tends to grow along <110> plane at 2θ degree of 27.446◦. After oxidation for
25 s, the diffraction intensity from the substrate is obviously lower in the ultrasonic-assisted
sample than that of the control, implying the ultrasonic-enhanced oxidation. During
thermal oxidation, rutile TiO2 is the prevalent oxide type at and above 600 ◦C [31] while the
formation of anatase phase usually occurs at lower treatment temperatures and time due
to its metastability in nature [32]. The transition from anatase to rutile has not completed
during rapid oxidation, which may be the reason for the presence of anatase after IHT for
20 s and 25 s. The bioactivity of the TiO2 film is in close correlation with the phase structure.
TiO2 with a rutile or anatase structure enables to deposit apatite on its surface in SBF, and
anatase phase is more effective for apatite formation [33] and yield the better biological
effects for cell adhesion, spreading, proliferation and differentiation [34] compared to rutile
phase. On the other hand, rutile phase shows a better corrosion resistance [35]. 

2 

 

Figure 2. XRD patterns of titanium surface before and after IHT with and without ultrasonic
assistance for 13–25 s. The insert diagram is an enlarged diagram for some diffraction peaks (in the
yellow wireframe) in the C25s.

3.2. Surface Morphology and Element Distribution

The SEM images of the surface oxide layer and the corresponding atomic ratios of
oxygen to titanium are shown in Figure 3. Numerous grain-like TiO2 nano- and submicro-
scale crystals are formed on the surfaces of cp-Ti samples subjected to IHT for 13–25 s.
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Obviously, the increase of IHT time results in the increase in the sizes of TiO2 particles,
which is due to the higher thermal energy and enough time for grain growth. At the
same time, the sizes of TiO2 particles are obviously decreased when subjected to IHT
process with ultrasonic assistance. The average sizes of TiO2 particles decrease from
60 nm, 70 nm and 150 nm in the control to 10 nm, 40 nm and 100 nm in the ultrasonic-
assisted samples after IHT for 13 s, 20 s and 25 s, respectively. Ion doping has been
reported to reduce the TiO2 particle size due to lattice strain induced by a mismatch of
the ionic radii of Ti4+ and doped ions [36]. Mitchell et al. [37] reported the significant
grain refinement of atomic layer deposition TiO2 films due to the increased nucleation
sites for crystallization and growth stress. The nanostructure composed by anatase and
rutile TiO2 have been demonstrated to exhibit the improved cell adhesive and protein
adsorption ability [38]. Nanofeature-enhanced osteoconductivity, which results in both
the acceleration and elevation of bone-implant integration, has been clearly clarified [10].
It can be concluded that the nanoscale TiO2 film obtained by ultrasonic-assisted IHT will
perhaps accelerate the osteointegration of the surface.
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Closer examination of the element content of oxygen and titanium on the oxide layer
surfaces was carried out based on EDS measurements. The oxygen contents and their
increment increase as the IHT period is upregulated. The oxygen content of the control is
higher than that of the ultrasonic-assisted sample after IHT for 13 and 20 s, while the atomic
ratios of oxygen to titanium show no apparent difference between the ultrasonic-assisted
specimen and the control after IHT for 25 s.

In order to determine the characteristic topographical features and surface roughness
of the oxide layer, LSCM was performed within a scanned area of 600 × 600 µm2 and the
corresponding results are presented in Figures 4 and 5. The grooves formed by polish
can be clearly observed in Figure 4a. After IHT for 13–25 s, the 3D images show obvious
abrasive scratches yet, since the TiO2 film is fairly thin. After IHT for 13 s, due to the
formation of TiO2 particles, the Sq and Sa increase to 171 and 115 nm in the control, 144
and 110 nm in the ultrasonic-assisted specimen, respectively, compared with that of the
machined specimen (82.7 and 58.7 nm). With the prolongation of IHT time, more TiO2
particles continuously grow up and fill the grooves, leading to the decrease of Sq and Sa
to 121 and 95.1 nm in the control, 102 and 75 nm in the ultrasonic-assisted specimen after
IHT for 20 s, and 121 and 88.1 nm in the control, 80.9 and 60.8 nm in the ultrasonic-assisted
specimen after IHT for 25 s, respectively. Moreover, the roughness of the ultrasonic-
assisted samples is lower than that of the control. Omidbakhsh et al. [39] reported that
the Sa of Ti4Al2V increased with time and temperature of oxidation and increased from
20 to 130 nm after 1 h oxidation at 700 ◦C. The surface roughness of implants affects the
rate of osseointegration and biomechanical fixation and nanometer roughness plays an
important role in the adsorption of proteins, adhesion of osteoblastic cells and thus the rate
of osseointegration [40]. According to Huang et al. [41], the ground titanium specimen with
an Sa value of 150 nm has the best cell adhesion and spreading appearance compared with
either the smoother (Sa: 50 and 70 nm) or rougher (Sa: 330 and 1200 nm) specimens. Similar
results have been reported by Keller [42], a tight adhesion of cells on a sandpaper-ground
Ti specimen (Sa: 100 nm). Hence, it may be concluded that a lower IHT time with ultrasonic
assistance is required for the suitable surface roughness to increase cell adhesion.

3.3. Cross-Sectional Morphology and Element Distribution of the Oxide Layer

The cross-sectional morphologies of the specimens subjected to IHT for 25 s and the
corresponding element distribution of oxygen and titanium from the top surface to the
bulk of the specimens are shown in Figure 6. After IHT for 25 s, the oxide layers formed
on both the control and ultrasonic-assisted specimen are homogeneous and exhibit an
excellent adherence to the substrate (Figure 6a,b). The oxygen contents decrease with the
increase of distance away from the top surface of both the control and ultrasonic-assisted
specimen. The thicknesses of the oxide layers formed on the specimens treated by IHT
with and without ultrasonic assistance are about 1.2 (Figure 6d) and 1.6 µm (Figure 6c),
respectively. Liu et al. [43] reported the enhanced adsorption and reaction capability of
Ti6Al4V with oxygen at 500 and 600 ◦C, because of the numerous dislocations and grain
boundaries introduced by ultrasonic nanocrystal surface modification. In this study, the
rapid formation of oxide coating may prevent the further oxidation during ultrasonic-
assisted IHT process, therefore the oxide layer of the ultrasonic-assisted specimen is thinner
than that of the control.
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scanning patterns of oxygen and titanium across the oxidation layer in titanium after IHT for 25 s (c) and ultrasonic-assisted
IHT for 25 s (d).

3.4. Surface Wettability

Figure 7 shows the images of the water droplet on the modified surfaces and the
corresponding contact angles. After IHT for 13 s, the control exhibits lower contact angle
than the machined sample (82.2◦), while the ultrasonic-assisted sample exhibits higher
contact angle. After IHT for 20 s, both the control and ultrasonic-assisted sample exhibit the
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largest contact angle. With the continuous prolongation of IHT time, the contact angles of
the control and ultrasonic-assisted sample reduce to 68.8◦ and 62◦, respectively, indicating
that IHT as well as ultrasonic plays an important role in increasing the wettability within
a certain period. It is found that the thermal oxidation time influences the wettability
of titanium implants [44] and Li et al. [16] reported that the contact angle decreased
successively to 63.9◦ ± 1.7◦ upon increasing IHT time to 35 s. There is optimal cell adhesion
to moderately hydrophilic substrates, due to the adsorption of cell adhesion-mediating
molecules (e.g., vitronectin, fibronectin) in an advantageous geometrical conformation,
which makes specific sites on these molecules (e.g., specific amino acid sequences) accessible
to cell adhesion receptors (e.g., integrins) [45]. Surfaces with higher wettability are likely
to adhere more cells [46] and Heloisa et al. reported that the anatase and rutile mixture
film with contact angle of 34◦ exhibited great protein adsorption and cell adhesion and
spreading [47]. Therefore, the increase in surface wettability following ultrasonic-assisted
IHT will perhaps increase the cell adhesion.

Coatings 2021, 11, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 7. The water droplet on the titanium surface and the contact angles before and after IHT with 
and without ultrasonic assistance for 13–25 s. 

3.5. Micro-Hardness 
The micro-hardness of cp-Ti specimens before and after IHT is shown in Figure 8. It 

can be found that the surface hardness is improved by IHT compared to the machined cp-
Ti (212.0 ± 6.2 HV). In addition, the hardness is further improved with the continuous 
prolongation of IHT time. After IHT for 25 s, the hardness of the samples treated by IHT 
with and without ultrasonic assistance increase to 393.6 ± 13.4 HV and 376.8 ± 6.2 HV, 
respectively. According to Li et al. [20], the hardness of cp-Ti increased by about 25 HV 
after cold-drawing with 10–20% deformations and following IHT for 20 s. Generally, ther-
mal oxidation of titanium enables an improvement of hardness due to the formation of a 
hard oxide layer and the presence of an oxygen diffusion zone beneath it [48,49]. On the 
other hand, there is no statistically significant difference between the control and ultra-
sonic-assisted samples, indicating that the influence of ultrasonic on surface hardness can 
be negligible. The improvement of surface hardness could effectively improve the wear 
resistance and fatigue strength of titanium implants, thus reduce the peeling of wear de-
bris after implanted in vivo, and reduce the occurrence of inflammation and the failure 
rate of implantation surgery [50]. 

Figure 7. The water droplet on the titanium surface and the contact angles before and after IHT with
and without ultrasonic assistance for 13–25 s.

3.5. Micro-Hardness

The micro-hardness of cp-Ti specimens before and after IHT is shown in Figure 8.
It can be found that the surface hardness is improved by IHT compared to the machined
cp-Ti (212.0 ± 6.2 HV). In addition, the hardness is further improved with the continuous
prolongation of IHT time. After IHT for 25 s, the hardness of the samples treated by IHT
with and without ultrasonic assistance increase to 393.6 ± 13.4 HV and 376.8 ± 6.2 HV,
respectively. According to Li et al. [20], the hardness of cp-Ti increased by about 25 HV
after cold-drawing with 10–20% deformations and following IHT for 20 s. Generally,
thermal oxidation of titanium enables an improvement of hardness due to the formation
of a hard oxide layer and the presence of an oxygen diffusion zone beneath it [48,49].
On the other hand, there is no statistically significant difference between the control and
ultrasonic-assisted samples, indicating that the influence of ultrasonic on surface hardness
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can be negligible. The improvement of surface hardness could effectively improve the wear
resistance and fatigue strength of titanium implants, thus reduce the peeling of wear debris
after implanted in vivo, and reduce the occurrence of inflammation and the failure rate of
implantation surgery [50].
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3.6. Mechanism of Ultrasonic Induced Refinement of Induction Heated Oxide Coating on Titanium

As described above, ultrasonic adopted in IHT of cp-Ti leads to the obviously refined
TiO2 particles on its surface and resultant improved wettability and hardness. The refine-
ment of TiO2 particles is suggested to be caused by ultrasonic induced changes of energy,
defect density and their correlation with diffusion of oxygen.

The oxidation of metals comprises three main stages [27,51], i.e., dissociative chemisorp-
tion of oxygen on the surface, incorporation of oxygen atoms into the lattice of a metal and
development of the surface oxide layer. The density of dislocation and other structural de-
fects increases under ultrasonic impact [26], which affects all the stages, so the mechanism
of ultrasonic induced refinement of induction heated oxide coating on titanium can be con-
ceived, as shown in Figure 9. Firstly, the various high-density structural defects generated
by ultrasonic impact on the metal surface considerably reduce the activation energy of
adsorption and dissociation, and thus enhance the chemisorption rate of oxygen molecules
which instantly dissociate into neutral atoms [51]. Secondly, numerous grain boundaries
and dislocations serve as efficient diffusivity paths for interstitial gaseous atoms and accel-
erate oxygen diffusion into the lattice of a metal [43]. Meanwhile, with additional kinetic
energy from ultrasonic impact [22], the oxygen atoms readily penetrate through the oxide
layer towards the oxide-metal interface. Finally, the grain boundaries and dislocations with
loose atomic arrangement and high energy accelerate the transformation of ions (e.g., O2−,
Ti4+) and electrons during oxidation, and then the preferential nucleation and crystalliza-
tion of TiO2 occur at grain boundaries and dislocations, i.e., numerous grain boundaries
and dislocations as well as the additional ultrasonic energy promote the nucleation of oxide.
Besides, the growth of oxide is inhibited due to fast heating of IHT, leading to refinement
of induction heated oxide coating on titanium. In addition, IHT promotes crystallization of
amorphous oxide, therefore submicro-/nano-scale morphological coatings with rutile and
anatase TiO2 are obtained on titanium substrate.
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4. Conclusions

In this work, the submicro- or nano- scale morphological oxide coatings are prepared
on the cp-Ti surfaces by ultrasonic-assisted IHT for 13 s, 20 s and 25 s. The oxide coat-
ings mainly contain the rutile/anatase TiO2. Especially, the TiO2 grain size significantly
decreases due to the ultrasonic impact. The average sizes of TiO2 particles decrease from
60 nm, 70 nm and 150 nm in the control to 10 nm, 40 nm and 100 nm in the ultrasonic-
assisted samples after IHT for 13 s, 20 s and 25 s, respectively. Compared with the ma-
chined titanium, the hydrophilicity and hardness of titanium samples are improved after
ultrasonic-assisted IHT. This study provides an alternative method to refine the nanoscale
oxidation coatings on titanium substrates, which is promising for the further clinical de-
velopment of titanium-based biomaterials. Biological behaviors of this surface, including
protein adsorption, cell and tissue response, et al., need to be further investigated.
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