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Abstract: Simultaneous surface enhanced infrared absorption (SEIRA) with Fano resonance and
refractive index (RI) sensing are proposed via a split-ring-resonator-based metamaterial perfect
absorber (MPA) to detect polyvinyl chloride (PVC), a commonly used polymer but one that was
recently prohibited in many areas such as Europe. This bifunctional sensor could provide a label-free
and qualitative PVC detection through SEIRA coupled to the vibration mode and a quantitative
measurement through RI sensing. To design the MPA, the main operating frequency is targeted at
615 cm−1 for C-Cl bond of PVC. Transition from a reflectance dip to a peak, i.e., Fano resonance was
observed at y polarization in both simulation and experiments, evidencing the existence of PVC.
On the other hand, to test the RI sensing ability of the MPA, different RI (from 1 to 1.5) of analytes
and different thicknesses (from 109 to 1050 nm) of polymethyl methacrylate (PMMA) were applied
to the MPA in simulation and experiments, respectively. The simulated sensitivities are 4045 and
2361 nm/RIU for the first and third modes of the MPA, respectively, while the measured sensitivities
based on PMMA are 3713 and 1694 nm/RIU. Overall, the detection limit of PVC could be down
to 0.5% in experiments, which outweighs the current measurement limit of 10% through infrared
absorption measurement.

Keywords: SEIRA; Fano resonance; metamaterial perfect absorber; chemical detection

1. Introduction

To date, infrared (IR) absorption spectroscopy has been sophisticated and well-
developed technique that is widely employed for the detection of functional groups, i.e.,
a molecule’s “finger print”. Consequently, the IR absorption spectroscopy could provide
characterization of analytes’ structures, compositions, and even orientations. However, the
weak intensity of a molecule’s IR absorption signal not only degrades the sensitivity of
the sensor but also reduces possible applications of single-molecular detection. In order to
enhance sensitivity, surface-enhanced infrared absorption (SEIRA) [1–3] has been widely
used for decades. The key point to SEIRA is the so-called electromagnetic ‘hot spots’,
where the electromagnetic field is concentrated. Furthermore, by tuning the corresponding
plasmonic resonant frequency to overlap with vibrational bands of targeted analytes, an
additional enhancement of SEIRA is expected because of the coupling between the plas-
monic and vibrational modes, i.e., leading to the presence of Fano-resonance [4–6]. In
general, SEIRA with Fano resonance provided a label-free molecular detection with higher
sensitivity. Still, such a technique possessed some insufficiencies such as sensitiveness to
the analytes’ distributions and nonlinear responses to the analytes’ concentrations [7]. On
the other hand, it is well-known that an increase of the refraction index (RI) surrounding
plasmonic structures would induce red-shifts of their resonance frequency. Such shifts
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are typically linear to the RI changes, hence promising quantitative detection of analytes.
Furthermore, the sensitivity of RI sensing could also be boosted by hot spots of plasmonic
structures [8]. Nowadays, RI sensing of plasmonic structures is being found in many
different research fields such as bio-sensing [9–11], bio-imaging [12,13] and chemical de-
tection [14,15]. Yet, the main drawback of the RI sensing is its non-specific detection, thus
hindering its practical applications in many fields. Finally, polyvinyl chloride (PVC) is a
commonly used polymer in many different commercial products such as children’s toys,
shoes, and packing materials [16,17]. However, due to the emergence of environmental
awareness and protection, PVC was restricted in many different countries or areas, for
example, Europe, Sweden, and New York. Unfortunately, PVC detection is burdensome
and not accurate enough, since only PVC with a concentration as high as 10% could be
distinguished by conventional infrared absorption measurement.

As previously mentioned, there appear to be many different plasmonic structures
such as nanoscale particles/metallic islands [18,19] or metamaterials [20–22] used to create
hot spots, achieving SEIRA and RI sensing with higher sensitivity. Among so many dif-
ferent plasmonic structures and metamaterials, metamaterial perfect absorber (MPA) is
the most promising candidate, since MPAs possess stronger ‘hot spots’ [23–26] and stable
performances compared to a nanoparticle-based sensor. Various types of MPAs were pro-
posed, for example, an MPA constructed by vertical side walls for gas sensing [27], an MPA
integrated with microfluidic channels [28], etc. Still, since our target is PVC that is easy to
agglomerate, the inhomogeneous distribution of PVC would cause much fluctuation of
the detected signals and the blocking of sensing channels. Also, there appear to be few
discussions about SEIRA with Fano resonance and RI sensing in a single sensor [29], which
further motivated us to conduct an integration of SEIRA substrates and RI sensors into a
single device. To address the abovementioned issues, we proposed a split-ring-resonator-
based metamaterial perfect absorber (MPA) with multiple resonance peaks that could
provide SEIRA with Fano resonance and RI sensing, simultaneously, for PVC detection.
Note that SEIRA with Fano resonance is an indicator for the existence of PVC, while RI
sensing could provide quantitative detection with respect to the concentration of PVC.

2. Materials and Methods

To excite Fano resonance, it is very important to match functional groups of PVC to
the resonance frequency of the MPA. It is worth mentioning that once we applied PVC
on the MPA, the corresponding resonance frequency would red shift; thus, we needed
to take this issue into consideration and design a higher operating frequency of the MPA
within free space. In contrast, each resonance mode could conduct RI sensing with a shift
of resonance frequency. Therefore, in the design, to decide the target resonance frequency
of the MPA for PVC detection became our first priority. For PVC, there appear to be
a few different representative vibrational modes, for example, C-H stretching mode at
2890–2958 cm−1, and C-Cl bond at 616-690 cm−1 [17]. In this work, we used the C-Cl
bond at 616–690 cm−1 as an indicator for PVC because the C-Cl bond is more unique
compared to the C-H modes that are common in other organic materials. In simulation,
we employed the finite integration method to simulate our proposed MPA. The MPA was
composed of three layers including an upper split-ring resonator array, a dielectric spacer,
and a continuous ground plane. It is worth mentioning that the SRR was chosen because
SRRs were the first proposed metamaterial and have been intensively investigated, which
shortened our design procedure of the MPA. The metal and dielectric used here were gold
and silica, respectively, due to their relatively low losses and inert chemical properties. The
corresponding top view and side view of the MPA are depicted in Figure 1a. Here, L is
6.5 µm, g = 1.65 µm, w = 5.5 µm, w1 = 1.1 µm, t = 0.5 µm, and tm = 50 nm. Note that all the
dimensional parameters of the proposed MPA were optimized based on criteria that the
MPA should provide multiple resonance wavelengths where one of them matches the C–Cl
absorption band and also shows stronger reflectance dips. Figure 1b,c show the reflectance
spectra of the MPA for x- (perpendicular to the gap) and y- (parallel to the gap) polarization,
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respectively. Here, a reflectance dip was observed at 652 cm−1 for y-polarization while
there was no resonance behavior at the same wavenumber for x-polarization. Furthermore,
there were multiple resonance modes at both x and y-polarization that could be applied to
RI sensing.
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Figure 1. (a) Scheme of a split-ring-based metamaterial perfect absorber (MPA). Here, L is 6.5 µm, g = 1.65 µm, w = 5.5 µm,
w1 = 1.1 µm, t = 0.5 µm, and tm = 50 nm. Reflectance spectra of the MPA for (b) x- and (c) y-polarization, respectively. A
reflectance dip was observed at 652 cm−1 for y-polarization while no resonance behavior was found for x-polarization.
Meanwhile multiple resonance dips were found for both polarizations that could serve as the target responses for refractive
index (RI) sensing.

To simulate Fano resonance, we added PVC as analytes and the permittivity of PVC
with its absorption band from the C-Cl bond was modeled as a Lorentz oscillator with a
functional form of [30,31]

εPVC = εb +
fmω2

0
ω2

0 − ω2 − iγω
(1)

where εb is the background relative permittivity, fm is the reduced oscillator strength, ω0 is
the C-Cl vibrational frequency, and γ is the damping frequency. Here, values for εb, fm, ω0
and γ were equal to 3, 0.04, 2π × 18.5 THz and 0.1 THz, respectively. After applying the
Lorentz model for the C-Cl bond in PVC, the original absorption peak (i.e., the reflectance
dip) of the MPA would couple to the absorption band of the C-Cl bond and become an
absorption dip (i.e., reflectance peak) with two turning points as shown in Figure 2a,
indicating the occurrence of Fano-resonance (q = 0 [32]) and the existence of the specific
molecules, thus facilitating specific chemical detection. Note that for x-polarization, we
could only observe a reflectance dip instead of a peak. Such a contrast further corroborates
the excitation of the Fano resonance. Then, to test the sensitivity of our proposed MPA, we
examined the first and third modes under different RI changes from n = 1.0 to n = 1.5 for
y-polarization. From Figure 2b, the reflectance dips red-shifted accordingly and Figure 2c
summarizes the resonance frequency change with respect to RI change. The corresponding
sensitivities after curve fitting are 4045 and 2361 nm/RIU for the first and the third mode,
respectively.
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3. Results

To fabricate the MPA, we conducted e-gun deposition for gold and silica thin films
on a silicon wafer and e-beam lithography processes and e-gun deposition for the pat-
terned upper metallic structure. Then, we measured the as-fabricated sample through
µ-Fourier transformed infrared absorption (Bruker Hyperion 1000, Billerica, MA, USA)
with a resolution of 4 cm−1. The measured spectra for both x- and y-polarization are shown
in Figure 3a,b, respectively. Note that the simulated spectra (grey dotted line) are also
shown in the figure for comparison. The two agreed well with each other, especially for
the targeted frequency of 636 cm−1 with a small deviation compared to the simulated
652 cm−1. Other resonance frequencies also deviated from the simulated ones, which
might have originated from different dielectric constant dispersion while the magnitude
difference of the dips could be from different losses from the materials in simulation and
in measurement, respectively. It is worth mentioning that the reflectance dip at around
1000 cm−1 should be from the absorption of silica.
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Next, to examine the sensitivities of the proposed MPA for RI sensing, we spin-
coated polymethyl methacrylate (PMMA) on the sample with different spin rates, thus
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resulting in different thicknesses of PMMA and different effective refraction index rates.
The corresponding RI of PMMA and air composite materials could be predicted by the
effective medium theory [33]

εre f f = ∑
n

εn
hn

ht
(2)

where εreff is the effective permittivity of PMMA/air composite materials, εn and hn are the
dielectric constant and thickness of the components, and ht is the saturation thickness of
PMMA where the resonance frequency stops shifting. Here, permittivity of PMMA and
air is 2.6 and 1, respectively and the saturation thickness of PMMA for the first and third
modes is 515 and 660 nm, respectively. From the effective medium theory, permittivity of
the complex medium composed of different fractions of PMMA and air was obtained. It
is worth mentioning that neither PMMA nor air are magnetic elements, so the effective
refractive index of corresponding complex medium could be derived by computing the
square root of the permittivity. From Figure 4a, we could observe that the resonance
wavenumbers shift with respect to different thicknesses of the applied PMMA, while the
blue and red arrows indicate the resonance wavenumbers of the 1st and 3rd modes of the
proposed MPA. Note that the sensitivity for the 1st and 3rd modes in experiments was 3717
and 1694 nm/RIU as depicted in Figure 4b, which were both smaller than the simulated
ones stemming from the losses of PMMA in measurement.
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(b) Variation of the resonance wavelength with respect to the refraction index. Sensitivity of the 1st
and 3rd modes was 3717 and 1694, respectively.

After characterizing our MPA’s SEIRA behavior with Fano resonance in simulation and
RI sensitivities in both simulation and experiments, then, we applied the characterized MPA
to detect PVC. First of all, according to a certification company, a 100% PVC concentration
was defined as 2 g of PVC dissolved into 80 g of tetrahydrofuran (THF) for their IR sensing
standard. Under this condition, we applied 0%, 0.5%, 1%, 3%, 5%, 7%, and 10% of PVC
on our MPA and measured their reflectance. As shown in Figure 5, we did observe that
the transition from a reflectance dip to a peak after PVC was applied on the sample. Note
that in x-polarization, we could only identify a dip from PVC absorption band only, further
evidencing the excitation of Fano resonance in y-polarization. To obtain the trend of
responses of Fano resonance to the PVC concentration, we recorded the strongest Fano
resonance at each concentration and Figure 5b depicts the responses (i.e., ∆R/R0) with
respect to the PVC concentrations. The curve could be fitted to an exponential decay curve
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started to saturate at around 10%. Such nonlinear responses would hinder its practical
applications in molecular detection. Therefore, we also monitored the corresponding
frequency shifts with different concentrations of PVC, as shown in Figure 6. The fitted
curve shows a linear response, thus promising a quantitative detection. From Figure 6, we
believe that the peak at around at 615 cm−1 provided qualitative information regarding
the existence of PVC while the dip within 1500 to 1700 cm−1 provided linearly quantitative
measurements of PVC concentrations.
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4. Conclusions

In this work, we present a metamaterial-based bifunctional sensor in pursuit of
SEIRA detection with Fano resonance as well as RI sensing. We provide simulation and
experimental verification of our MPA for both functions. Firstly, we determined the
dimensions of our split ring resonator to locate the operating frequency at around 615 cm−1

with all the other modes for RI sensing. In simulation, the transition from a reflectance
dip to a peak was observed with a PVC layer as a Lorentz oscillator. In addition, the RI
sensitivities of the first and third modes for y-polarization were found to be 4045 and
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2361 nm/RIU, respectively. In experiments, PMMA was employed to test the RI sensing
ability of our proposed MPA. Sensitivities of 3713 and 1694 nm/RIU were obtained with
different thicknesses of PMMA and with equivalent RI predicted by effective medium
theory. Finally, to detect PVC, we applied different concentrations of PVC on the sample.
We did observe the transition from a reflectance dip to a peak in µ-FTIR measurement.
Yet, the responses (i.e., ∆R/Ro) with respect to PVC concentrations were nonlinear, thus
hindering its practical application. Then, we also examined the resonance wavelengths with
respect to PVC concentration changes to quantify PVC concentrations with the measured
resonance wavelength. Here, we could claim that we are able to distinguish PVC with
a concentration as low as 0.5%. Such s bifunctional sensor would pave a route to future
single molecule detection and bio-sensing and imaging.
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