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Abstract: Niobium (Nb)-based alloys have been extensively used in the aerospace field owing to their
excellent high-temperature mechanical properties. However, the inferior oxidation resistance severely
limits the application of Nb-based alloys in a high-temperature, oxygen-enriched environment.
Related scholars have extensively studied the oxidation protection of niobium alloy and pointed out
that surface coating technology is ideal for solving this problem. Based on the different preparation
methods of Nb-based alloys’ surface coatings, this article summarizes the relevant research of
domestic and foreign scholars in the past 30 years, including the slurry sintering method (SS),
suspension plasma spraying method (SPS), and halide activated pack cementation method (HAPC),
etc. The growth mechanism and micromorphology of the coatings access by different preparation
methods are evaluated. In addition, the advantages and disadvantages of various coating oxidation
characteristics and coating preparation approaches are summarized. Finally, the coating’s oxidation
behavior and failure mechanism are summarized and analyzed, aiming to provide valuable research
references in related fields.

Keywords: niobium alloy; oxidation resistance; surface coating; growth mechanism; oxidation
behavior

1. Introduction

With the human need for space exploration, the development of hypersonic vehicles
has attracted wide attention worldwide [1,2]. Due to the nature of long-term hypersonic
cruises and the flight of hypersonic aircraft back and forth between the atmosphere and
atmospheric reentry [3], the aircraft must face extremely harsh environments, producing
high dynamic pressure and aerodynamic heating effects [4,5]. The high-temperature
structural materials need to withstand extreme thermal and mechanical loads [6], resulting
in large temperature gradients and thermal stresses inside the material, thereby significantly
reducing the cycle life of the components. Especially critical parts or components include
aircraft nose cones, sharp leading edges, nozzle openings, hot ends of engines [7], etc.
Accordingly, the thermal development and high-temperature oxidation resistance of high-
temperature structural materials are increasingly required. Traditional steel materials,
aluminum alloys, and titanium alloys can no longer meet the extreme environmental
requirements of hypersonic aircraft [8]. Niobium and its alloys have become a critical
applicant material for high-temperature structural parts in the aerospace and nuclear
industries due to their high melting point [9], moderate density, excellent high-temperature
strength, and good processability. Niobium-based alloys are expected to replace nickel-
based materials and become critical structural materials in the aerospace field by the
end of the 21st century [10,11]. Nonetheless, the oxidation resistance of niobium-based
alloys is lacking [12], and severe pulverization will occur when exposed to air above
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500 ◦C for a short time, severely restricting its application in high-temperature, oxygen-rich
environments. At present, the commonly used methods to inhibit the occurrence of this
kind of oxidation include alloying and surface coating technology [13]. Although alloying
can improve the corrosion resistance of niobium-based alloys in high temperature and
oxygen-enriched environments to a certain extent, this measure often seriously affects
the physical properties of the base alloy itself. Surface coating technology is the most
effective method for enhancing the oxidation resistance of niobium-based alloys while
ensuring the substrate’s physical properties [13]. The arrangement of high-temperature,
oxidation-resistant defensive coatings on the surface of niobium alloys has developed into
a current research hotspot.

At present, there are many reports on the surface coating and oxidation protection of
niobium and its alloys, but there are few studies on the growth mechanism and oxidation
behavior of the surface coating. This article reviews the main preparation methods of
niobium and its alloy surface coatings in recent years (such as the slurry sintering method
(SS), suspension plasma spraying method (SPS), halide activated filling cementing method
(HAPC), etc.). The latest research status of high-temperature, oxidation-resistant coatings
on niobium-based alloys is discussed, and the advantages and disadvantages of various
preparation methods are analyzed and summarized. The microscopic morphology, phase
composition, and oxidation resistance of coatings prepared by different methods are
compared and analyzed. The growth mechanism and oxidation behavior of various
coatings are analyzed and summarized. At the same time, the future development direction
of niobium and its alloy surface coatings is put forward with the purpose of adding valuable
summaries for researchers on this ground.

2. Anti-Oxidation Coating on Niobium Alloys

The comprehensive properties of niobium alloy surface coatings are different due to
the different preparation methods. In the following summary, different methods for prepar-
ing niobium alloy surface coatings will be described in detail, and the oxidation resistance
performance of coatings prepared by different methods will be comprehensively compared.

2.1. Slurry Sintering Method

The slurry sintering method is the most commonly used coating preparation method
on the surface of niobium alloys, and the process flow is shown in Figure 1. Firstly, the
coating slurry is uniformly mixed with the components of the coating and the binder in
proportion, to prepare the coating slurry [14,15], and the slurry is applied to the surface
of the substrate by brushing, dipping, or spraying. Then it is solidified by pressurization
and heating, and sintered in a vacuum or atmosphere furnace. Finally, a coating is formed
on the face of the substrate. The process conditions, composition thickness [16], and the
oxidation characteristics of the SS coatings on Nb-based alloys are summarized in Table 1.
It can be perceived that the thickness of SS coatings was between 150 and 300 µm under
the sintering temperature of 1200 to 1500 ◦C for 1–4 h in a vacuum or Ar atmosphere.
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Table 1. Summary for preparation and oxidation resistance of SS coatings on Nb-based alloys.

Substrate
Slurry

Composition
(wt.%)

Process
Conditions

Coating Composition
and Thickness (µm) Oxidation System

Oxidation
Products

Quality
Change

(mg/cm2)
References

Outer Layer Interface
Layer

Oxidation
Temperature

(◦C)

Oxidation
Time

(h)

C-103 60Si-15Fe-
20Cr-5NaF

1400 ◦C/2 h
vacuum

NbSi2
Cr3Si
Fe3Si2
(200)

Nb5Si3
(30) 1300 2.5

Nb2O5
SiO2

Fe2O3

1.5 [17]

R512E 20Si-35Fe-
35Cr-10NaF

1250 ◦C/4 h
vacuum

MoSi2
M5Si3
(135)

Nb5Si3
(15) 1200 2

Nb2O5
Cr2O3
SiO2

CrNbO4

1.8 [18]

Nb521 45Mo-45Si-
10NaF

1500 ◦C/1 h
Ar

NbSi2
MoSi2
(110)

Nb5Si3
(25) 1700 25 SiO2

MoSi2
−9.5 [19]

Nb-Si 60Si-15Fe-
20Cr-5NaF

1400 ◦C/2 h
vacuum

NbSi2
Nb4Si5CrFe3

Fe4Nb4Si7
(250)

Nb5Si3
(50) 1400 6.5 Nb2O5

SiO2
3.5 [20]

Nb-Si-Ti 20Fe-20Cr-
50Si-10NaF

1400 ◦C/2 h
vacuum

NbSi2
(Fe, Cr)3Si2

(170)

Nb5Si3
(20) 1400 7 Nb2O5

SiO2
1.9 [21]

The typical surface and corresponding cross-sectional morphologies of SS coatings
are shown in Figure 2. It can be noticed that the coating surface was relatively rough
with dozens of holes and cracks. This was caused by the considerable particle size of the
mixture, uneven mixing, and volatilization of the solvent and binder during the sintering
process, as shown in Figure 2a,b. It is worth noting that Xiao et al. used smaller material
particles for sintering and obtained a lower surface roughness, and the coating surface was
relatively uniform and dense without apparent defects, as shown in Figure 2c. It can be
observed from the cross-sectional images that the coating consisted of the outermost layer
(NbSi2), the intermediate layer, and the internal interdiffusion layer (IZD). In addition,
as there was a mismatch of thermal expansion coefficient between the substrate and the
coating during the sintering process, a small number of longitudinal cracks were observed
inside the coating [22]. However, the IZD area, where the coating and the substrate were
connected, was heavy and uniform, revealing that an excellent metallurgical bond was
achieved between the coating and the substrate [23], as shown in Figure 2d–f. Han et al. [24]
systematically explained the delamination phenomenon of such coatings. They believed
that the growth process of the coating was firstly combined by chemical adsorption and
physical adsorption, and then polar groups and substrates diffused between them at high
temperatures. Finally, a firm and dense interwoven network coating layer was formed at
the interface.

Relevant scholars have researched the oxidation resistance of the coating. After
oxidation in the series of 1200–1700 ◦C for 2–25 h, the mass transition per unit area of the
coating was within 10 mg·cm−2, as shown in Table 1. The typical surface and cross-section
microstructures of oxidized coatings are shown in Figure 3. It can be perceived that an oxide
layer was formed on the oxidized coating surface, and the oxide layer consisted of SiO2 and
Nb2O5. Compared with before oxidation, the coating surface was relatively smooth at the
initial oxidation stage [25]. This was owing to the formation of SiO2 with a certain fluidity
during the oxidation process, which filled up weaknesses such as cracks and gaps on the
coating surface, to a certain extent. The inner coating was quite dense without apparent
defects [26], as shown in Figure 3b,e. As the oxidation reaction progressed, the thickness
of the oxide layer grew gradually. Several longitudinal cracks throughout the coating to
the substrate were observed at the coating cross-section. This was caused by the large
amount of volatile NbO2 produced during the oxidation process, as shown in Figure 3c. At
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the same time, a large number of longitudinal cracks throughout the entire cross-section
were observed in the coating, and the same composition as the oxide layer was detected
in this area, which shows that the coating could no longer provide adequate protection
for the substrate, as shown in Figure 3f. Thermal diffusion referred to the spontaneous
transition of matter to an equilibrium state in a high temperature and closed environment,
significantly affected by temperature. Due to the principle of thermal diffusion [27], the
thickness of the interface layer gradually increased throughout the process, as shown in
Figure 3d–f.
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2.2. Thermal Spraying Method

Thermal spraying is also called sputtering technology. Its principle is to spray molten
or semi-molten materials on the surface of the substrate to form a coating through high-
speed airflow [28,29]. Due to its high surface coating material, short spraying time, and
positive bonding performance between the coating and substrate, it is considered one
of the coating preparation technologies with the most development potential [30]. The
most typical atmospheric plasma spraying (SPS) coating preparation process is shown in
Figure 4. Table 2 summarizes the preparation process, coating structure, and oxidation
resistance of SPS coatings on the surface of niobium-based alloys. It can be seen that MoSi2
has been favored by more researchers as the primary spray material [31,32]. This is mainly
attributed to its high melting point, good thermal stability, and excellent high temperature
creep resistance, which will make the material have a higher melting temperature and
longer cooling time when sprayed on the substrate, and significantly improve the bonding
strength between the substrate and coating particles. In addition, controlling the material
size, carrier gas flow, spray distance, and other parameters will substantially impact the
coating quality [33,34].
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The SEM images of typical SPS coatings are listed in Figure 5. The average surface
roughness (Ra) and porosity of the sprayed Mo coating were the same [35,36]. At the same
time, apparent holes and cracks were observed at the cross-sectional coating, as shown in
Figure 5a,d. However, with the introduction of other phases such as mullite and WSi2 in
the spray material, the surface morphology was significantly improved, and the particle
morphology was significantly eased. This was due to the vacancy complementation of the
multi-element materials during the spraying process and the self-balance of the thermal
conductivity and thermal expansion coefficient during the bonding process, as presented in
Figure 5b,c. In addition, a continuous and uniform transition layer was observed between
the coating and the substrate, indicating that a positive metallurgical bond was achieved
betwixt the substrates and coating, as presented in Figure 5e,f. The author believes that
the addition of mullite fills the holes during the spraying process, which can optimize the
coating structure, and improves the coating density [37]. The addition of WSi2 can combine
with MoSi2 to form (W, Mo)Si2 and (W, Mo)5Si3, which effectively inhibits the diffusion of
Si elements, maintains the coating morphology, and relieves the internal coating caused by
the mismatched thermal expansion coefficients defect.

The researchers have studied the oxidation behavior of SPS coatings on Nb-based
alloys, as presented in Table 2. The service life of coatings can reach tens to hundreds of
hours in an oxidizing environment from 1200 to 1500 ◦C. The typical SEM of the oxidized
coating is shown in Figure 6. It can be perceived that the large oxide particles appeared on



Coatings 2021, 11, 742 6 of 17

the coating surface after cyclic oxidation at 1500 ◦C for 43 h. The laser scanning confocal
microscopy (LSCM) results show that the Ra of oxidized coating was 23.1 µm, and the main
components were SiO2 and Nb2O5 [38]. Moreover, a large number of holes and cracks were
observed at the surface, as shown in Figure 6a–c. This was due to surface defects providing
channels for the diffusion of oxygen atoms, resulting in excessive oxidation and expansion
inside the coating. Meanwhile, the cyclic thermal shock further aggravated the peeling
of the outer oxide protective layer from the inner substrate layer. The cross-sectional
image shows that the inside of the oxide layer was very loose with a thickness between
20 to 30 µm, and there was a phenomenon of shedding in its local area, as presented in
Figure 6d. However, the mass change of the Mo-MoSi2 coating [39] prepared by Zhang et al.
after being oxidized at 1500 ◦C for 140 h was only −2.77 mg·cm−2. This is because the
addition of mullite inhibits the crystallization of SiO2, improves its fluidity, and promotes
the formation of a continuous and dense oxide film on the coating surface [40,41].
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Table 2. Summary for preparation and oxidation resistance of SPS coatings on Nb-based alloys.

Substrate
Material

Composition
(wt.%)

Process Conditions
Coating Composition

and Thickness
(µm) Oxidation

System
Oxidation
Products

Quality
Change

(mg/cm2)
References

Spray
Distance

(mm)

Spray
Rate

(g/min)

Outer
Layer

Inner
Layer

Nb521 10mullite-
90MoSi2

100 20

h-MoSi2
t-MoSi2
t-WSi2
(150)

Mo5Si3
W5Si3
NbSi2
(50)

1500 ◦C
500 h SiO2 4.41 [42]

Nb521
MoSi2

100 20
t-MoSi2
h-MoSi2

(155)

Mo5Si3
Mo
(45)

1500 ◦C
140 h

SiO2 21.38
[43]10mullite-

90MoSi2
Mullite

SiO2

−2.77

30mullite-
70MoSi2

−4.06

Nb521 MoSi2 100 25 b-MoSi2
(98)

Mo5Si3
(23)

1200 ◦C
94 h MoSi2 − [44]

Nb-W MoSi2 90 20

h-MoSi2
t-MoSi2

SiO2
(170)

Mo5Si3
(34)

1500 ◦C
43 h SiO2 5.31 [45]

Nb-Si-Ti Mo-45Si-45Al 90 25 Mo(Si,Al)2
(100)

Mo5(Si,Al)3
(25)

1250 ◦C
100 h

SiO2
Al2O3

8.24 [46]

Nb-Si-Ti 2NaF-34Si-B-
63Al2O3

100 25 MoSi2
(72)

Mo
Mo5Si3

(55)

1250 ◦C
100 h

SiO2
Borosilicate
glass cover

1.28 [47]

2.3. Embedding Method

The embedding method is also known as HAPC, and the principle is to place the
substrate in a permeation box containing the halide of the coating element and conduct heat
treatment in a vacuum or under the condition of continuous inert gas [48,49]. The required
coating is formed through vapor migration and reaction–diffusion; the process flowchart is
shown in Figure 7. Because this method has the advantages of an uncomplicated process,
significant coating efficiency, and freedom from the limitation of the shape of the workpiece,
it is widely used in the oxidation protection of refractory metal surface coatings. The
researchers conducted a systematic study on the composition and oxidation mechanism
of the HAPC coating on the surface of Nb and its alloys, and the results are shown in
Table 3. It can be noticed that if the temperature was in the range of 850–1300 ◦C for
5–25 h, a coating with a thickness of 40–200 µm was obtained. Qiao et al. [50] reported the
significance of the growth law of coating crystals on its surface quality. The consequence is
that, during the preparation of HAPC coatings, the contact interface between the substrate
and the embedding agent undergo chemical combination and diffusion reactions. When
the diffusion rate is greater than the reaction rate, many crystal nuclei are formed on the
face of the base metal per unit time, which will cause the surface of the base to form a fine
and dense coating. Conversely, when the diffusion rate is less than the reaction rate, there
are limited crystal nuclei formed on the surface of the base metal per unit time, the formed
crystal grains are coarse, the solid phase accumulation is relatively loose, and the coating
pore cracks are more severe [51]. The diffusion rate and reaction rate were closely related
to the embedding temperature, which theoretically confirms the decisive influence of the
embedding temperature. Further research shows that if the thickness of the outer layer
of the coating is controlled to 80–100 µm and the inner layer is controlled to 5–20 µm, the
resulting coating is denser, with a porosity of about 5–15%.
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Substrate Experimental
Conditions

Embedding
Components

(wt.%)

Coating Composition
and Thickness (µm) Oxidation

System
Oxidation
Products

Quality
Change

(mg/cm2)
References

Outer Layer Interface Layer

C-103 1100 ◦C/6 h
Ar

25Si-5NaF-
70Al2O3

NbSi2
Nb5Si3

(60)

Nb5Si3
(5) 1100 ◦C/17 h Nb2O5

SiO2
3 [52]

Nb-Cr
1150 ◦C/5 h

Ar

10Si-10Al-
5NaF-

75Al2O3

Al2O3
Cr3Si

Nb5Si3
(35)

Nb5Si3
Cr3Si

(5)
1200 ◦C/100 h SiO2

Al2O3
3.38 [53]

1250 ◦C/8 h
Ar

10Si-
2Y2O3-5NaF-

83Al2O3

(Nb, Cr)Si2
(Cr, Nb)Si2

(185)

(Nb, Cr)5Si3
(15) 1250 ◦C/50 h

SiO2
Cr2O3

CrNbO4

13.1 [54]

Nb-Si
1150 ◦C/10 h

Ar

10Si-10Al-
5NaF-
2Y2O3-

73Al2O3

(Nb, X)Si2
(Nb, X)5Si3

(40)

(Nb,Ti)3(Al, X)
(5) 1250 ◦C/50 h

TiO2
Al2O3
SiO2

12.5 [55]

1300 ◦C/10 h
Ar

16Si-8Ge-
Y2O3-

5NaF-70Al2O3

(Nb, X)(Si,
Ge)2
(180)

(Ti, Nb)5(Si, Ge)4
(Nb, X)5(Si, Ge)3

(12)
1250 ◦C/100 h

SiO2
GeO2
TiO2

Cr2O3

2.78 [56]

Nb-Ti-Al

850 ◦C/25 h
vacuum 60Al2O3-40Al NbAl3

(160) 1000 ◦C/650 h NbAl3
(α-Al2O3) 1.5

[57]
1050 ◦C/25 h

vacuum 60Al2O3-40Si NbSi2
(50) 1000 ◦C/650 h SiO2

TiO2
0.4

The typical SEM of HAPC coatings on Nb-based alloys is shown in Figure 8. It can be
perceived that the Ra of the Nb-Si-Mo coating [58] was relatively high, and apparent cracks
and large granular filler powder were observed at the facial. The internal porosity of the
coating was relatively high, consisting of (Nb, X)5Si3 inner layer and (Nb, X)Si2 outer layer,
and apparent cracks were observed at the interface layer, owing to the varying grain size
of the embedded material [59] and the difference in thermal expansion coefficient between
the substrate and the combined coating, as shown in Figure 8a,d. In order to optimize the
coating structure, Majumdar et al. prepared a Ge/Ge-Y modified NbSi2 coating on the Nb
substrate. It can be perceived that the surface of the Ge modified coating was relatively flat
and smooth [60], but a small amount of pore was observed at the grain boundary, as shown
in Figure 8b. The interior coating was relatively uniform, but there were still apparent
defects. In addition, a large amount of Al and Cr-rich regions were noticed at the junction
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of the coating and the substrate, as shown in Figure 8e. Compared with the single-element
Ge modified coating, the surface grains of the Ge-Y modified silicide coating after adding
Y were smaller, and the average grain size was only 2 to 3 µm, as shown in Figure 8c. It is
worth noting that the coating inside was very uniform and dense without any apparent
defects [61], and the overall thickness was about 50 µm, as shown in Figure 8f. This is
because the addition of the Y element takes advantage of the release of thermal stress and
the filling of vacant defects so that the surface grains of the coating are significantly refined,
and the gaps between the grains are significantly reduced.
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Figure 8. SEM of HAPC coatings: (a,d) Al-NbSi2 coating; (b,c) Ge/Ge-Y modified coating; (e,f) Effect of different binders
BaF2/CrCl3 on coating quality.

Related researchers have tested the oxidation resistance of HAPC coatings, as shown
in Table 3. It can be noticed that the mass gain of the coating was only 0.4–13.1 mg·cm−2

after being oxidized at 1000–1250 ◦C for 17–650 h. Typical SEM of oxidized coating is
shown in Figure 9. Overall, the oxidized Nb-Si-Ti coating surface was smoother, covering a
layer of molten oxide film, but a few holes were still observed [62]. The author believes that
this is related to the higher surface roughness of the coating before oxidation, resulting in
uneven oxidation and the volatilization of Nb2O5 during the oxidation process, as shown
in Figure 9a. The oxidation results show that the main component of the oxide film was
SiO2-TiO2, and the thickness was about 20 µm. In addition, a small amount of Cr2O3 was
also observed at the bottom of the oxide layer [63], as presented in Figure 9c. However, the
oxidized (Nb, X)Si2 coating surface was very rough, and a large number of oxide particles
mainly composed of SiO2-Al2O3 were observed, as shown in Figure 9b. A large number of
holes and longitudinal cracks across the entire cross-section appeared in the coating. At the
same time, partial areas of the oxide layer appeared to fall off [64]. It is worth emphasizing
that an extended layer of Cr2O3 was observed betwixt the oxide layer and the internal
coating, which relieved the further oxidation of the coating to a certain extent, as shown in
Figure 9d.

2.4. Other Methods

By analyzing the advantages and disadvantages of the coating preparation process,
related scholars appropriately combined different methods to make up for each other’s
advantages and disadvantages, thereby obtaining a composite coating with superior ox-
idation resistance [65,66]. Common combination categories, process conditions, coating
composition, thickness, and oxidation characteristics are shown in Table 4. It can be seen
that the coating system was dominated by Mo-Si-X (B, Ce, etc.), which is related to the high
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thermal conductivity and good thermal stability of MoSi2.The addition of elements such as
B and Ce can further optimize the coating structure and improve its oxidation resistance
at high temperatures [67]. The thickness of the coating prepared by the two-step process
was 55 to 160 µm. The outer layer mainly consisted of high-priced metal and high silicide,
such as MoSi2. Due to the difference in the concentration of internal and external elements,
the inner layer was mostly (Nb, X)5Si3 and (Nb, X)3Si. The typical coating surface and
the corresponding cross-sectional morphology are shown in Figure 10. Since most of the
later steps of this kind of method are HAPC, the coating surface exhibited a relatively high
toughness, and a large amount of granular embedded powder was observed to adhere, as
shown in Figure 10a,c. The main component of the coating layer was a mixture of MoSi2
and the second phase was loosely bonded and had many holes and cracks [68,69]. The
inner layer mainly consisted of Nb-based metal silicide; its cross-sectional morphology
was good, and the structure was dense and uniform. This shows that the coating and the
substrate achieved good metallurgical bonding, as shown in Figure 10b,d. This type of
coating preparation method realizes the diffusion and filling of the outer layer components
to the inner layer components through the latter process so that the structure of the inner
coating is further strengthened, and the use performance of the coating is significantly
improved. In addition, technologies such as laser cladding technology (LCT), physical
vapor deposition (PVD), and hot-dipped silicon (HDS) [70] have also been favored by
related scholars in the preparation of Nb surface anti-oxidation coatings. Zhang et al. used
HDS [71,72] technology to prepare a WSi2 coating [73,74] with nano-level roughness on
the surface of W. The resulting coating facial was absolutely dense and uniform without
defects such as holes, gaps [75], etc. This will help the technology apply the coating to
the surface of Nb and its alloys, and provides a helpful reference for the preparation of
anti-oxidation coating.
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Nb-Si-Ti coating after oxidation at 1050 ◦C for 5 h; (b,d) (Nb, X)Si2 coating surface and cross-section
morphology after oxidation at 1250 ◦C for 50 h.
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Table 4. Two-step coating preparation procedure and oxidation resistance details on Nb alloy surface.

Substrate Process Conditions
Coating
System

Coating Composition and
Thickness (µm) Oxidation System

Oxidation
Products

Quality
Change

(mg/cm2)
References

Outer
Layer

Interface
Layer

Oxidation
Temperature

(◦C)

Oxidation
Time

(h)

Nb
SPS

SD: 100 mm
SR: 20 g/min

HAPC
Ar

1000 ◦C/50 h
Mo-Si–B

MoSi2
NbB2
NbSi2
(70)

Nb5Si3
NbB2
(10)

1300 24 Nb2O5
SiO2

0.44 [76]

C-103 HAPC
1100 ◦C/6 h

HAPC
1050 ◦C/4 h Si-B

NbSi2
NbB2
(125)

NbB2
(13) 1300 100

Nb2O5
NbO2
B2O3

1.44 [77]

Nb-Si SS
1550 ◦C/2 h

HAPC
Ar

1200 ◦C/5 h

Mo-Si-
Ce

NbSi2
MoSi2

(80)

Nb5Si3
(4) 1600 24.7 SiO2 3.57 [78]

Nb-Si-Ti PVD
300 ◦C/2 h

HAPC
Ar

1450 ◦C/12 h
Mo-Si–B

MoSi2
(Nb,Ti)5SiB2

(50)

(Nb,Ti)Si2
(Nb, X)5Si3

(5)
1300 24 MoO3

SiO2
−0.55 [79]

Nb-Si-Ti
SPS

SD: 60 mm
SR: 90 g/min

HAPC
Ar

1250 ◦C/4 h
Si-Y-Zr (Nb,Ti)5Si4

(110)
(Nb, X)5Si3

(5) 1250 100
Nb2O5
TiO2
SiO2

1.6 [80]

Nb-Si-Ti
SPS

SD: 90 mm
SR: 20 g/min

HAPC
1000 ◦C/40 h Mo-Si-B

MoSi2
MoB
(115)

Mo
(45) 1250 100 B2O3

SiO2
0.92 [81]
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Figure 10. Typical SEM of two-step method coatings. (a,b) Mo-Si-B coating prepared by SPS (spray 
distance:100 mm, spray rate: 20 g/min) + HAPC (1000 °C/50 h) process; (c,d) Mo-Si-B coating 
prepared by PVD (300 °C/2 h) + HAPC (1450 °C/12 h) process. 

Figure 11 present the typical SEM of oxidized coatings prepared by the two-step 
approach. The mass loss per unit area of the coating was within 4 mg·cm−2 after being 
oxidized in the range of 1300–1600 °C for 24–100 h. The outward layer of the oxidized 
coating was approximately flat and smooth without apparent cracks and holes. This was 
due to the formation of aluminoborosilica with a certain fluidity during the oxidation 
process, filling in the surface defects [82], as shown in Figure 11a,c. MoSi2-SiO2 dominated 

Figure 10. Typical SEM of two-step method coatings. (a,b) Mo-Si-B coating prepared by SPS (spray
distance:100 mm, spray rate: 20 g/min) + HAPC (1000 ◦C/50 h) process; (c,d) Mo-Si-B coating
prepared by PVD (300 ◦C/2 h) + HAPC (1450 ◦C/12 h) process.

Figure 11 present the typical SEM of oxidized coatings prepared by the two-step
approach. The mass loss per unit area of the coating was within 4 mg·cm−2 after being oxi-
dized in the range of 1300–1600 ◦C for 24–100 h. The outward layer of the oxidized coating
was approximately flat and smooth without apparent cracks and holes. This was due to
the formation of aluminoborosilica with a certain fluidity during the oxidation process,
filling in the surface defects [82], as shown in Figure 11a,c. MoSi2-SiO2 dominated the outer
phase of the oxidized coating. Due to original defects and continuous consumption during
the oxidation process, the partial area of the oxide layer fell off, showing discontinuity
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and inhomogeneity [83]. However, the inner layer organization of the coating was still
dense and compact without apparent flaw, and the transition layer of (Nb, X)5Si3 and NbB2
was observed to grow inward at the interface between it and the substrate, as shown in
Figure 11b,d.
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3. Oxidation Mechanism and Failure Behavior of Coating

According to the summary of the oxidation characteristics of Nb alloys surface coat-
ings, the oxidation behavior and failure mechanism are summarized, as shown in Figure 12.
It can be noticed that oxidation can be divided into two stages. The inner and outer layers
of the coating are composed of the Nb5Si3 layer and NbSi2 layer, respectively, as shown in
Figure 12a. In the initial stage of oxidation, the oxygen-philic compounds on the coating
surface are rapidly oxidized. The oxidation reaction is more severe at weak areas such as
cracks, gaps, etc., and the generated oxides such as Nb2O5 and SiO2 are transformed into
defects, start to grow, and gradually spread to the entire surface. As the reaction progresses,
Nb2O5, NbO2, etc., gradually volatilize, leaving many holes on the surface. In addition,
due to the release of thermal stress and the mismatch of thermal expansion coefficients
between systems, many cracks sprout on the surface of the coating. At the same time,
the addition of some modifying elements (X) improves the fluidity of SiO2, fills up these
defects to a certain extent, and forms an Nb2O5-SiO2-X2O3 protective film system on its
surface, as shown in Figure 12b. At last, the oxide layer gradually thickens, the NbSi2 layer
as the central part of the coating is gradually consumed, and the self-healing ability of the
coating gradually deteriorates. However, the Nb5Si3 layer with poor oxidation resistance
gradually becomes thicker. With the oxidation process, the low oxidation resistance Nb5Si3
layer is gradually destroyed, resulting in the oxidation failure of the coating, and a large
number of holes and cracks are observed, as shown in Figure 12c.
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4. Conclusions and Prospects

In this work, the preparation methods of anti-oxidation coatings on Nb-based alloys
are reviewed, and the structure and anti-oxidation performance of coatings obtained by
different methods are summarized, as shown in Figure 13. Overall, the high-temperature
oxidation resistance of Nb-based alloys has been significantly enhanced by surface coating
technology. Through in-depth comparison and analysis of various methods, it can be
known that the volatilization of solvents and cement, and the uneven particle size of the
mixture during the sintering process, result in poor surface quality and high porosity
of the coating prepared by SS. Although the two processes of HAPC and CVD have no
volatilization phenomenon and are not limited by the shape of the substrate, their lower
deposition temperature makes the growth of the coating slower, and the preparation cycle
is longer. In contrast, due to its high diffusion temperature, SPS can deposit coatings of tens
to hundreds of microns in a short time. However, due to the uneven melting of the spray
paint and a small amount of gas during the spraying process, the porosity of the coating is
higher, and the bond with the substrate is poor. In addition, although the two-step coating
has a relatively excellent structure, its process is complicated, and the coating preparation
efficiency is low. As a new coating preparation process, HDS technology dominates due to
short deposition time, high coating preparation productivity, smooth and dense coating
surface, etc., and it is expected to protect Nb-based alloys at high temperatures.
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Summarizing the anti-oxidation mechanism of the coating prepared by the above
method, it can be found that the outer protective scale of the coating with better anti-
oxidation performance is generally composed of SiO2 and other inert melt film shielding
substances. However, inert molten films such as SiO2 are formed after oxidation tests,
and the oxidation process is challenging to control. Therefore, in order to further improve
the high-temperature oxidation resistance of the coating, some beneficial elements are
usually added in an appropriate amount during the coating preparation process. Among
them, the “selective oxidation type” alloy element X (X = A1, Cr, Mo, Ti, etc.) is added
to make it preferentially combine with the O element to form an oxide during the high-
temperature oxidation process, setting a dense isolated layer on the surface of the substrate.
This blocks the inward diffusion of oxygen atoms, inhibits the formation of Nb2O5, and
reduces the oxidation rate. The addition of element B and mullite can improve the fluidity
of SiO2 and promote the formation of a uniform and thick oxide film on the coating surface.
The addition of Y and Ce elements can refine the coating grains, optimize the coating
structure, and significantly improve the strength of the coating at high temperatures so
that it can maintain a good shape during the oxidation process. The addition of W and
Ge can constrain the diffusion of Si elements into the substrate, slow down the generation
of Nb5Si3 with poor oxidation resistance, and lengthen the oxidation service life of the
coating. The introduction of a proper amount of mullite can fill the pores inside and on the
coating surface, optimize the coating structure, increase the density of the coating, inhibit
the recrystallization of SiO2, and promote the thick oxide film on the surface of the coating.
In addition, optimizing the coating preparation process and structure can significantly
reduce defects produced by thermal expansion coefficient mismatch between coating and
substrate, which also plays a crucial role in improving the high-temperature oxidation
resistance of the coating.
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