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Abstract: In this study, we investigated the effects of oxygen content on the transfer characteristics
and stability of high-mobility indium-gallium-tin oxide (IGTO) thin-film transistors (TFTs) during
channel layer deposition. The IGTO thin films were deposited through direct current sputtering at
different ambient oxygen percentages of 10%, 20%, 30%, 40%, and 50%. The experimental results
indicate that the drain currents were hardly modulated by the gate-to-source voltage in the IGTO
TFT prepared at 10% ambient oxygen. However, as the oxygen content increased from 20% to 50%,
the transfer curves shifted to the positive direction with a decrease in field-effect mobility (µFE). The
IGTO TFTs exhibited deteriorated positive bias stress (PBS) stability as the oxygen content increased.
However, the stabilities of the IGTO TFTs under negative bias illumination stress (NBIS) improved
with an increase in the ambient oxygen percentage during the channel layer deposition. Furthermore,
to understand the mechanism of the observed phenomena, we performed X-ray photoelectron
spectroscopy (XPS) analysis of the IGTO thin films prepared at different oxygen percentages. The
XPS results demonstrate that the deteriorated PBS stability and enhanced NBIS stability of the IGTO
TFTs prepared at higher oxygen percentages were mainly ascribed to the larger amount of oxygen
interstitials resulting from the excess oxygen and the smaller number of oxygen vacancies within
the IGTO, respectively. The obtained results suggest that the oxygen percentages of 30% in the
sputtering ambient is the most suitable oxygen percentage for optimizing the electrical properties
(µFE = 24.2 cm2/V·s, subthreshold swing = 0.43 V/dec, and threshold voltage = −2.2 V) and adequate
PBS and NBIS stabilities of IGTO TFTs.

Keywords: IGTO TFT; oxygen percentage; operation characteristics; stabilities; oxygen interstitial;
oxygen vacancy

1. Introduction

Since the inceptive report on indium-gallium-zinc oxide (IGZO) thin-film transistors
(TFTs) published by Nomura et al. in 2004, IGZO TFTs have attracted significant research
interest, owing to their excellent electrical characteristics, high uniformity, and low fabrica-
tion costs. IGZO TFTs are widely used as the backplanes of large-area flat-panel displays,
including active-matrix organic light-emitting diode (AMOLED) displays [1–3]. However,
the field- effect mobility (µFE) of IGZO TFTs is approximately 10 cm2/V·s, which is insuffi-
cient to meet the requirements of high-frame-rate and ultra-high-resolution next-generation
displays. Over the past decade, various oxide TFTs with higher field-effect mobilities than
those of IGZO TFTs have been extensively studied for next-generation display applications.
Among these oxide thin film transistors (TFTs), indium-gallium-tin oxide (IGTO) TFTs
have attracted significant attention as promising oxide TFTs that can replace conventional
indium-gallium-zinc oxide (IGZO) TFTs [4–6]. In IGTO, the cation Sn is alloyed instead of
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conventional Zn because the spatial overlap between the 5 s orbitals of In and Sn is larger
than that of In and Zn. The efficient formation of the percolation pathway for electron
conduction results in a higher field-effect mobility (µFE = ~20–40 cm2/V·s) in the IGTO
TFTs than in the conventional IGZO TFTs (µFE = ~10 cm2/V·s) [7]. Furthermore, the IGTO
TFTs exhibited excellent electrical characteristics even at low annealing temperatures of less
than 200 ◦C. Generally, AOS TFTs require the use of relatively high annealing temperatures
above 300 ◦C in order to stimulate their electrical properties [8,9]. however, such tempera-
ture limits the application of oxide for flexible electronic devices since most cost-effective
flexible substrates (PET, PEN, PC, PS, PP) are deteriorated at this temperature because of
low melting point [10]. Thus, the IGTO TFT is a promising backplane device for flexible
display applications. Jeong et al. examined the effects of annealing temperature on the
electrical characteristics and stability of IGTO TFTs [11,12]. Kim et al. investigated the
effects of chamber pressure on the electrical properties and reliability of IGTO TFTs, and
Jeong et al. studied the influence of the annealing atmosphere on the electrical character-
istics of IGTO TFTs [13,14]. Although the oxygen content has been reported to strongly
affect the electrical characteristics of oxide TFTs with various channel materials, limited
studies have focused on the effects of oxygen content on the electrical performance of
IGTO TFTs during channel layer deposition [15–19]. Oh et al. examined the influence
of oxygen partial pressure during sputtering on the transfer characteristics and electrical
stability of IGTO TFTs [20]. They reported that the electrical stabilities of IGTO TFTs under
positive bias stress (PBS) degraded with an increase in the oxygen partial pressure during
sputtering. Additionally, the deteriorated PBS stabilities of IGTO TFTs prepared at higher
oxygen partial pressures were attributed to a larger number of interface electron trap states
originating from the oxygen vacancies (VO). However, considering that VO is mainly
related to the negative bias illumination stress (NBIS) stability in IGZO and IGTO TFTs, it
is necessary to examine whether this interpretation is accurate [21–28]. Consequently, in
this study, we examined the effects of oxygen content on the transfer characteristics and
stabilities of high-mobility IGTO TFTs during channel layer deposition. A systematic study
was conducted to determine the physical mechanisms responsible for the observed effects
of varying oxygen content on the transfer characteristics and PBS/NBIS stabilities of the
IGTO TFTs during channel layer deposition.

2. Experimental Details

Bottom-gate and top-contact structure IGTO TFTs were employed in this study. A
heavily doped p-type silicon wafer and 100 nm-thick thermal SiO2 were used as the gate
electrode and gate insulator, respectively. The active layer and source/drain electrode were
patterned using photolithography and lift-off processes. First, the photoresist (AZ5214E,
AZ Electronic Materials, Somerville, NJ, USA) was spin-coated onto SiO2 at 4000 rpm for
40 s and soft-baked at 95 ◦C for 90 s. Then, UV light was directed through a photomask onto
the sample for 4.4 s to generate active layer patterns. next, photoresist was developed with
a AZ MIF300 developer (AZ electronic Materials, Somerville, NJ, USA) for 30 s after the
sample hard-baked at 120 ◦C for 120 s. The uncovered regions were subsequently deposited
with IGTO thin film of 20 nm thickness via direct current (DC) magnetron sputtering at
various gas flow rates (Ar:O2 = 35:3.9, 35:8.8, 35:15, 35:23.4, and 35:35 sccm) and oxygen
percentages (10%, 20%, 30%, 40%, and 50%). Finally, the photoresist was lifted off by
soaking the sample in acetone to obtain the active layer patterns. All sputtering processes
were performed under the working pressure of 3 mTorr using a 3”-diameter IGTO target
without substrate heating. Subsequently, the source and drain electrode patterns were
also patterned on the active layer by the same photolithography and lift-off process, and
a 100-nm-thick indium-tin oxide layer was formed for the source and drain electrodes of
the IGTO TFTs using DC magnetron sputtering. Finally, the IGTO TFTs were subjected
to thermal annealing at 180 ◦C for 1 h in air. Figure 1a,b display the schematic view and
optical image of the fabricated IGTO TFTs, respectively.
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Figure 1. (a) Schematic view and (b) optical image of the fabricated IGTO TFTs prepared to examine the effects of varying
oxygen content on the electrical characteristics of TFTs during channel layer deposition.

Electrical measurements were conducted inside a vacuum chamber to avoid the effects
of ambient air on the electrical characteristics of the TFTs using a precision semiconductor
parameter analyzer (Agilent 4156C, Agilent, Santa Clara, CA, USA) at room temperature.
The chemical states of the IGTO thin films formed under different oxygen partial pres-
sures were investigated using X-ray photoelectron spectroscopy (XPS; K-alpha+, Thermo
Scientific-KR, Seoul, Korea) near the IGTO/SiO2 interface.

3. Results and Discussion

Figure 2 shows the transfer curves of the IGTO TFTs prepared at the different oxygen
percentages of 10%, 20%, 30%, 40%, and 50% in the sputtering ambient, where VGS,
VDS, and ID are the gate-to-source voltage, drain-to-source voltage, and drain current,
respectively. Measurements were performed for the TFTs with the channel width/length
(W/L) of 75 µm/100 µm, wherein VGS was varied from −30 to 30 V at a fixed VDS of 0.5 V.
As evident from Figure 2, ID is hardly modulated by VGS in the IGTO TFT prepared at
10% oxygen.
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Figure 2. Semi-logarithmic scale plot of the transfer curves measured from the IGTO TFTs
(W/L = 75 µm/100 µm) prepared at oxygen contents of 10%, 20%, 30%, 40%, and 50% in the
sputtering ambient.

Table 1 summarizes the electrical parameters obtained from the IGTO TFTs prepared at
different oxygen percentages, where µFE was calculated using the maximum transconduc-
tance at VDS = 0.5 V and the threshold voltage (VTH) was defined as the VGS value causing
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ID = W/L × 10−8 A. The subthreshold swing (SS) was determined as the dVGS/dlogID
value in the range of 10−10 < ID < 10−9 A. As evident from Figure 2 and Table 1, VTH
increased but µFE decreased as the oxygen percentage increased from 20% to 50%. The SS
exhibited the lowest value in the IGTO TFT prepared at 30% oxygen.

Table 1. Electrical parameters obtained from the IGTO TFTs prepared at the oxygen contents of 20%,
30%, 40%, and 50% in the sputtering ambient.

O2 Percentage (%) VTH (V) SS (V/dec.) µFE (cm2/V·s)

20 −3.4 0.6 25.1
30 −2.2 0.4 24.2
40 −0.2 0.5 22.0
50 0.3 0.5 21.5

Figure 3a–d show the time evolutions of the transfer curves under a constant overdrive
voltage (VOV = VGS − VTH) of 20 V measured from the IGTO TFTs prepared at the different
oxygen contents of 20%, 30%, 40%, and 50% in the sputtering ambient, respectively. As can
be seen in Figure 3a–d, the transfer curves shifted in the positive direction with an increase
in the stress time in all the TFTs.
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Figure 3. Time evolutions of the transfer curves under constant VOV of 20 V measured from the IGTO
TFTs prepared at oxygen contents of (a) 20%, (b) 30%, (c) 40%, and (d) 50% in the sputtering ambient.

Furthermore, Figure 4a–c illustrate the time dependence of the threshold voltage shift
(∆VTH) and that of the variation in the SS (∆SS) and µFE (∆µFE) values obtained from
the IGTO TFTs prepared at different oxygen percentages in PBS after every stress time.
Figure 4a shows that ∆VTH in the IGTO TFTs prepared at 40% (∆VTH = 2.78 V after 3000 s)
and 50% (∆VTH = 3.19 V after 3000 s) oxygen exhibited significantly larger values than
those in the IGTO TFTs prepared at oxygen contents of 20% (∆VTH = 0.98 V after 3000 s)
and 30% (∆VTH = 1.00 V after 3000 s).
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Figure 4. Time dependences of (a) ∆VTH, (b) ∆SS, and (c) ∆µFE values obtained from the IGTO TFTs prepared at different
oxygen percentages under PBS after every stress time.

Moreover, Figure 4b shows that the SS value hardly changed after an application of
stress in the IGTO TFTs prepared at the oxygen percentages of 20% and 30%. However, it
increased after applying stresses in the IGTO TFTs prepared at 40% (∆SS = 0.09 V/dec after
3000 s) and 50% (∆SS = 0.1 V/dec after 3000 s) oxygen. The ∆µFE values remained nearly
unchanged during the stresses in all the TFTs.

In the previous studies on oxide thin films and TFTs, the instability of electrical
properties under PBS can be explained by two general mechanisms: (1) the charge trapping
model and (2) the defect creation model. In the charge trapping model, VTH shifts to
the positive direction without degradation of SS. It is widely believed that the ∆VTH is
contributed by charges trapped at the dielectric/channel interface and inside the bulk of
the channel, resulting in ∆VTH without a significant change in SS. In the defect creation
model, on the other hand, VTH shifts to the positive direction with degradation of SS. as
a result of gate bias stress that induces formation of trap sites [29,30]. Therefore, as can
be seen in Figures 3 and 4, one can infer the creation of defects in the a-IGTO thin films
prepared at 40% and 50% oxygen contents under PBS.

Figure 5a–d show the time evolutions of the transfer curves under the constant VOV
of −15 V with light illumination (brightness = 3000 lx) measured from the IGTO TFTs
prepared at different oxygen contents of 20%, 30%, 40%, and 50% in the sputtering ambient,
respectively. As evident from Figure 5a–d, the transfer curves shifted in the negative
direction with an increase in the stress time in all the TFTs. Figure 6a–c illustrate the time
dependences of the ∆VTH, ∆SS, and ∆µFE values obtained from the IGTO TFTs prepared at
the different oxygen percentages under NBIS after every stress time. Figure 6a–c show that
the magnitude of NBIS-induced ∆VTH decreases with an increase in the oxygen percentages
in the sputtering ambient. However, there is no significant variation in the SS and µFE
values during NBIS in all IGTO TFTs.

In the previous studies on oxide thin films and TFTs, the negative VTH shift in the
NBIS condition was attributed to: (1) the photo-induced hole trapping, (2) photo-transition
from VO to VO

2+ (here, the VO and VO
2+ denote the oxygen vacancy with the neutral

and +2 charge states, respectively) and (3) photo-desorption of O2 on the channel surface.
The hole trapping model assumes that photo-generated hole carriers are trapped at the
gate dielectric/channel interfacial trap sites or gate dielectric bulk film. Therefore, the
hole trapping phenomena depend strongly on the gate dielectric layer, which might not
be responsible for the difference of oxygen contents in the sputtering ambient. A more
plausible mechanism would involve the oxygen vacancy concentration in the a-IGTO film.
Previously, oxide material has been reported to suffer from photoconductivity phenomena,
which can be explained by the photon-activated transition of neutral oxygen vacancies,
VO, to the VO

2+ charged state. Because such a photo-transition leads two delocalized
free electrons into the conduction band, VTH shifts to the negative direction [31,32]. The
Figures 5 and 6 supports such a hypothesis. Finally, since the NBIS was measured in
vacuum, the photo-desorption of O2 effect was excluded.
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Figure 5. Time evolution of the transfer curves under constant VOV of −15 V with a light illumination
(brightness = 3000 lx) measured from the IGTO TFTs prepared at the oxygen contents of (a) 20%,
(b) 30%, (c) 40%, and (d) 50% in the sputtering ambient.
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Figure 6. Time dependences of (a) ∆VTH, (b) ∆SS, and (c) ∆µFE values obtained from the IGTO TFTs prepared at different
oxygen percentages under NBIS after every stress time.

To evaluate the physical mechanisms for the effects of varying oxygen content on
the electrical properties and stabilities of the IGTO TFTs, as observed in Figures 2–6,
the IGTO thin films prepared at different oxygen percentages were analyzed via XPS.
Figure 7a–e show the O 1s core-level XPS results of the IGTO thin films prepared at the
different oxygen percentages of 10%, 20%, 30%, 40%, and 50%, respectively. The O 1s
XPS results were deconvoluted into three peaks (OI, OII, and OIII) using the Gaussian
function, where their origins are the lattice oxygen (OI), VO (OII), and the weakly bonded
excess oxygen or the hydroxyl group (OIII), respectively. The positions of each peak are
529.8 ± 0.1 (peak OI), 530.7 ± 0.1 (peak OII), and 531.8 ± 0.1 (peak OIII) eV [14]. Figure 8
shows the XPS peak area ratios corresponding to OI, OII, and OIII, obtained from the
IGTO thin films prepared at different oxygen contents in the sputtering ambient. Figure 8
shows that the XPS peak area ratio of OIII continuously increased with an increase in
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the oxygen percentage, implying that the higher area ratio of OIII in the IGTO thin films
prepared at higher oxygen percentages is probably due to the larger number of weakly
bonded excess oxygen atoms within the IGTO thin films [33,34]. In IGZO or IGTO, the
weakly bonded excess oxygen is easily ionized to the oxygen interstitials (Ois) owing to the
low formation energy, where Oi creates acceptor-like sub-gap states near the conduction
band (CB) edge [35–37]. The acceptor-like sub-gap states above the mid-gap increase SS,
enhance electron trapping and the µFE remains unchanged during PBS in n-type oxide
TFTs. Therefore, the high SS, and poor PBS stability of the IGTO TFTs prepared at 40% and
50% oxygen can be ascribed to the relatively high concentrations of Oi within the IGTO
channel layer. Furthermore, the formation of Oi from the weakly bonded excess oxygen is
accelerated under PBS in IGZO or IGTO TFTs, which is believed to be the reason for the
increase in the SS values after PBS in IGTO TFTs prepared at 40% and 50% ambient oxygen.
In addition, Figure 8 shows that the XPS peak area ratio of OII continuously decreased
as the oxygen percentage increased. It is well known that VO creates shallow and deep
donor states within n-type oxide semiconductors, such as IGZO or IGTO [38,39]. The
ionized shallow donors provide free electrons to the CB; therefore, the concentration of free
electrons increases as the concentration of VO increases within the IGTO. The increase in
the free electron concentration facilitates the formation of a percolation conduction path in
multi-cation n-type oxide semiconductors. Therefore, the low value of VTH and the high
values of µFE obtained as the oxygen percentage decreased [40,41]. Therefore, a higher µFE
value and lower VTH value of the IGTO TFTs prepared at lower oxygen percentages can be
attributed to the higher concentrations of VO within the IGTO active layer.
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Figure 7. O 1s core-level XPS results of the IGTO thin films prepared at the oxygen contents of
(a) 10%, (b) 20%, (c) 30%, (d) 40%, and (e) 50%.
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Figure 8. XPS peak area ratios corresponding to OI, OII, and OIII, obtained from the IGTO thin films
prepared at different oxygen percentages in the sputtering ambient.

In addition, a higher carrier concentration within the active layer increases the SS
value of the TFT, which is considered to be the reason for the high SS value in the IGTO
TFTs prepared at the oxygen percentage of 20%. Under NBIS, VO is ionized to VO

2+, which
moves toward the channel/gate insulator interface in n-type oxide TFTs such as IGZO
or IGTO TFTs. The formation of the VO

2+ accumulation layer close to the gate insulator
and an increased free electron concentration within the channel layer result in shifting
of the transfer curves of n-type oxide TFTs in the negative direction [23]. The results in
Figure 8 demonstrate that the poorer NBIS stability of the IGTO TFTs prepared at lower
oxygen percentages can be ascribed to the higher concentrations of VO within the IGTO
channel layer compared with the IGTO TFTs prepared at higher oxygen percentages. The
experimental results in Figures 2–7 indicate the importance of determining the appropriate
oxygen content during channel layer deposition in IGTO TFTs to optimize the transfer
characteristics and PBS/NBIS stabilities of the devices. Although it is necessary to further
improve the electrical performances of TFTs, the TFT prepared at the oxygen percentage of
30% exhibited the best electrical characteristics (µFE = 24.2 cm2/V·s, SS = 0.43 V/dec., and
VTH = −2.2 V) and adequate PBS and NBIS stabilities among the fabricated IGTO TFTs.

4. Conclusions

In this study, we investigated the effects of oxygen content in the sputtering ambient
on the transfer characteristics and stabilities of IGTO TFTs using devices prepared at the
oxygen contents of 10%, 20%, 30%, 40%, and 50%. The experimental results showed that an
increase in the oxygen percentage during the channel layer deposition increased VTH and
decreased the µFE value of the fabricated IGTO TFTs. Furthermore, it was observed that the
electrical stability in PBS deteriorated with an increase in the oxygen percentage. However,
the NBIS stability of the TFT enhanced as the oxygen percentage increased. The XPS
analysis results revealed that the VTH increase and µFE decreased as the oxygen percentage
increased from 20% to 50% due to decreased oxygen vacancy. Furthermore, the deteriorated
PBS stability and the improved NBIS stability of the IGTO TFTs prepared at higher oxygen
percentages were due to the increase in the amount of excess oxygen oriented Oi and VO
within the IGTO active layer. The obtained results demonstrated that the optimum oxygen
percentage in the sputtering ambient for the IGTO TFT is approximately 30%, producing a
low SS, acceptably high µFE, and adequate PBS/NBIS stabilities of IGTO TFTs.
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