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Abstract: Implant-associated infections (IAIs) are among the most intractable and costly complica-
tions in implant surgery. They can lead to surgery failure, a high economic burden, and a decrease in
patient quality of life. This manuscript is devoted to introducing current antimicrobial strategies for
additively manufactured (AM) titanium (Ti) implants and fostering a better understanding in order
to pave the way for potential modern high-throughput technologies. Most bactericidal strategies rely
on implant structure design and surface modification. By means of rational structural design, the
performance of AM Ti implants can be improved by maintaining a favorable balance between the me-
chanical, osteogenic, and antibacterial properties. This subject becomes even more important when
working with complex geometries; therefore, it is necessary to select appropriate surface modification
techniques, including both topological and chemical modification. Antibacterial active metal and
antibiotic coatings are among the most commonly used chemical modifications in AM Ti implants.
These surface modifications can successfully inhibit bacterial adhesion and biofilm formation, and
bacterial apoptosis, leading to improved antibacterial properties. As a result of certain issues such as
drug resistance and cytotoxicity, the development of novel and alternative antimicrobial strategies is
urgently required. In this regard, the present review paper provides insights into the enhancement of
bactericidal properties in AM Ti implants.

Keywords: additive manufacturing; porous titanium; implant coatings; antibacterial agent

1. Introduction

Bone infection is one the most serious and destructive risks associated with bone
implant surgeries. According to the results of the International Consensus Meeting on
Musculoskeletal Infection in 2018, the infection incidences for all orthopedic subspecialties
ranged from 0.1% to 30%, and the cost of each patient ranged from USD 17,000 to 150,000 [1].
Staphylococcus aureus is considered to be the most common pathogen isolated from implant-
associated osteomyelitis [2], and an increasing number of cases (more than 50%) are caused
by refractory methicillin-resistant S. aureus (MRSA) strains [3]. Implants act as carriers
for bacterial growth, increasing the bacterial virulence on the surface [4]. Bacteria adhere
to the implant surface, before cell proliferation and biofilm formation [5]. A biofilm is
a type of microbially derived fixation community that is characterized by cells that are
irreversibly adhered to a substrate or interface between them, embedded in a matrix made
up of their own extracellular polymeric substances [6]. Bacterial biofilms are resistant
to antimicrobial treatments and evade host defenses by providing a physical barrier [7].
As a result of restricted blood flow, it is difficult to deliver antibiotics to the area around
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the implant, and due to recurrence and drug resistance, the infection is often difficult to
treat and will become chronic [8]. As a result, in these cases, the removal of the implant is
sometimes necessary.

In recent years, various novel approaches have been proposed to prevent and treat
implant-associated infections (IAIs). In order to endow titanium (Ti) implant surfaces with
effective antimicrobial properties, two models were proposed: Passive antimicrobial mecha-
nisms, which prevent the initial bacterial attachment, and active antimicrobial mechanisms,
which release antimicrobial agents to kill adherent or planktonic bacteria. In addition, the
local innate immune response should be enhanced, in order to stimulate immune cells
to kill the bacteria [9]. Passive antimicrobial surfaces do not release antimicrobial agents;
by changing the physicochemical properties of the surface, such as the roughness, hy-
drophilicity, or nanotopological structure, or by covalently immobilizing active molecules
on the surface, they inhibit surface bacterial adhesion or kill bacteria by contact [10]. Active
antimicrobial surfaces are loaded with antimicrobial agents through a variety of surface
modification processes. They facilitate the controlled local release of antimicrobial agents
that kill bacteria on the surface of the implant and around the tissue. Antibiotics [11],
antibacterial active metals (such as silver (Ag) [12–14], copper (Cu) [15], zinc (Zn) [16]),
and metal oxides [17] are widely applied in the study of implant antimicrobial surfaces. In
a meta-analysis of 23 studies, Tsikopoulos et al. showed that a combination of active and
passive antibacterial surfaces reduced the risk of IAIs [18].

Additive manufacturing (AM), often referred to as “3D printing”, enables the fab-
rication of scaffolds with high geometric complexity [19]. AM technology enables the
fabrication of patient-tailored and structurally optimized porous implants through the pre-
cise design of external and internal structures [20–22]. Metal AM is composed of electron
beam melting (EBM) [23,24], selective laser sintering (SLS) [25,26], selective laser melt-
ing (SLM) [27], laser engineered net shaping (LENS) [28,29], direct metal laser sintering
(DMLS) [30,31], and laser aided AM methods [32]. Figure 1 shows several widely applied
metal AM processes.
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At present, most implants in clinical use are bulk solid Ti with an elastic modulus
much higher than that of bone, resulting in stress shielding [36]. The mechanical mismatch
between the implant and the surrounding natural bone results in bone resorption [37]. AM
technology enables the fabrication of patient-tailored and structurally optimized porous
implants through the precise design of external and internal structures. Porous Ti implants
have a suitable porosity and topological structure. This is achieved by mimicking the tra-
becular structure of natural bone tissue so that their mechanical properties match with the
surrounding tissue, which can effectively transfer loads, reduce the stress shielding effect,
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and promote osseointegration [38–40]. In addition, trabecular-like porous implants provide
an open interconnecting space for cell growth and the transport of nutrient and metabolic
waste. Osteoblasts and mesenchymal cells migrate and proliferate within the pores, which
is accompanied by vascularization, facilitating bone ingrowth [41,42]. Although, at present,
there is no consensus criteria, most studies show that improving porosity and pore size
promotes bone tissue ingrowth into pores and the osseointegration of the implants on the
basis of ensuring mechanical properties [41,43,44].

For metallic AM implants, a large number of studies focus on conferring antimicrobial
properties through indirect means. For instance, the additional surface area of a porous or
specially shaped AM implant is used to enhance the antimicrobial properties of surface
biofunctionalized implants for protection against IAIs [45]. The same biofunctionalization
treatments in in vitro tests showed that porous implants with an increased surface area re-
lease a significantly higher amount of antimicrobial agent and have an increased inhibition
zone size as compared to solid implants with the same dimensions [46]. The difference
is that for AM polymer implants, which are manufactured by fused deposition model-
ing (FDM) or stereolithography (SLA), antimicrobial agents such as antibiotics [47,48],
quaternary ammonium salts [49,50], chitosan [51], and antimicrobial metal particles [52]
are usually added to the raw material during the manufacturing stage to facilitate the
generation of bactericidal surfaces. At present, there are very few studies on the direct
preparation of antimicrobial Ti implants using AM. The following are various starting
points from which to approach this: (1) Improving the AM processing parameters to obtain
optimized surface physical properties and reduce bacterial adhesion [53]; (2) developing
nano-AM technology to prepare nanoantibacterial structures on the implant surface [54]; (3)
adding antimicrobial metal elements and exploring the appropriate proportion of elements
to prepare the antimicrobial alloy using AM [55].

From another point of view, a porous structure is more conducive to bacterial growth
than implants with smooth surfaces, and the increased surface area may also increase
the number of bacteria that survive the disinfection process or cling to the surface before
surgery [45]. There is, however, no clear evidence proving that porous implants have a
higher incidence of IAIs than solid implants [56]. For example, trabecular metal implants
are known as implants that have a porous structure. A great number of clinical trials
compare the prognosis of trabecular metal implants and nontrabecular metal implants.
Different clinical centers reported different revision rates for IAIs of the two types of im-
plants, but the results were not statistically significant (p > 0.05) [57–59]. It may be inferred
that the increased surface area of AM porous implants has more effect on the antibacterial
properties of the coating than the residual bacteria on the surface before surgery.

This review summarizes the various recently proposed strategies that improve the
antibacterial properties of AM Ti implants. Firstly, the effect of AM technology on the
antimicrobial properties of implants is discussed, and optimization schemes are proposed.
Then, from the perspective of antimicrobial drug loading, drug release is explored through
drug filling and implant surface bio-functionalization. Finally, the typical methods of
antimicrobial functionalization of AM implants are listed, such as antibiotic coatings and
antimicrobial active metal coatings.

2. The Effect of AM Technology on Antimicrobial Properties

An in vitro study found that Ti discs produced using the AM DMLS method could
change the distribution of microbial species in subgingival biofilm and decrease the total
counts of Porphyromonas gingvalis, which is the most widespread pathogen found in peri-
implantitis [60]. Currently, AM processing parameters are being optimized and new AM
technologies are being developed to improve antimicrobial performance.

Research shows that AM processing parameters were able to change the surface pa-
rameters and roughness of a Ti scaffold, such as the inclination angle, laser power, and
beam diameter [61]. The inclination angle is a key design parameter, and it has been shown
to be selective for the attachment of bacteria and tissue cells [53,62,63]. In the manufactur-
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ing stage, by reducing the SLM build inclination angle, a lower biofilm-covered surface
morphology can be constructed without changing the surface chemical properties of the
scaffolds, which is characterized by a reduction in partially melted metal particles, leading
to a decrease in the roughness and hydrophobicity (Figure 2) [53]. Villapún et al. [62]
established a mathematical model to optimize the orientation of customized SLM implants,
which can accurately predict and optimize the surface roughness of scaffolds. A case study
focusing on the customized implant proved the feasibility of this method. The optimization
of the inclination angle facilitates the rapid fabrication and functionalization of implants
in a single-step process, without postprocessing or with only local processing. Ginestra
et al. [64] found that the inclination angle has a limited effect on surface topography, high-
lighting the influence of different AM processing techniques on surface properties. It is not
a simple task to explore the influence of a single parameter on antibacterial properties, and
further in vitro and in vivo studies are required to this end.
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Figure 2. The SLM build inclination angle affects the surface roughness, which in turn affects bacterial adhesion. (a) Three-
dimensional model of the build inclination angle, SEM micrograph images, and topographic scan of as-built Ti6Al4V
samples with sloping angles from 20◦ to 90◦; (b) measured arithmetic mean height (Ra), root mean squared height (Rq),
and maximum height of profile (Rz) as average values of 20 scans, where * signifies p-value < 0.05 for Ra. (c) After 24 h of
colonization, the biomass of S. epidermidis was quantified using crystal violet staining. Reprinted with permission from
ref. [62]. Copyright 2020 Elsevier.

In the manufacturing process, the surface of the Ti implant inevitably retains some
residual powders or partially melted particles. According to the report, it should be noted
that this can inhibit the osteogenic activity of human bone marrow mesenchymal stem cells
and enhance bacterial adhesion [65]. Therefore, AM scaffold surfaces are not suitable for
direct use. Appropriate post-treatment care must be carried out before use [66]. The most
common post-treatment methods include ultrasonic cleaning, sandblasting, chemical pol-
ishing, mechanical polishing, etc. The ability of ultrasonic cleaning to remove residual
powder between the trabeculae on the surface is poor. In contrast, chemical polishing
has a superior ability to remove powder residue and correlates with a decreased number
of staphylococcal cells on the surface [67]. Junka et al. [68] speculated that fluoride and
nitrogen on the surface of scaffolds could inhibit biofilm formation after chemical polishing.
Sand blasting is a standard process for improving the surface finish in SLM production.
However, it is worth noting that sandblasting may increase the risk of bacterial adhesion
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on the implant surface if the sandblasting medium is not adequately removed [66,69].
Interestingly, Szymczyk-Ziolkowska et al. [70] found that different microorganisms have
a species-specific ability to form biofilms on different types of implant modification. For
patients with a history of S. aureus, Pseudomonas aeruginosa, or Candida albicans infection,
the use of as-built, sandblasted, or acid-etched alloys are not recommended, respectively.

Metal AM technology is common and is processed on the microscale. For example, the
surface arithmetic mean roughness (Ra) of SLM is 5–20 µm and the EBM is 20–50 µm [71].
Several AM technologies with a nanoscale resolution have been developed, such as electron
beam induced deposition (EBID) [72] and two-photon polymerization (TPP) [73]. TPP can
produce 3D nanostructures and trigger the polymerization process by applying laser pulses
on photosensitive materials. This is a 3D prototype technology for precisely controllable
sub-100 nm AM structures [73,74]. EBID uses a focused electron beam to decompose the
precursor molecules into two parts: The volatile part is desorbed and discharged, and
the nonvolatile part is left on the substrate to form a nanosized deposition layer [75–77].
These nanoscale AM technologies are expected to produce specific nanotopographies to
kill bacteria by, for example, inducing excessive levels of strain through a mechanical
process [45]. Ganjian et al. [54] used EBID to fabricate nanopillars with precisely controlled
dimensions within the osteogenic range on silicon wafers (Figure 3). To the authors’
knowledge, nanoscale AM technology has not been applied to Ti implants, and the printing
of antimicrobial nanopatterns on Ti implants requires further exploration.
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Figure 3. Schematic representation of (a) two-photon polymerization (TPP) (Reprinted with permis-
sion from ref. [78]. Copyright 2015 Royal Society of Chemistry) and (b) electron beam induced depo-
sition (EBID); (c) schematic diagram showing the bactericidal behavior of a nanopattern structure,
including deformation and being sunk on the nanopattern due to the penetration of the nanocolumn
into the bacterial cell wall; (d) SEM image of damaged Escherichia coli bacteria on the surface of a
nanopattern after 18 h of culture, observed from the above [54]. (CCD: Charge-coupled device).

3. AM Implants with Antimicrobial Loading

Oral or intravenous drug administration in the treatment of IAIs does not often work
very well. This is due to the concentration of the drug in the blood, which is affected by the
peak-and-valley effect. Additionally, drug release kinetics are often unpredictable, some-
times reaching toxic levels and sometimes falling below the therapeutic level. Moreover,
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inadequate blood perfusion restricts the blood supply in the bones, and only very small
quantities of the drug reach the target site. Under these circumstances, utilizing the implant
as a loader of the local drug delivery system is a promising method: It facilitates controlled
and sustained release, a high local drug concentration, and minimizes the treatment period
required [79,80]. Current implant drug loading methods generally include drug filling
through implant design, a surface coating that releases drugs, and drug reservoirs through
surface modification [81].

3.1. Hollow Implants

Ti implants with void volumes were designed to be filled with antimicrobial agents.
These are known as hollow implants. The geometric freedom of AM technology facilitates
the manufacturing of complex internal structures that would not be achievable with tradi-
tional methods. Park et al. [82] implanted hollow Ti implants perforated with microholes
and loaded with a dexamethasone-based cartridge into the tibia of rabbits. The plasma
pharmacokinetic behavior in these samples showed that the agent could be released contin-
uously up to 7 weeks after implantation. Furthermore, a stainless-steel porous-wall hollow
implant designed by Gimeno et al. [83] was filled with the synthetic antibiotic linezolid
and was shown to exhibit good anti-infection properties in a model of tibia infection in
sheep. It seems that drug-filled hollow implants may represent a novel approach to treat
or prevent IAIs that do not require repeated injections or timely oral administration to
maintain critical drug concentrations.

For the design of drug release routes, using microchannels for hollow implants is a
typical method. The release profile can be predesigned by selecting the number of channels
in order to achieve a rapid initial release and a slow, sustained, long-term release [84]. With
the assistance of AM technology, hollow Ti implants with different channel orientations
can be manufactured. It was found that channel orientation can affect the accuracy of the
channel dimension [85,86], the back-pressure porosity of the injection material, the drug
elution rate, and even the direction of drug release (Figure 4) [85]. Bezuidenhout et al. [87]
designed a Ti alloy cube with channels. Polyethersulfone membrane discs were placed
at the opening of each channel. It was able to control the release rate for the drug, and
repeatable filling with antibiotics was possible through polyethersulfone membranes. Thus,
antibiotic levels could be maintained above the minimum inhibitory concentration (MIC)
for an extended period and drug resistance could be avoided. AM technology can also
provide thin permeable walls with different porosities for hollow Ti implants. With the
increase in porosity, the pattern of drug release profiles changes [88].
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(a) Schematics of implants with horizontal, inclined, and vertical pore channels; (b) coronal slice of antibiotic-loaded cement
within implants; (c) zones of bacterial inhibition around implants with horizontally orientated pore channels showing
directionality; (d) cumulative release of antibiotic from cement cylinders and cement-filled implants with different pore
orientations; (e) re-engineered functional implant.

The filling material plays a pivotal role in the release spectrum, and its material type
and solubility affect the reaction; for example, drugs with a higher water solubility exhibit
a faster drug release rate [84]. The second factor is the state of the material that is filled. If
the drug is directly filled, the elution involves one stage, and the drug is directly released
from the channel. If the medium contains antibiotics, such as mesoporous silica particles or
bone cement, the elution involves two stages: The drug is first desorbed from the medium
and then released through the implant channels [85,89]. This two-stage eluting device has
the ability to precisely control the drug release rate, because the drug medium and the
hollow implant channel can be controlled independently.

The drug loading and drug eluting of these hollow Ti implants had promising an-
tibacterial effects [85,88,90], which indicates that an optimized drug release profile could
be achieved by rational structural design; however, a complete design scheme has not been
proposed to date.

3.2. Porous Implants
3.2.1. Bioactive Coating

As a result of the increased surface area of porous implants, there is great poten-
tial for loading antimicrobial agents through coatings and surface treatments. Burton
et al. [91] studied eight unit cell types of AM porous lattices and determined that the
original Schwartz lattice geometry with 10% volume filling maintains the loading capacity,
while allowing the maximum void volume in all lattice designs to load more antimicrobial
agents. In addition to a homogeneous porous lattice structure, AM technology can also be
used to manufacture implants with gradient porosity or surface blind pores. Sukhorukova
et al. [92] used SLS to prepare a square blind holes network structure for loading antibiotics
onto the surface of Ti plates. This had an obvious antibacterial effect, which was superior
to the standard plate that contained a higher concentration of antibiotics.

Active coatings release preincorporated antimicrobial agents, such as antibiotics [93],
inorganic antimicrobials [94,95] (e.g., silver (Ag), zinc (Zn), copper (Cu), gallium (Ga)), an-
tiseptics [96], antimicrobial peptides [97], or certain types of metal oxides, to downregulate
infection [45,98]. The biocompatibility of the implants should be ensured while considering
the antimicrobial properties. Inspired by the extracellular matrix and proteins, organic
and inorganic (hydroxyapatite) components, and composition combinations of living bone
tissue, many bioactive materials can be used as candidates for antibacterial agents to coat
implant surfaces [99]. Such coatings are not only effective in loading antimicrobial agents,
but they also have the potential to promote tissue integration. These coatings include
durable/biodegradable polymers, nanofibers, hydroxyapatite and gels [81], and titania
nanotubes (TNT), which can mimic the nanoscale topology of bone and are among the
most promising implant coatings. When antibacterial agents are mixed with these bioactive
materials, the final drug release from the AM porous Ti implant surface is determined by
the complex interaction between the coating characteristics, the drug properties, and the
in vivo conditions [100].

There are many emerging surface treatment methods. During surface treatment and
the coating of porous Ti implants, it is key to form a uniform surface over the entire
specimen, reaching the entire inner surface. Some traditional coating techniques, such as
plasma spraying, result in poor control over the thickness and surface topography and
are not suitable for porous implants with complex geometries [99]. Therefore, chemical
or electrochemical technology is a better choice, in order to reach the inner surface of the
porous structure [45,101]. Technologies such as dipping, biomimetic deposition, chemical
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surface treatment using acidic and alkaline solutions, anodic oxidation, electrophoretic
deposition, and plasma electrolytic oxidation are widely used in this field [45,99,102].

3.2.2. Nanometer Coating

In general, the nanomorphology of Ti surfaces with an antibacterial function is usually
designed as nanotube and nanocoating forms [103]. TNT is easily adapted to AM porous
structures and can be prepared on three-dimensional nonplanar surfaces [104]. A uniform
layer of TNT can be formed on porous implants by liquid phase electrochemical treat-
ment, e.g., anodizing [105,106] and micro-arc oxidation (MAO) [107–109]. In addition to
the macroporous structure of AM technology, the microstructure of partially melted Ti
microspheres on the surface of AM implants and TNT together constitutes a unique dual
micro- to nanotopography (Figure 5) [110–112]. Biocompatibility and good corrosion resis-
tance were demonstrated in TNT-coated Ti implants [113], and various promising results
were reported in terms of improving the osteogenic activity around implants [111,114,115],
especially regarding the dual micro- to nanotopography of AM porous scaffolds [111,116].
The hydrophilic surface of TNT has a positive effect on reducing bacterial adhesion, but the
antibacterial performance of TNT is still poorer than that of mechanically polished samples,
because the roughness of TNT affects its antibacterial properties [105].
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Nanotube structures with highly specific surface areas and pore volumes are both
well organized and controllable and represent a good strategy for drug delivery and
antibacterial activity [117]. Drug-eluting nanotubes significantly reduced bacterial adhesion
to the surface when researchers filled the nanotubes with the antibiotic gentamicin [115].
Moreover, various parameters involved in anodizing (such as pore size and length) can
precisely control the size of nanotubes [118], which, in turn, can control the drug release
rate [119]. Drug-loaded TNT can be combined with other functional coatings, such as
polymers [120] and hydrogels [116], which cover the openings of the TNTs and prolong the
drug release time [121]. Maher et al. [122] proposed an innovative antimicrobial surface
preparation method using SLM technology and electrochemical anodization to prepare the
surfaces nanotopography of Ti alloys, thus promoting the nucleation reaction and growth
of sharp nanospears through the hydrothermal process. The sharp triangular-shaped
nanospears effectively destroyed bacteria by mechanically damaging their cell walls.

The majority of the research on nanocoatings focuses on metal nanoparticles [46,106,109]
and nanocarriers, which aim to deliver antibacterial agents [123,124]. Metal nanoparticles
have excellent antimicrobial effects [125]. Nanocoatings that do not contain antimicrobial
agents are gradually being developed. Hu et al. [105] found that the composite effect of
TNT and nanophase CaP on SLM Ti surfaces also exhibited good antibacterial activity.
Furthermore, these antibacterial properties mainly come from the surface nanorough-
ness [105,123,126]. Rifai et al. [127] demonstrated that a nanodiamond (ND) coating can
improve interface properties to inhibit bacterial colonization, and NDs coatings were ap-
plied on SLM Ti scaffolds using dip coating technology. Interestingly, it was found that
controlling the embeddedness of nanoparticles is very helpful for maintaining the cell
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adhesion and osteogenic differentiation potential of TNT, especially when the nanoparticles
do not completely cover the nanotubes [123].

4. Application of Antimicrobial Functionalization of AM Implants
4.1. Antibiotic

Antibiotics are the standard clinical tool for the local and systemic treatment of various
infections caused by broad-spectrum pathogens. The concentration of local antibiotics is
much higher than that achieved through parenteral administration. It can even be delivered
to nonvascular areas, which can reduce the risk of antibiotic resistance and systemic
toxicity [128,129]. Antibiotic implant materials, such as bone cement and temporary bone
cement spacers, have exhibited effective antibacterial activity. AM porous Ti implants
provide a variety of strategies for local antibiotic administration, among which surface
coating technology is the most widely studied. In addition, from the perspective of implant
structure design, antibiotic-added reservoirs are an important emerging method (see
Section 3.1).

AM porous Ti implants have inherent advantages, such as their high porosity and large
surface area, which provide adhesion sites for antibiotics. Moreover, they can be loaded
with more antibiotics. Griseti et al. [129] found that the antibacterial effect of 3D porous Ti
loaded with antibiotics lasted for 7 days, which was similar to that of early antibiotic bone
cement. Smooth Ti alloy beads loaded with antibiotics demonstrated a limited inhibition
effect before the second day. The change in the surface topology also improved the release
profile of antibiotics and significantly increased the release amount [107,123].

There are several factors that need to be considered when choosing the type of antibi-
otic. The first is the antibacterial spectrum of the antibiotics, followed by its compatibility
with the coating processing technology, and its stability and solubility, which determine the
release profile. Gentamicin and vancomycin are the most widely used antibiotics for the
prevention and treatment of IAIs. They are active against both Gram-negative and Gram-
positive bacteria. Gentamicin and tobramycin, which have broad-spectrum antimicrobial
properties and high temperature resistance, were approved by the United States Food
and Drug Administration (FDA) for incorporation into bone cement for the treatment of
prosthetic joint infections [130]. Vancomycin belongs to the glycopeptide antibiotics family
and is effective against MRSA [131]. With the increase in bacterial resistance, and even the
emergence of vancomycin-resistant strains [132], there is an urgent need for the application
of novel antibiotics or combinations of antibiotics to treat refractory IAIs. Molina-Manso
et al. tested the drug susceptibility of staphylococcal biofilms with a variety of antibiotics
and found that rifampicin and tigecycline exhibited superior anti-biofilm activity to other
antibiotics, which could be applied on the surface of implants to treat or prevent IAIs [133].
In addition, daptomycin [134,135] and minocycline [136] demonstrated efficacy against
MRSA biofilms [137].

Current studies on antibiotic coatings focus on optimizing the release kinetics of
eluting antibiotics. One important consideration is the duration of drug release, which
must take into account both early and delayed IAIs. Another is the concentration of the
released drug, which can help to avoid the development of bacterial resistance. In general,
the release of antibiotics can be divided as follows: There is an initial outbreak period,
during which the drug concentration reaches a high level; then, the release continues above
MIC and stops before the development of antibiotic resistance (Figure 6). Stigter et al. [138]
used the biomimetic coprecipitation method to incorporate antibiotics into the HA coating
of titanium implants. Among the eight antibiotics studied, cephalosporins containing
carboxylic groups were more strongly bound to the coating, with higher incorporation, a
slower release rate, and more durable and effective antimicrobial activity.
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antibacterial effect for a long period without antibiotic resistance.

Researchers have explored a variety of biocompatible coatings that stabilize adhesion to
the Ti scaffold and load antibiotics. Common examples include dopamine [107], chitosan [139],
gelatin [140], hyaluronic acid [141], and a variety of organic polymers [123,142–144]. Yavari
et al. [140] applied multiple layers of gelatin- and chitosan-based coatings containing
vancomycin and verified that the coating was almost completely degraded after 8 weeks.
This timely biodegradation ensures the release of high doses of antibiotics during the
perioperative period, while minimizing the risk of antibiotic resistance caused by long-
term exposure to sub-MIC doses of antibiotics. Ghimire et al. [145] found that chitosan-fixed
Ti implants significantly increased the sensitivity of adherent bacteria to antibiotics. Various
innovative coatings, such as silk fibroin [146], bacterial cellulose [147], and phase-transited
lysozyme [141], have also been proposed. Drug release from this conventional coating is
continuous regardless of the occurrence of IAIs. In recent years, intelligent antimicrobial
coatings have gradually emerged [148]. When the implant is invaded by bacteria and IAIs
occurs, it is stimulated by temperature [149], pH [150], and electrical signals [151] to release
antibiotics. Thus, the unnecessary release of antimicrobial agents in the uninfected state is
avoided, and the risk of bacterial resistance is minimized.

Various processing and assembly methods have been explored that need to be suit-
able for customized scaffolds with complex shapes to ensure the continuous release of
antibiotics. These include electrophoretic deposition (EPD) [128,143,146], electrospray
deposition [123], covalent binding, layer-by-layer self-assembly [124,152], and electrospin-
ning [142]. The advantage of EPD is that it can simply add a variety of antibacterial agents
(such as antibiotics and nanoparticles) into different hydrogels and control the thickness
and uniformity of the coating [143]. Given the hydrophilicity of antibiotics, EPD is a good
approach. Bakhshandeh et al. [128] prepared chitosan and gelatin coatings in this way,
and the antibiotics could be continuously released at a concentration higher than MIC for
21 days, thus achieving a long-term and highly effective bacteriostatic effect. Jahanmard
et al. [142] applied antibiotic-loaded poly(ε-caprolactone) (PCL) and poly‘1q‘(lactic acid-co-
glycolic acid) (PLGA) nanofiber coatings to lattice Ti implants by means of electrospinning.
In this approach, the combination of specific drug–polymer interactions with bi-layer
structures is crucial to prolong the inhibitory drug concentration, and, for the first time, it
was shown that the antibacterial effect can last more than 6 weeks, preventing the early and
delayed onset of IAI (Figure 7). Layer-by-layer self-assembly technology has great advantages
in the stable fixation and continuous release of antibiotics. The self-assembled membrane
prepared by Vaithilingam et al. [152] released less than 60% of the drug after 6 weeks.
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with permission from ref. [142]. (a) The structure of the bi-layer nanofiber filled with PCL/Van as the inner layer and
PLGA/Rif as the outer layer. (b) The structure of the core–shell nanofiber is composed of PCL/Van in the core and PLGA/Rif
in the shell. The core–shell structure was verified by transmission electron microscope. Cumulative release of Van (c) and
Rif (d) from three different nanofiber-filled lattice structures within 6 weeks. (Abbreviations: PCL, poly(ε-caprolactone);
PLGA, poly‘1q‘(lactic-co glycolic acid); Van, vancomycin; Rif, rifampicin.).

The traditional view is that antibiotics are not cytotoxicity, and most antibiotic coatings
demonstrate good biocompatibility [128]; however, Sukhorukova et al. [139] found that
a standard dose of gentamicin (40 mg/mL) had short-term toxicity at an early stage and
inhibited the proliferation of osteoblasts. Because the strong antimicrobial activity due to
early rapid drug release compromises biocompatibility, caution is needed when using high
concentrations of antibiotics.

4.2. Antibacterial Active Metal
4.2.1. Silver

In order to improve the antibacterial properties of AM implants, Ag has been widely
studied for its broad-spectrum antibacterial activity and low toxicity to mammalian
cells [153]. Table 1 shows the antibacterial effect of the Ag coating prepared on AM
implants by different methods.

The toxic effects of Ag on microorganisms are attributed to the production of Ag
ions [154]. Ag ions produce three main mechanisms of antibacterial action [155]: (1) Ag+-
induced direct membrane damage, through which Ag+ can cause physical damage to the
membrane and interact with sulfur-containing membrane proteins [156]; (2) through the
reactive oxygen species (ROS) related to Ag+, wherein the concentration of ROS is not
related to the form of Ag, but is mainly related to the final concentration of Ag+ [157]; (3) the
cells uptake Ag+ as a result of membrane perforation, resulting in the interruption of ATP
production and the inhibition of DNA replication [155]. Compared with Gram-positive
bacteria, Ag+ has faster, longer, and more effective bactericidal effects on Gram-negative
bacteria [106,108,158]. This may be due to the existence of a thick peptidoglycan layer in S.
aureus, which can inhibit the transport of Ag ions through the cell membrane and has a low
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sensitivity [28]. Because of Ag’s various antibacterial mechanisms, it is not easy to appear
drug resistance, and it even has a strong antibacterial effect against MRSA [46].

To construct multifunctional porous implants, Ag ions are often combined with surface
topological modification techniques to improve the osteogenic properties, as is the case for
anodized TNT loaded with Ag [46,159]. Plasma electrolytic oxidation (PEO) can completely
disperse and firmly adhere Ag nanoparticles (AgNPs) to the surface of the implant in a
very short time by adding AgNPs into the electrolyte. AgNPs are encapsulated in an in-
depth growth oxide layer to prevent the free circulation of AgNPs in the blood. The oxide
layer causes AgNPs to become completely fixed, which can further prevent the potential
nanotoxic effects [46]. Ag usually exists in the form of Ag2O in PEO coatings. Gao et al.
prepared TNT arrays embedded with Ag2O nanoparticles on the surface of titanium using
magnetron sputtering and anodic oxidation. Compared with the direct incorporation of
Ag+ into TNT, the Ag+ release rate of Ag2O was slower and the biocompatibility was
better [106]. In addition to surface topological modification, composite biological coatings
such as multifunctional hydrogels [160], polydopamine [108], chitosan [139], calcium
phosphate [126], or silk protein [161] can be used to further enhance the biocompatibility
of implants. Devlin-Mullin et al. [162] coated the surface of SLM 3D Ti scaffolds with an
Ag nanolayer using atomic layer deposition, which produced good antibacterial properties
and biocompatibility in vitro and in vivo. It also promoted angiogenesis and osteogenesis
after implantation in rat tibia.

It is very important to improve antibacterial effects and prolong the anti-infection time,
as it takes a long time (3 months) to achieve normal osseointegration. AM porous scaffolds
and surface topological modification increase the depth of the reservoir, thereby increasing
the ability to immobilize antimicrobial agents [108]. On this basis, compared with simple
solution soaking [163], electrodeposition [159] and polydopamine-assisted coating [108]
can form an Ag coating with stronger adhesion properties, providing Ag ion release
for longer, and enhancing biocompatibility and the antibacterial properties. Shivaram
et al. [159] prepared Ag coatings using electrodeposition and reported the most persistent
in vitro release of Ag+ to date (27 weeks), with the release of Ag+ being within the potential
toxicity limit of cells of 10 ppm (g/mL). In vivo experiments at 12 weeks showed good
osteointegration properties and biocompatibility, but the long-term antimicrobial effects
were not reported. Polydopamine (PDA) is a mussel-inspired multifunctional material,
which can be deposited in situ onto TiO2 via covalent cohesion. It can also chelate and
reduce noble metal ions, inhibit the oxidative dissolution of AgNPs, and facilitate the long-
term sustained dynamic release of Ag+. In this way, the rigid TiO2/PDA/Ag coating can be
easily constructed on Ti [164]. Jia et al. [108] achieved an ultra-high loading capacity and a
sustained release of Ag+ through Mao, PDA, and Ag deposition. The antibacterial activity
of scaffolds against planktonic/adherent bacteria (Gram-negative and Gram-positive) and
even existing biofilms lasted for 12 weeks.

The synergistic effects of Ag and antibiotics on biofilm destruction have been observed.
For instance, Ag can enhance the antibacterial activity of antibiotics. As Ag ions increase
bacterial membrane permeability (even at sublethal concentrations), drug-resistant bacteria
become sensitive to antibiotics [165]. AgNPs can promote free Ag+ and antibiotics to
kill biofilm bacteria through degrading the main components (polysaccharides, proteins,
and nucleic acids) of the biofilm [108,166]. The special combination of Ag and antibiotics
slows the release of the two drugs and avoids an initial sudden release. Furthermore, the
release rate of each bactericide depends on the presence of other antibacterial components,
such as Ag ions and antibiotics. The eradication of planktonic bacteria and adherent
bacteria confirmed the synergistic effect of Ag and antibiotics. Moreover, reducing the drug
concentration is beneficial in order to avoid the toxicity from Ag ions or antibiotics [128,158].
The slow release of Ag+ provides very good antibacterial protection after the depletion of
the antibiotic reservoirs [158].

Many in vitro antibacterial studies show that Ag ions have good antibacterial activ-
ity against bacteria and biofilms; however, Ag ions are somewhat toxic to mammalian
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cells, such as human mesenchymal stromal cells (hMSCs) [163], osteoblast-like cells [128],
and macrophages [167]. The early explosion of Ag ions may lead to osteoblast toxicity;
however, in the later stage, the toxicity is weakened when the Ag ion concentration is
reduced, and the proliferation activity of osteoblasts is enhanced, which can offset the side
effects in the early stage [108,161]. Two different outcomes were found when Ag-loaded
chitosan-coated implants were implanted into the body. In the absence of infection or a
low bacterial challenge, the host reaction can overcome the cytotoxicity of Ag, exhibiting
a good antibacterial effect. When the host faces a high bacterial challenge, 0.1–1 µm Ag
particles trigger inflammation and are released from the implant surface, which mediates
local over-inflammation; kills neutrophils, so there is no antibacterial effect; and even
aggravates infection-mediated bone remodeling [139]. Therefore, further in vivo studies
are needed before Ag-coated implants will be ready for clinical use.

Table 1. The antibacterial effect of Ag coating prepared on AM implants.

Implant AM
Technology Microorganism Coating

Technology Result Duration Reference

Ti6Al4V SLM MRSA

PEO using
electrolytes

based on Ca/P
species and

AgNPs

Release of Ag
ions;

In vitro,
antibacterial

behavior
against MRSA;

Ex vivo, murine
femoral

infection model

4 weeks;
24 h;
NR

[46,168,169]

Ti6Al4V EBM E. coli and S.
aureus

MAO and
PDA/Ag

treatments

In vitro,
antibacterial

behavior
against E. coli
and S. aureus

both planktonic
and in biofilm

12 weeks [108]

Ti6Al4V EBM S. aureus

Electrophoretic
deposition of

Ag and calcium
phosphate

nanoparticle
layers

In vitro,
antibacterial

behavior
against S.

aureus

17 h [126]

Ti SLS E. coli, S. aureus
and N. crassa

TiCaPCON-Ag
films by

magnetron
sputtering and

loaded with
gentamicin and
amphotericin B

In vitro,
antibacterial

behavior
against E. coli, S.

aureus and N.
crassa

3 days [158]

Ti LENS NA

Anodized TNT
followed by

electrodeposi-
tion of

Ag

Release of Ag
ions 27 weeks [159]

Ti DMP S. aureus

AgNO3 were
mixed with

chitosan
followed by

EPD

In vitro,
antibacterial

behavior
against S.

aureus;
In vivo, tibia

intramedullary
implant model
inoculated with

S. aureus

1 week;
NR [139]



Coatings 2021, 11, 668 14 of 26

Table 1. Cont.

Implant AM
Technology Microorganism Coating

Technology Result Duration Reference

Ti6Al4V EBM S. aureus

Hydrothermal
growth of a

titanate layer,
on which

nanosilver
encapsulated

silk fibrin
multilayers

were anchored
through

PDA-assisted,
silk-on-silk

self-assembly

In vitro,
antibacterial

activity against
clinical

pathogenic S.
aureus both

planktonic and
in biofilm

6 weeks [161]

Ti SLM S. epidermidis
and MRSA

Atomic layer
deposition of an
Ag nanolayer

In vitro,
antibacterial

behavior
against S.

epidermidis and
no antibacterial
activity against

MRSA;
In vivo,

vascularization
and osseointe-

gration
tendency

4 days;
NR [162]

Ti DMP S. aureus

Anodized TNT
followed by
soaking in

AgNO3
solution

In vitro,
antibacterial

behavior
against S.

aureus

2 weeks [163]

Ti DMP S. aureus

Vancomycin
and AgNO3
were mixed
with the Chi-
tosan/gelatin

compound
followed by

EPD

In vitro,
antibacterial

behavior
against S.

aureus both
planktonic and

in biofilm

3 weeks [128]

Abbreviations: SLM, selective laser melting; EBM, electron beam melting; SLS, selective laser sintering; LENS, laser engineered net shaping;
DMP, direct metal printing; MRSA, methicillin-resistant S. aureus; PEO, plasma electrolytic oxidation; MAO, micro-arc oxidation; EPD,
electrophoretic deposition; AgNPs, Ag nanoparticles; PDA, polydopamine; TNT, titania nanotubes; NR, never report.

4.2.2. Copper

Cu is a potential broad-spectrum inorganic antimicrobial agent. It is a necessary
trace element in the human body and participates in the synthesis of enzymes. Cu is less
cytotoxic than Ag [170] and can be metabolized by the human body. Therefore, Cu may
be an effective substitute for Ag. It not only exhibits antibacterial activity against E. coli
and S. aureus [171], but also demonstrates antibacterial and antibiofilm properties against
the oral-specific bacteria Streptococcus mutans and Porphyromonas gingivalis [172], which is
beneficial for using in dental materials. However, high doses of Cu can cause cytotoxicity.
It is important to find the optimal concentration of Cu ions that can inhibit bacterial growth
while avoiding cytotoxicity. Fowler et al. [173] studied the effect of Cu on the viability of
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MC3T3 cells and Staphylococcus epidermidis in vitro, and the minimum inhibitory concentration
of Cu ions in these two species ranged from 9 × 10−5 to 9 × 10−6 g/mL. As a result of species-
specific and in vivo and in vitro differences, further studies are needed. At appropriate
concentrations, Cu-modified implants also exhibited anti-inflammatory, proangiogenic,
and osteogenic effects [174].

The antimicrobial mechanism of Cu can be divided into two elements: The direct
mechanism and the indirect mechanism. The direct bactericidal mechanism involves
Cu ions interacting with bacteria or biofilms. A large number of Cu ions flow into the
bacteria, blocking the cell respiration chain and disturbing DNA synthesis. Then, a large
amount of ROS are produced, leading to changes in the permeability of bacterial cell walls
and leakage of the bacterial contents [175]. Cu inhibits the expression and transcription
of positive biofilm regulators such as sae and agr, which inhibits biofilm formation [176].
The indirect bactericidal mechanism involves Cu activating the bactericidal ability mediated
by macrophages. Cu can improve the ability of macrophages to uptake and kill bacteria,
and it kills bacteria through the ROS pathway [177]. The concentration of copper ions
required for the activation of macrophages is far lower than that required by the direct
bactericidal mechanism, which can effectively help to avoid the cytotoxicity caused by
high concentrations.

Similar to the method used for the preparation of the Ag coating, ion implanta-
tion [178], PEO [16], sol-gel [179], and electrodeposition [180] are applied in the preparation
of copper coatings. For AM implants with complex geometries, PEO [16] and electro-
chemically assisted deposition [180] seem to be the superior methods. Interestingly, the
application of copper as an antibacterial active substance in implants is not only through
surface modification; copper-containing titanium alloy has also received much interest
from researchers [181–183]. In the additive manufacturing process, Cu is added into the
material by in situ alloying; thus, the process flow is simplified to a single-step process.
In addition, it can help to avoid the wear and tear associated with surface coating and
is expected to provide a lasting antibacterial effect. The antimicrobial properties of AM
copper-containing titanium alloy are related to the Cu content, AM processing parame-
ters, and heat treatment [181,183,184]. The majority of researchers consider 5 wt.% Cu to
be appropriate for antibacterial function [184]. Furthermore, the in situ alloying of Cu
increases the hardness and compressive strength of the material [185], which maintains
good corrosion resistance in simulated body fluids [184].

In the preparation process, the phase transformation of antibacterial active metals
inevitably occurs, such as during electrochemical treatments or powder processing at high
temperatures, which may lead to the oxidation of the metal. Shimabukuro et al. [186]
embedded Cu in the TiO2 layer on the implant surface using MAO. They found that Cu
existed in the form of Cu2O and exerted an antibacterial effect. Therefore, it is necessary to
further explore the antibacterial effects of metal oxides. The oxides of Cu are Cu2O and
CuO. Zhao et al. mixed Cu2O nanoparticles of different concentrations into the ceramic
oxide layer using MAO. They found that the addition of Cu2O improved the antimicrobial
performance of the MAO coating in a dose-dependent manner. It has also been demon-
strated that Cu+ is the key factor in terms of the antibacterial properties [187]. By comparing
the minimum inhibitory concentrations and minimum bactericidal concentrations of Cu2O
and CuO against four kinds of periimplantitis-related bacteria, it can be inferred that Cu2O
has a superior antibacterial activity to CuO [17].

4.2.3. Zinc

Compared with Ag, Zn has been less studied as an antimicrobial active substance, but
its interesting biological effects have been gradually attracting attention. Zn is an essential
trace element in the human body, which is involved in a variety of physiological processes,
such as bone metabolism, cell signaling pathways, and immune regulation. Zn regulates
the expression of bone morphogenetic protein gene, increases the activity of alkaline
phosphatase, inhibits the bone resorption of osteoclasts, and induces the differentiation of
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osteoblasts, thus promoting bone formation. In addition, Zn ions and their nanoparticles
have good antibacterial properties. Zn ions (positive charge) and the cell wall of bacteria
(negative charge) are attracted to each other by electrostatic interaction, resulting in the
destruction of the bacteria cell wall. Moreover, Zn ions enter the bacteria and interfere
with DNA replication [188]. Not only does Zn itself have the ability to kill bacteria directly,
but it can also inhibit bacterial infection by regulating host immune defenses [189]. Wang
et al. prepared ZnO films on a titanium surface using magnetron sputtering. The results
of the in vivo experiments demonstrated a stronger antibacterial effect than in the in vitro
experiments, indicating that Zn further enhanced the antibacterial effect by regulating the
immune system response in vivo.

Similar to Ag and Cu, electrochemical deposition [190], MAO [191], and layer-by-layer
self-assembly [192] are used to introduce Zn onto the implant surface. Liu et al. [192]
constructed a bio-multilayer structure containing Zn ions using the self-assembly tech-
nique, which promoted the biological activity and function of osteoblasts and produced
antibacterial activity at the same time. Different from the inert surface of pure titanium, the
Zn-containing surface has the ability to induce osteogenesis while avoiding IAIs, which is
a promising modification method for biological implants.

In the Zn-doped TiO2 layer prepared using EPO, Zn mainly exists in the form of
ZnO. Surprisingly, when the MAO coating containing Zn was immersed in normal saline,
the chemical state of the surface Zn changed from Zn2+ to ZnO, leading to an increase
in antibacterial activity [191]. ZnO nanoparticles have attracted much attention because
of their biocompatibility, low toxicity, chemical stability, antimicrobial activity, and their
selective killing effect on normal cells and cancer cells. In particular, the small size effect of
ZnO nanoparticles plays an important role in their antibacterial behavior, inhibiting the
growth of a variety of bacteria [193,194].

4.2.4. Other Metals

Other metals such as gold (Au) [194], magnesium (Mg) [195], iron (Fe) [196], and
their oxides also exhibit antibacterial effects. Au has stable chemical properties, good
biocompatibility, and has the potential to promote the proliferation and differentiation
of mesenchymal stem cells [197]. In addition, gold nanorods have special photophysical
properties, which produce photothermal effects under the excitation of near-infrared light
and exhibit antibacterial activity against a variety of bacterial strains [198]. The superpara-
magnetism of iron oxide nanoparticles makes targeted drug delivery possible. Moreover, it
enables iron oxide nanoparticles to target the biofilm in the infected site and have a strong
killing effect on drug-resistant strains [196].

4.2.5. Comparison

Ag, Cu, and Zn are the most commonly used inorganic antimicrobial agents. A
comparison of their biological effects is necessary to improve their various applications.
The MIC of Cu and Zn is much higher than that of Ag, with a difference of about two orders
of magnitude. The antimicrobial activity of Ag is higher than that of Cu and Zn, i.e., Ag
can produce a high level of antimicrobial activity at a lower concentration [16]. However,
Ag is more likely to cause cytotoxicity, and its half maximal inhibitory concentration (IC50s)
to osteoblasts MC3T3-E1 is only 2.77 µM, while Cu and Zn show good biocompatibility
in the appropriate concentration range, with IC50s of 15.9 and 90.0 µM, respectively [199].
A combination of antimicrobial agents provides a way to solve these two problems. The
combination of two or more antibacterial agents has a synergistic antibacterial effect and
reduces the minimum inhibitory or bactericidal concentration [169,180,200]. For exam-
ple, the combination of Ag and Zn can reduce the required concentration of Ag by two
orders of magnitude, while maintaining the same antibacterial activity, greatly reducing
cytotoxicity [169]. Strontium (Sr), a metal ion with osteogenic activity, was doped with
Ag on the implant surface. It not only exhibited strong synergistic antibacterial behavior
against drug-resistant strains, but also polarized macrophages (M2) through favorable
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immune regulation, thus further promoting the differentiation of preosteoblasts [168,201].
Shimabukuro et al. also investigated the biodegradation behavior of antibacterial active
metal surfaces and found that their antibacterial properties had a time transient effect.
When the antibacterial surface was soaked in normal saline for 28 days, the chemical states
of the antibacterial active elements changed separately, leading to completely different
changes in the antibacterial activity. The antimicrobial activity of the silver-coated speci-
mens was gradually weakened, and Cu showed no significant change, while Zn showed
enhanced antimicrobial activity [170].

Finally, it is important to note that although these antimicrobial active metals have
shown excellent antimicrobial efficacy, they have not been approved as antimicrobial active
ingredients in implants by the Food and Drug Administration (FDA) and Environmental
Protection Agency (EPA) due to their potential cytotoxicity. Extreme caution should be
exercised in the clinical application of these metal active ingredients until in vivo safety is
further determined.

5. Conclusions

AM technology is increasingly being applied in orthopedics and stomatology, and the
significant production freedom enables various innovative designs that cannot be achieved
by traditional manufacturing methods. Through AM topological design, the mechanical
properties and osteogenic properties of implants have been greatly improved. However,
further optimization is needed to produce clinical applications. It is necessary to apply the
surface modification technology of traditional solid titanium implants to the post-treatment
of AM implants. Kirmanidou et al. [202] summarized a variety of surface modification
methods to improve the mechanical properties, osteogenic properties, and antibacterial
properties of titanium implants. Whether these surface modification methods are suitable
for AM implants depends on whether they can be uniformly treated on surfaces with
complex geometrical shapes, such as anodizing, acid/alkali treatments, and other liquid
environments, in which surface modification methods are suitable. Sandblasting does not
produce uniform modification of internal and external surfaces and is not suitable for AM
implants with complex geometrical shapes.

In order to ensure the service life and suitability of AM Ti implants, antibacterial
activity is not inconsequential. In this paper, various recent antimicrobial strategies ap-
plied to AM Ti implants are reviewed; however, the design of structural and antimicrobial
coatings based on AM Ti implants remains a long way off. In the future, a balance between
mechanical properties [203], microstructures and cell response [204], osteogenic properties,
and antibacterial properties should be pursued in structural design. For antibacterial
coatings, the release kinetics of antibacterial drugs might be further improved to suppress
drug resistance and reduce the immune response caused by coating wear. The direct ma-
nipulation of AM technology to produce surfaces with inherent antimicrobial properties on
AM Ti implants is also extremely promising. On the one hand, the antibacterial strategies
of traditional Ti implants should be further applied to AM Ti implants, with emphasis on
the development of surface treatment technologies suitable for complex geometries. On the
other hand, novel and alternative strategies should be sought to combat IAIs, especially
through the development of AM technology to improve antimicrobial performance and
simplify the processing method. For the clinical application of these implants with bacteri-
cidal or bacteriostatic properties, and in order to improve the biocompatibility and prolong
the functional life of implants, further research is needed. In particular, in vivo trials are
necessary before clinical human trials can commence.
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