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Abstract: There is a significant interest in developing environmentally responsive or stimuli-responsive
smart materials. The purpose of this study was to investigate multi-function responsive cotton fabrics
with surface modification on the nanoscale. Three technologies including electrospinning technology,
interpenetrating polymer network technology, and cross-linking technology were applied to prepare
the multi-function sericin/poly(N-isopropylacrylamide)/Poly(ethylene oxide) nanofibers, which were
then grafted onto the surfaces of cotton textiles to endow the cotton textiles with outstanding stimuli-
responsive functionalities. The multi-function responsive properties were evaluated via SEM, DSC, the
pH-responsive swelling behavior test and contact angle measurements. The results demonstrate that
with this method, multi-function responsive, including thermo- and pH-responsiveness, cotton fabrics
were fast formed, and the stimuli-responsiveness of the materials was well controlled. In addition,
the antimicrobial testing reveals efficient activity of cotton fabrics with the sericin/PNIPAM/PEO
nanofiber treatments against Gram-positive bacteria and Gram-negative bacteria such as Staphylococcus
aureus and Escherichia coli. The research shows that the presented strategy demonstrated the great
potential of multi-function responsive cotton fabrics fabricated using our method.

Keywords: sericin; poly(N-isopropylacrylamide); cotton fabrics; electrospinning

1. Introduction

Textiles are versatile materials composed of natural or synthetic fibers, with a wide
range of applications [1,2]. With the global economy and technological advancements,
smart textiles [3–5] are one of the research hotspots in the field of textiles and garments.
Intelligent textiles are a sort of smart fabric or material which can be responsive to the
external environment or an outside stimulus in behavior, including electrical, chemical,
biological agents or physical temperature [6,7]. Currently, in order to introduce some kind
of advanced function or special performance, smart textile materials are often modified
by direct coating technology such as roll coating, the spraying method or deposition and
surface treatment approaches, such as plasma treatment technology, ultraviolet irradia-
tion [8], etc. These technologies are very useful and applied for smart textiles in improving
or introducing some kind of certain performance based on the concrete requirements in
actual applications. However, it should be mentioned that the utilization of traditional
coating technology often inevitably hides the original capabilities of fabrics. Additionally,
surface process techniques often concern a complicated process or environmental pollution
along with surface structure destruction. This inevitably leads to the degeneration of some
other characteristics of fabrics, such as tenderness, breathability and hygroscopicity.
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As a comparison, electrospinning technology [9] has shown enormous potential
such as filtration, separation [10,11], drug delivery of biomedical materials [12,13] and
intelligent fabric modification because of great advantages such as the smaller fiber di-
ameter, the higher porosity and permeability rate, large specific surface area, and high
mechanical capacity [14,15], as well as its effective approaches of synergizing the re-
quired functions of materials and outstanding performance of textiles. However, the
fabrics of intelligent modification with electrospinning technology are generally e-textiles
and pressure-sensitive fabrics [16,17]. Furthermore, the fabrics of intelligent modifica-
tion with electrospinning technology are generally e-textiles [18] and pressure-sensitive
fabrics [19]. Though coupling electrospinning technology to thermo-responsive poly-
mers such as poly(N-isopropylacrylamide) can effectively produce smart responsive
nanofibers [20–23], few studies use them to modify textiles. In addition, most thermo-
responsive textiles are conducted by coating smart polymers in industrial technologies.
Currently, the coating smart polymers are mainly prepared and applied in the form of three-
dimensional hydrogels with the shortcoming of smaller poriness and lower surface area and
response rate.

In our previous work [24], multifunctional mulberry silk fabrics were successfully
prepared with PNIPAM/chitosan/PEO nanofibers. The modified mulberry silk fabrics
represented brilliant temperature- and pH-susceptivity and antibacterial capabilities. This
prompted us to investigate other fabric applications such as cotton fabrics. Based on this,
we chose the sericin of the Antheraea pernyi silks as the main raw materials. This took full
advantage and improved the application of Antheraea pernyi silk sericin.

Here, we present a strategy for the fabrics, which brings some new ideas of modified
fabrics. First, we prepared a kind of thermo-responsive polymer hydrogel by blending
sericin/PEO solutions with N-isopropylacrylamide using an interpenetrating polymer
network technology. Second, we prepared thermo-responsive nanofiber materials through
electrospinning technology. Third, the modified cotton textiles that possessed temperature-
and pH-sensitivity were produced by using the nanofiber network. The properties of
the smart textiles were investigated and contrasted with those of the other samples. In
addition, the biological property of smart textiles was examined with an antimicrobial
activity test. This study suggests the potential of the temperature- and pH-responsive smart
textiles to tissue engineer support materials, medicine slow release materials and other
responsive materials.

2. Experimental Procedure
2.1. Materials

The raw materials (Antheraea pernyi silk cocoons, Liaoning Tussah Silk Institute Co., Ltd.,
Dandong, China) were applied to prepare the regenerated sericin (SS). N-isopropylacrylamide
(NIPAM, 98%, Aladdin Reagent, Shanghai, China), N,N,N′,N′-tetramethylethylenediamine
(TEMED, 99%, Aladdin Reagent, Shanghai, China), ammonium peroxodisulfate (APS,
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) and glutaric dialdehyde (GA,
25%, Kermel Reagent, Tianjin, China) were all analytical grade and used without further
purification. Poly(ethylene oxide) (PEO, Mw = 400,000 Da, Shanghai, China) was used
without further purification.

2.2. Preparation of the Sericin/PNIPAM/PEO Composite Spinning Solution

Antheraea pernyi is a wild nonmulberry silkworm species, which is a protein fiber and
composed of fibroin and sericin [25]. Antheraea pernyi silks were considered increasingly
for the textile and apparel industries [26] and medical applications [27] in recent years
for their excellent mechanical properties and biocompatibility. As previously reported,
regenerated sericin (SS) was extracted from Antheraea pernyi raw silk cocoons by using
LiBr extractive technique [28]. Then, the regenerated sericin and PEO were dissolved
in water under continuous magnetic stirring at 80 ◦C to prepare a mixed solution. The
concentrations of sericin and PEO were 6 wt.% and 15 wt.%, respectively. The monomer



Coatings 2021, 11, 632 3 of 12

solution (6.5 wt.%) was produced by putting the NIPAM monomer in distilled water and
the initiator agent (APS) was all mixed with the above sericin/PEO solution, respectively.
Then, the sericin/PNIPAM/PEO interpenetrating network blending spinning solution
was prepared by adding TEMED in an as-prepared mixed solution and stirred at 40 ◦C
for 1 h. The concentration values of the sericin, PEO and NIPAM were chosen by our
early investigator’s literature [24,29]. The formulations, conductivity and surface tension
of blending solution is shown in Tables 1 and 2, respectively. The HAAKE RheoStress
1 rheometer (25 mm diameter plate with 1 mm gap) was used to estimate the blending
spinning solution viscosity at room temperature under the increasing shear rate from 2 to
100 s−1 (see Figure 1).

Table 1. The formulations of the interpenetrating network blending spinning solution.

Code Sericin: NIPAM: PEO
(Volume Ratio)

Sericin
(mL)

NIPAM
(mL)

PEO
(mL)

APS
(mg)

5%TEMED
(uL)

1 25/45/30 5 9 6 1.36 27.2
2 40/30/30 4 3 3 0.45 9.1
3 55/15/30 11 3 6 0.45 9.1

Table 2. The conductivity and surface tension of the interpenetrating network blending spinning
solution.

Code Sericin: NIPAM: PEO
(Volume Ratio)

Conductivity
(mS/cm)

Surface Tension
(mN/m)

1 25/45/30 0.64 ± 0.15 43.5 ± 0.15
2 40/30/30 0.84 ± 0.15 47.7 ± 0.17
3 55/15/30 0.96 ± 0.12 46.4 ± 0.20
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Figure 1. Viscosity of the interpenetrating network blending spinning solution.

2.3. Fabrication of Electrospun Sericin/PNIPAM/PEO Nanofibers and Functionalization of
Cotton Fabric

Cotton fabric was pretreated by putting it into ultrasonic cleaners which contain
distilled water for 0.5 h at room temperature and then dried in the air. The primary
sericin/PNIPAM/PEO spinning solutions were loaded into a syringe equipped with a
0.5 mm diameter metal needle and electrospun on the prepared cotton fabric using an
electrospinning machine. The functional cotton fabric was prepared by putting the above
cotton fabric with nanofibers on the airtight container with glutaraldehyde vapor at room
temperature for 24 h for the further cross-linking. The glutaraldehyde showed adequate
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safety, having been well applied in the field of biological medicinal materials [30,31]. The
illustration of the functional cotton fabric is shown in Figure 2.
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Figure 2. Schematic illustration of the (A) fabrication and (B) preparation of multifunctional cotton fabric.

The machine (KH08, Jinan, China) was purchased from Jinan Liangrui Technology
Co., which had a high voltage direct current (HVDC) and a syringe pump. It was used
to prepare the electrospun nanofibers. In this work, all of the electrospinning process
was performed at 65% relative humidity (RH), room temperature. The electrospinning
parameters are shown as follows: applied voltage 30 kV, working distance 15 cm and flow
rate 0.03 mL/h. The parameters for the electrospinning experiments were chosen by our
early investigator’s literature [24,29]. The nanofibers were deposited at about 1 h and
obtained the mats.

2.4. Characterization
2.4.1. Scanning Electron Microscopy

The microstructure of the nanofiber mats and cotton fabric was studied by scanning
electron microscope (JSM-IT100, JEOL Ltd., Tokyo, Japan) with acceleration of voltage
20 KV. Before the imaging process, all the samples were sputter-coated with gold.

2.4.2. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FT-IR, Tensor-37, Bruker, Berlin, Germany)
was used to determine the characteristics of the microstructure of NIPAM, sericin, PNI-
PAM, sericin/PNIPAM/PEO nanofibers and the functionalized cotton fabric with the KBr
technique at wavelengths ranging between 400 cm−1 and 4000 cm−1. The samples were
obtained in a vacuum dryer for 4 h before acquiring the spectra.
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2.4.3. Differential Scanning Calorimetry

Differential scanning calorimeter (DSC 7, Perkin Elmer, Waltham, MA, USA) was
applied to evaluate thermal behaviors of untreated cotton fabric and functionalized cotton
fabric under nitrogen with the flow rate at about 20 mL/min. The swollen sample weight
was about 10 mg. The above samples were put in the aluminum sample holder and frozen
below −20 ◦C. The samples were operated at 0–50 ◦C, 2 ◦C min−1. The samples performed
heating/cooling cycles three times.

2.4.4. Contact Angle Measurements

Static water contact angle tests were accomplished by using a drop shape analyzer
(PT-705, Shanghai, China) with the needle method at flow rate of 1.0 µLs−1 in 16% of
relative humidity and temperature ranging from 15 ◦C to 45 ◦C. The Young Laplace drop
profile fitting method was applied to evaluate the static contact angle results. The needle
specification is shown as follows: diameter 0.5 mm and the water droplet volume ~5 µL.
The standard deviation of the measurement series might create the error bars.

2.4.5. pH-Responsive Swelling

Sericin is an inherently weak amphipathic polyelectrolyte with the acidic side and
alkaline side base, which makes it sensitive to pH [32,33]. The swelling behaviors of
sericin/PMIPAM/PEO hydrogels were conducted within a variety of pH values (1.0~11.0),
in view of the crucial aspect of the parameters in responsiveness.

In order to determine the swelling ratio, the dried samples were immersed in various
pH buffers for 24 h in the temperature 15 ◦C and 37 ◦C that completes with the hydrogels’
low critical solution temperature range. Before swollen sample mass testing, it was neces-
sary to remove the surface water of specimens. The average of five samples was used to
obtain the final results. The swelling ratio (SR) was calculated as follows [34]:

SR(%) = [(Wt −Wd)/Wd] × 100 (1)

where Wt and Wd are the masses of the swollen sample and dried sample, respectively.

2.4.6. Antimicrobial Activity Measurements

The antibacterial activity of samples was investigated against Gram-positive bacteria
and Gram-negative bacteria such as Staphylococcus aureus and Escherichia coli on the basis
of the AATCC 100 test method and GB/T 31713-2015. Before the assay, all samples were
made into small pieces at about 0.5 × 0.5 cm2. Additionally, UV exposure was applied to
sterilize the above samples at about 30 min. The above samples were put, respectively, in
the bacterial suspension by using sterile forceps and then immersed in a flask including
phosphate-buffered saline at 0.3 mM/70 mL. The phosphate-buffered saline consisted of
monopotassium phosphate and the cell culture solution. The cell concentration was about
1 × 105–4 × 105 (CFU)/mL. We shook the above flask on a rotary shaker at 150 rpm, 24 ◦C,
1 h. The 0.5 mL of culture solution was obtained, respectively, from incubated samples
before and after shaking for 1 h, and then diluted and placed on the agar plates that were
cultivated at 37 ◦C, 1 h. The inhibitory rate (%) was decided as follows [35]:

R(%) = [(B − A)/B] × 100 (2)

where R, B and A were the percentage of bacterial reduction and the bacterial colonies
before and after shaking for 24 h, separately.

3. Results and Discussion
3.1. SEM

The surface morphology of the sericin/PNIPAM/PEO nanofibers and functionalized
cotton fabric under optimal conditions was decided by SEM (see Figure 3). The final images
of the sericin/PNIPAM/PEO nanofibers indicated that the fibers were uniform and contin-
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uous without any bead formation (Figure 3a). As shown in Figure 3a, there was breakage
in nanofibers when the spinning solution had more NIPAM. The cause might be that the
increasing NIPAM caused the bad mechanical properties of nanofibers. This indicates
that sericin, NIPAM and PEO were well blended. Based on the morphological analysis of
the functionalized cotton fabrics (Figure 3b,c), the sericin/PNIPAM/PEO nanofibers were
overlapped and fixed on the surface of the cotton fabric formation bilayer structure. The
cross-linked reaction mechanism between sericin and cotton fabric is shown in Figure 3d.
The FTIR spectra analysis also confirms the chemical cross-linking reaction of the cotton
fabrics and sericin in the presence of glutaraldehyde [36]. The results of SEM showed
that the functionalized cotton fabric was also successfully prepared by a combination of
electrospinning technology and an interpenetrating polymer network technology.
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3.2. FT-IR

Figure 4A presents the Fourier transform infrared spectroscopy of the NIPAM and
PNIPAM powders ranging from 2000 cm−1 to 1000 cm−1. The disappearance of the
1622 cm−1 (–C=C–) peak showed the success of the synthesis of PNIPAM between NIPAM
monomers (Figure 4A(a)). The 1652 cm−1 connected with the C=O, the 1549 cm−1 was
related to the C–N stretching vibration and N–H flexural vibration, and the 1245 cm−1

corresponded to the C–N–H of PNIPAM [37]. FT-IR was employed to investigate the
relationship between sericin/PNIPAM/PEO nanofibers and cotton fabric. The H–C=N–
and H–C=C were formed by the crosslinking reaction between GA and sericin and cotton
fabric, respectively.

From Figure 4B(e), it could be observed that the characteristic absorption bands at
3084 cm−1 could be contributing to the H–C=C group, which proved the cross-linking
reaction between the –OH group on cotton and GA. The characteristic band at 1635 cm−1

corresponded to the H–C=N– stretching vibration of the modified cotton fabric. This
suggested that the cross-linking reaction between the sericin and GA occurred. The –CHO
produced a characteristic band at 1713 cm−1. As we know, there was no extra GA in the
resulting modified cotton fabric. Thus, the GA could make the reaction with the cotton
textiles and sericin, separably. It was indicated that the glutaraldehyde could be a “bridge”
that can crosslink the cotton fabric and the nanofibers [33,38].
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3.3. Thermosensitive Behavior

Figure 5A shows the schematic illustration of PNIPAM involving the hydropho-
bic/hydrophilic transformation. PNIPAM interacted preferentially with water molecules
and formed a hydrogen bond in the temperature range below LCST [39]. When increasing
the temperature above LCST, PNIPAM molecules gradually turn into hydrogen bonds
between polymer molecules. Thus, it was severely restricted for each molecule’s mobility
because of the hydrogen-bonded polymer network.

The surface wettability of functionalized cotton fabric was measured with different
temperatures by using the static contact angle of water droplets (5 µL). Figure 5B exhibits
that the static water contact angle of functionalized cotton fabrics increased apparently with
the increasing temperature of the fabrics, demonstrating a hydrophilicity/hydrophobicity
change of functionalized cotton fabrics. The wettability of functionalized cotton fabrics
became a hydrophobic state and the contact angle increased up to the maximum at about
95 ± 1.5◦, with the temperature improved.

Figure 5C shows the differential scanning calorimetry (DSC) thermogram curves of
modified cotton fabric and cotton fabric. The initial temperature was considered as the
lower critical solution temperature (LCST) value that was estimated with the intersection
points of the two tangents (see Figure 5). It could be seen that the LCST of nanofibers and
modified cotton fabric is 32.03 ◦C and 34.47 ◦C, respectively. Additionally, there was no
phase transition peak in common cotton fabric. It was shown that the LCST of modified
cotton fabric is between 30 ◦C and 36 ◦C, close to human body temperature.
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Figure 5. Representation of (A) the hydrophobic–hydrophilic phase transition of PNIPAM hydrogels; (B) Contact angle
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data are shown as mean ± standard deviation).

3.4. pH-Responsive Swelling Behaviors

In Figure 6, the images show that sericin/PNIPAM/PEO hydrogels had different
swelling ratio changes according to the pH swelling medium at temperatures of 15 ◦C and
37 ◦C. From Figure 6, it was shown that all the hydrogels presented the same trends and
temperature-sensitive property under the pH test range. The swelling ratio of hydrogels
was much higher at 15 ◦C than at 37 ◦C, which showed a temperature-sensitive characteris-
tic. This was largely due to the network shrinking of PNIPAM when the temperature of the
solutions was above LCST (37 ◦C). The swelling ratio of sericin/PNIPAM/PEO (55/15/30)
hydrogel decreased a little with a rise in temperature. The minimum swelling ratio of
hydrogel appeared at about pH 4.0. This is due to the non-charged and hydrophobic form
of sericin side chains. The increasing swelling ratios of sericin/PNIPAM/PEO (55/15/30)
hydrogel appeared with reducing the pH buffer solutions down to 4.0 or increasing it above
4.0. This was because the –NH2 of sericin was protonated into –NH3

+ and –COOH of
sericin charged to –COO− and then enhanced the electrostatic repulsion of interpenetrating
network hydrogels.

The results showed that the swelling ratio was lower in all the specimens at pH 4.0
and pH 8.0, no matter what the composition of the hydrogels was. Additionally, there were
better swelling ratios under acid or alkaline conditions.
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With the increasing sericin concentration, the swelling ratios increased at 15 ◦C
(Figure 6A), and the order of swelling ratios was a complete transformation at 37 ◦C
(Figure 6B). Along with the increase in sericin content, the number of –COOH and –NH2
was increased and resulted in the enhancement of the electrostatic repulsion of hydrogel.
As can be seen, the sericin/PNIPAM/PEO hydrogels showed simultaneous pH and tem-
perature sensitivity. It was an effective way to adjust the equilibrium swelling ratio and the
swelling property of the hydrogels by changing the mixed proportion of hydrogels.

3.5. Antimicrobial Activity

The antibacterial activity of samples was evaluated against Gram-positive bacteria
and Gram-negative bacteria such as Staphylococcus aureus (ATCC 6538) and Escherichia coli
(ATCC 8739). The antimicrobial capability of the untreated cotton fabric and functionalized
cotton fabric is shown in Table 3. The functionalized cotton fabrics exhibited antimicrobial
property against the above microorganisms. The sericin/PNIPAM/PEO nanofibers could
inhibit the growth of bacteria. All functionalized cotton fabrics showed lower antibacterial
efficiency against E. coli and higher antibacterial property against S. aureus. It was revealed
that the antibacterial efficiency of the functionalized cotton fabrics exhibited the highest
antibacterial efficiency up to 85% of E. coli and 90% of S. aureus. This may be due to the fact
that the sericin could control the free movement of the bacteria, inhibited respiration and
finally rose to the death of bacteria. The sericin molecules had the electrostatic attraction
with cell membranes of bacteria. The electrostatic attraction would decrease bacterial
conductivity, reduce cell membrane permeability and partially inhibit metabolism. As
a result, the intracellular composition containing water and protein was discharged and
finally led to the death of bacteria [40].

Table 3. Antibacterial characteristic of cotton fabrics against S. aureus and E. coli bacteria.

Sample

E. coli S. aureus

Surviving Cells (CFU/mL) Surviving Cells (CFU/mL)

1 2 3 4 5 1 2 3 4 5

Untreated
cotton fabric 251,000 232,000 243,000 235,000 250,000 241,000 234,000 228,000 221,000 230,000

Functionalized
cotton fabric 27,000 36,000 26,000 18,000 19,000 5000 7000 9000 14,000 12,000

Reduction(%) 89.24 84.48 89.30 92.34 92.40 97.93 97.01 96.05 93.67 94.78
Mean ± SD 89.55 ± 3.2% 95.89 ± 1.7%
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4. Conclusions

In conclusion, a simple and effective strategy has been designed and proved for the sur-
face modification of cotton textiles with multi-function responsiveness. The multi-function
modified cotton fabric showed obvious temperature- and pH responsiveness behavior
and antibacterial activity. The swelling ratio decreased significantly under the increasing
temperature to the LCST of the hydrogels. The low values of equilibrium swelling ratios
appeared at about pH 4.0 and 8.0. This is due to the salting-out effect and the isoelectric
point (PI) of SS. The bacterial decline of multi-function modified cotton textiles against
E. coli and S. aureus was all above 89%. Through the different combinations of textiles
and smart polymers via electrospinning technology, the strategy shows robust advantages
for the preparation of textiles with multi-function responsive properties. Moreover, this
is also a simple, rapid and green environmental protection method for the fabrication of
multi-functional fabrics. This study may provide the strategy of modified fabrics that can
possess environmentally responsive or stimuli-responsive properties and that are supposed
to be prospective materials, especially in smart and functional textile applications.

Here, this study is just a first step for the preparation of smart fabrics with nanofibers
as a finishing technology. However, we would perform comprehensive functional testing
for the real applications. Other applications of sericin/PNIPAM-based nano-modified
cotton textiles such as mechanical properties, comfort capabilities and biocompatibility
testing, and cell cytotoxicity tests will be shown in the following manuscripts.
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