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Abstract: To obtain high-quality n-type doped β-Ga2O3 films, silane was used as an n-type dopant
to grow Si-doped β-Ga2O3 films on (100) β-Ga2O3 substrates by metal-organic chemical vapor
deposition (MOCVD). The electron concentrations of the Si-doped β-Ga2O3 films obtained through
experiments can be stably controlled in the range of 6.5 × 1016 cm−3 to 2.6 × 1019 cm−3, and the
ionization energy of Si donors is about 30 meV, as determined by analysis and calculation. The full
width at half maxima of the rocking curves of the (400) crystal plane of all doped films was less than
500 arcsec, thus showing high crystal quality, while the increase of the doping concentration increased
the defect density in the β-Ga2O3 films, which had an adverse effect on the crystal quality and surface
morphology of the films. Compared with heteroepitaxial Si-doped β-Ga2O3 films, homoepitaxial
Si-doped β-Ga2O3 films exhibited higher quality, lower defect density, and more stable electron
concentration, which make them more conductive for preparing Ga2O3-based power devices.

Keywords: β-Ga2O3; MOCVD; homoepitaxy; SEM

1. Introduction

Ga2O3 is an ultra-wide band gap semiconductor material. As the most stable phase
of Ga2O3, β-Ga2O3 has become one of the most promising semiconductor materials for
power devices due to its band gap of 4.9 eV, its breakdown electric field of 8 MV/cm,
and its Barriga figure of merit of 3444 [1]. In addition, β-Ga2O3 has high transmittance
to UV–visible light and sensitivity to a variety of gases [2], which makes β-Ga2O3 at the
forefront of development in the field of light detection, light-emitting devices, and gas
sensing [3–9]. Great progress has been made recently in large-sized Ga2O3 single crystal
preparation, which provides favorable support for the preparation of device-applied Ga2O3
films by homoepitaxy [10,11]. Ga2O3-based devices with excellent performance require
the films to not only have higher crystal quality but also stable and controllable carrier
concentration. Therefore, obtaining a stable carrier concentration of β-Ga2O3 films is the
key step in Ga2O3-based device fabrication [12]. The Si is considered as a reliable n-type
doping source for its good stability. However, according to an earlier report [13], the
stability of electrical properties of β-Ga2O3 films is greatly affected by intrinsic defects,
which is detrimental to the performance of Ga2O3 devices. This problem has not been
solved yet at present.

In this article, Si-doped β-Ga2O3 films are grown on (100) Ga2O3 substrates by
MOCVD. The films with different Si-doping concentrations are measured and analyzed.

2. Materials and Methods
2.1. Materials

In the experiment, the (100) β-Ga2O3 substrates were prepared by floating zone
melting. High-purity O2 (5N) and trimethylgallium (TMGa, 6N) were used as an oxygen
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source and metal organic source, respectively. Silane (SiH4; diluent: high-purity N2;
50 ppm) was used as the n-type doping source. High-purity Ar (5N) worked as the
carrier gas.

2.2. Experiment

Before the experiment, the substrates were ultrasonically cleaned by acetone, ethanol,
and deionized water for 5 min in turn, then dried with N2 and placed in the MOCVD
reaction chamber. The MOCVD system used was the Emcore-D180 (Emcore, Alhambra,
CA, USA). The TMGa in the stainless-steel bubbler was maintained at 1 ◦C by a water
bath. During the growth process, we kept the temperature and pressure of the reaction
chamber at 750 ◦C and 40 mbar. The flow rates of O2 and Ar were set to 400 sccm and
60 sccm, respectively. Growth time was set to 1 h. β-Ga2O3 films with different doping
concentrations were obtained by setting the SiH4 flow rate to increase from 0 to 14 sccm (0,
2, 4, 6, 8, 10, 14 sccm).

2.3. Characterization

The crystal structure and quality of the films were characterized by X-ray diffraction
and grazing incidence X-ray diffraction (XRD and GIXRD; Rigaku, Ultima IV, Tokyo,
Japan, λ = 1.54 Å). A field emission scanning electron microscope (FESEM, JOEL, JSM-
7610, Tokyo, Japan) and an atomic force microscope (AFM, Veeco, PlainView, NY, USA)
were used to observe the surface morphology of the films. The optical properties of the
films were characterized by a photoluminescence system consisting of a spectrometer
(Horiba, iHR550, Paris, France) and a YAG laser, with an excitation wavelength of 235 nm.
The carrier concentrations of the films were measured by a Hall effect device (Accent,
HL5500PC, Hertfordshire, UK).

3. Results
3.1. Crystal Structure Analysis

Figure 1 shows the 2θ–ω scan curve and the double crystal rocking curve of the
β-Ga2O3 substrate and the films obtained under different SiH4 flow rate. From Figure 1a,
the crystal quality of the β-Ga2O3 film is slightly degraded compared to the substrate. The
full width at half maxima (FWHM) of film is 218 arcsec, which is slightly higher than the
158 arcsec of the substrate, which is consistent with previous reports [14]. As shown in
Figure 1b, all doped β-Ga2O3 films only exhibit sharp diffraction peaks corresponding to
(400) and (600) planes, which indicates that the doped β-Ga2O3 films still present high
crystal quality. Figure 1c shows the (400) double crystal rocking curve of β-Ga2O3 films
with different SiH4 flow rates. From the figure, with the increase of SiH4 flow rate, the
relative intensity of the rocking curve peak decreases and the FWHM increases gradually
(from 218 to 463 arcsec). The diffraction peak is found shifted by 0.134◦ to a high angle.
This can be explained by the fact that the migration speed of the Ga and O atoms on the
surface of the films during the growth process is affected by the doped Si atoms. This
in turn changes the energy distribution in different growth directions and leads to the
weakening of the (100) directional growth. In addition, because the Si4+ radius (0.041 nm)
is smaller than the Ga3+ radius (0.062 nm), the lattice constant decreases after the atom Si
replaces Ga, which is consistent with the Scherer’s formula shown in Equation (1) [15]:

D =
Kγ

B cos θ
(1)

where K is the Scherrer constant (K = 0.89), D is the average thickness of the crystal grain
perpendicular to the crystal plane, B is the FWHM of the rocking curve of (400) crystal
plane, θ is the Bragg angle, and γ is the X-ray wavelength (γ = 1.54 Å).

In the above XRD analysis, the diffraction peaks of the film and those of the substrate
overlapped due to the large penetration depth of X-rays. Therefore, The GIXRD was
performed separately on the substrate surface and on the surface of the film obtained at
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a SiH4 flow rate of 14 sccm. The grazing incidence angle was set to 0.3◦, and the result
is shown in Figure 1d. Compared with the substrate surface, the diffraction peak of the
(400) interference surface of the film surface obviously shifted to a higher angle, and the
FWHM was slightly increased. This reveals the change in diffraction peaks formed by the
superposition of the substrate and the film, which originated in the change in the quality
of the film.
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Figure 1. (a) XRD patterns of β-Ga2O3 substrates and undoped β-Ga2O3 films. (b) 2θ scan curves of β-Ga2O3 films obtained
under different SiH4 flow rates. (c) Double crystal rocking curves of β-Ga2O3 films obtained under different SiH4 flow rates.
(d) GIXRD patterns of the film surface and substrate surface of the sample obtained at a SiH4 flow rates of 14 sccm.

3.2. Surface Morphological Analysis

Figure 2 shows the SEM images of the doped β-Ga2O3 films obtained under different
SiH4 flow rates. It can be seen that the surface morphology of the films strongly depends
on the Si-doping concentration. The surface of the undoped sample is flat and compact.
Numerous hexagon columns in the same direction can be found connected horizontally. It
should be noted that a lot of protrusions appear on the surface when the doping concen-
tration increases. The number of protrusions increase significantly, resulting in the films
surface becoming rough and disordered gradually. According to our previous research [16],
the growth rate of unintentionally doped (UID) β-Ga2O3 films was about 300 nm/30 min
under the same conditions. Therefore, it can be estimated that the thickness of the doped
β-Ga2O3 films obtained in this experiment is about 600 nm.
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Figure 2. SEM images of β-Ga2O3 films obtained under different SiH4 flow rates.

To further characterize the three-dimensional morphology of the films surface, the
β-Ga2O3 films were characterized by AFM, as shown in Figure 3. As the flow rate of SiH4
increased from 0 to 10 sccm, the root mean square (RMS) roughness of the films increased
from 1.00 to 2.41 nm. The diameter of the protrusions on the surface of the films increased
significantly, which was mainly caused by the mutual stacking of protrusions. It is worth
noting that the surface of the films obtained at a SiH4 flow rate of 0 sccm and 6 sccm was
composed of multiple bands, which is probably caused by the step growth mode of the
films. This is quite different from the film surface obtained at a SiH4 flow rate of 10 sccm.
Combining the SEM and AFM analysis, it can be concluded that the introduction of Si
atoms can greatly affect the film growth process and even change the film growth mode,
resulting in the deterioration of the film surface, especially for processes with slow films
growth rates such as MOCVD.
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3.3. PL Characteristics Analysis

The PL spectrums of β-Ga2O3 films are shown in Figure 4. Figure 4a is the room
temperature PL spectrums of β-Ga2O3 films obtained under different SiH4 flow rates. From
the figure, in addition to excitation light, two main emission bands at 360 and 410 nm
can be observed. The UV peak (≈360 nm) is formed by the radiation combination of self-
trapped holes (STHs) and electrons [17–19], and the blue peak (≈410 nm) is related to the
radiation recombination of the donor–acceptor pairs [20,21]. The donors in the undoped
β-Ga2O3 films were mainly oxygen vacancies (VO) and interstitial gallium (Gai), while Si
donors are the mainly donors in the Si-doped β-Ga2O3 films, followed by VO and Gai. The
acceptors in the β-Ga2O3 films are mainly gallium vacancies (VGa) and gallium–oxygen
vacancies pairs (VGa–VO) [22]. The intensities of the two emission peaks of the doped
β-Ga2O3 films are stronger than that of the undoped film. This is because compared to the
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undoped β-Ga2O3 films, the Si donor levels in the doped films can excite more electrons
that participate in radiative recombination. In addition, the emission intensities of the
doped β-Ga2O3 films are negatively correlated with the SiH4 flow rate. The increase in
doping concentration increases the defect density in the films, thus introducing more defect
levels into the band gap, which leads to the enhancement of a nonradiative recombination
of electrons and holes on donor, acceptor, and defect levels. The increase in defect density
is one of the reasons for the deterioration of the crystal quality of doped β-Ga2O3 films,
which is consistent with the conclusion of XRD analysis.
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The doped β-Ga2O3 film obtained at a SiH4 flow rate of 6 sccm exhibited the highest
photoluminescence intensity at room temperature. Therefore, a temperature-dependent PL
was performed on the film obtained under this condition to test the relationship between
the luminescence characteristics and the temperature. The result is shown in Figure 4b. The
emission intensities of UV and blue peaks were the strongest when the temperature was
10 K. As the temperature increased, the emission intensities gradually decreased. This is
because the higher temperature can aggravate the thermal decomposition of STHs and can
make the electrons and holes on the donor and acceptor levels excited to the conduction
band and valence band, respectively. However, compared to UV peak, the intensity of blue
peak decreased more slowly, and so the emission intensity of the blue peak was higher than
that of UV peak at room temperature. This shows that STHs are more severely affected by
temperature. β-Ga2O3 exhibits complex PL behavior because of its low-symmetry structure
and the existence of trapped polarons [23,24].

3.4. Electron Concentration Analysis

To reduce the inaccuracy caused by the numerical fluctuations in the results of the hall
test, we conducted three tests on each film and calculated the average and standard error of
the results. The averages of electron concentrations of films are shown in Table 1. From the
table, the electron concentrations increase with the increase of the SiH4 flow rates [25,26],
but it should be noted that the increase rates of electron concentrations gradually decrease.
This is mainly because the effective electron concentration is limited by the solubility of the
dopant in a higher SiH4 flow rate, or the secondary phase of the oxide [23,27]. To evaluate
the effect of defects’ density, especially the VO or Gai, the oxygen annealing was performed
at 900 ◦C for one hour. Figure 5 exhibits the error bar of the electron concentrations of
the films grown under different SiH4 flow rates before and after annealing. The electron
concentrations of the annealed films had a slight decrease compared to the as-grown films.
The decrease was much slighter than that of heteroepitaxial β-Ga2O3 films [28], which
indicates that the homoepitaxial films have lower defect density. Although the annealing
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process did not have an obvious effect for the high crystal quality of the films, the electrical
stability of the films can be improved to a certain extent.

Table 1. Electron concentrations obtained under different SiH4 flow rates.

SiH4 Flow (sccm)
Annealing Time (h) 2 4 6 8 10 14

0 6.5 × 1016 4.3 × 1017 1.6 × 1018 3.3 × 1018 7.3 × 1018 2.6 × 1019

1 5.4 × 1016 3.8 × 1017 1.4 × 1018 3.0 × 1018 6.5 × 1018 2.1 × 1019

In addition, a temperature-dependent electron concentration test was conducted on
the β-Ga2O3 film obtained at a SiH4 flow rate of 14 sccm to further study the stability of
the electrical properties of the films. The error bar of the results is shown in Figure 6. It can
be found from the red curve in the figure that as the temperature decreased, the electron
concentrations of the film decreased significantly. Within the test temperature range, the
electron concentrations of the film differed by an order of magnitude. The relationships
between the ionization energy of the donors and the electron concentrations are exhibited
in Equations (2) and (3).

N = N0e
−∆E

kT (2)

lnN = lnN0 −
∆E

1000k
1000

T
(3)

where N is the electron concentrations, ∆E is the ionization energy of the donors, and k is
the Boltzmann constant. The relationship between lnN and 1000/T is shown in the blue
curve in Figure 6. The yellow curve in Figure 6 is the result of linear fitting to the blue
curve. According to the slope of the yellow curve, the donors ionization energy of the film
is about 30 meV.

To verify the stability of the electron concentrations of the films, the Hall tests were
performed again on the β-Ga2O3 films two months later (shown in Table 2). It was found
that compared to the results obtained two months ago, the electron concentrations of the
films fluctuate in a small range, but the order of magnitudes of the electron concentrations
remain the same, indicating that the films have low defect densities and the electron
concentrations are less affected by the environment.

Table 2. Electron concentrations of the films after two months.

SiH4 Flow Rates 2 4 6 8 10 14

Electron concentrations 3.6 × 1016 5.2 × 1017 2.3 × 1018 3.3 × 1018 8.0 × 1018 2.1 × 1019
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4. Conclusions

The stable electron concentration Si-doped β-Ga2O3 films were grown on (100) β-
Ga2O3 single crystal substrates by MOCVD. The electron concentrations of the films can
be reasonably controlled by adjusting the SiH4 flow rate. During the growth process, the
Si atoms changed the migration rate of the Ga atom and the O atom, which changed the
energy distribution of the atoms, resulting in the growth weakening of (100) orientation
and the enhancement of the surface morphology disorder. The temperature-dependent hall
effect test showed that the ionization energy of Si donors was about 30 meV. In addition,
the defect density in the films increased with the increase of the doping concentration,
thereby weakening the PL emission intensity. The temperature-dependent PL showed that
PL emission intensity is closely related to temperature. High temperature can accelerate the
thermal desorption of STHs and make the electrons and holes on the donor and acceptor
levels excited to the conduction band and valence band, respectively, thus reducing the
radiation recombination intensity. Si-doped n-type homoepitaxial β-Ga2O3 with high
crystal quality and stable electron concentration can be obtained, which offers an effective
method to fabricate the Ga2O3-based devices.
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