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Abstract: The indium-free amorphous oxide semiconductor thin film transistor (AOS-TFT) with
aluminum (Al) electrodes shows broad application prospects in new-generation display technologies,
such as ultra-high definition large-screen display, OLED display and 3D display. In this work, the
thin film transistor (TFT) with a zinc-aluminum-tin-oxide (ZATO) semiconductor as the active layer
and an Al electrodes as the source and drain (S/D) was investigated. The optical, electrical and
semiconductive properties of the ZATO films were evaluated by atomic force microscopy (AFM),
ultraviolet–visible spectrophotometry and microwave photoconductivity decay (µ-PCD), respectively.
The result shows that the film is smooth and transparent and has low localized states and defects
at a moderate oxygen concentration (~5%) and a low sputtering gas pressure (~3 mTorr). After the
analysis of the transfer and output characteristics, it can be concluded that the device exhibits an
optimal performance at the 623 K annealing temperature with an Ion/Ioff ratio of 5.5 × 107, an SS
value of 0.15 V/decade and a saturation mobility (µsat) of 3.73 cm2·V−1·s−1. The ZATO TFT at the
623 K annealing has a −8.01 V negative shift under the −20 V NBS and a 2.66 V positive shift under
the 20 V PBS.

Keywords: indium-free; ZATO; magnetron sputtering; microwave photoconductivity decay; thin
film transistors

1. Introduction

The technology of display plays an important role in the development of the electronic
information industry. Nowadays, mainstream display technologies include AMOLED,
µLED and AMLCD [1]. As a key part of these display technologies, the research of
high-performance and environmentally friendly thin film transistors (TFTs) is of great sig-
nificance. The current TFTs mainly include amorphous silicon (a-Si) TFTs, low temperature
polycrystalline silicon (LTPS) TFTs, amorphous oxide semiconductor (AOS) TFTs, organic
semiconductor TFTs (OTFTs), etc. However, a-Si TFTs [2] have low open current and cost a
lot, the uniformity of LTPS TFTs [3,4] is poor and the OTFTs [5] have poor stability. AOS
TFTs possess a broad development prospect in this field due to their excellent stability [6],
good uniformity, high mobility [7] and low-cost, which has attracted the attention of
scholars worldwide.

The main materials used as AOS TFTs include zinc oxide (ZnO), indium oxide (In2O3)
and tin oxide (SnO2). However, In2O3 is toxic and expensive, and the performance of
SnO2 is not good enough. Although indium zinc oxide (IZO) and indium gallium zinc
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oxide (IGZO) have good performances, both contain indium, a rather expensive and
toxic precious metal element which is harmful to the environment. To overcome these
issues, it is necessary to develop indium-free ZnO semiconductive materials. In previous
studies [8], it was proved that the ZATO films can significantly improve the conductivity
and transparency of the ZnO films [9,10], so it shows great application potential. The
main methods of thin film preparation include vacuum evaporation [11], electron beam
deposition [12], chemical vapor deposition [13] and magnetron sputtering [14]. Among all
of these, the magnetron sputtering has numerous advantages, such as high deposition rates,
low substrate temperatures and good adhesion of the films on the substrate [15], which
exhibits a lot of potential in depositing and growing the thin films [16]. Before this work,
Jiang et al. studied the ZATO TFTs and found that they exhibited acceptable performances
at an optimal Al content (0.5) [17]. Based on this, we investigated the performance of
the ZATO films at different pressures and oxygen/argon ratios and the ZATO TFTs at
different annealing temperatures at a 0.5 Al content to obtain the best condition of the
device. Therefore, in this paper, we fabricated the ZATO TFTs by radio frequency (RF)
magnetron sputtering to investigate their properties.

Under the guidance of the Taguchi orthogonal design method [18], the properties of
the ZATO films were studied. After the comprehensive analysis and comparison, the best
condition for the film growth was obtained, and the TFTs with the ZATO films as the active
layer and the Al electrodes as the S/D were prepared on this basis.

2. Materials and Methods

ZATO TFT was prepared on the alkali-free glass substrate with 100 nm-thick Al–
Nd alloy gate electrode deposited by direct current (DC) magnetron sputtering, which
is covered by 200 nm-thick anodized AlOx: Nd insulator using anodic oxidation [19],
as shown in Figure 1. Figure 1a is practical image, and Figure 1b is schematic map of
cross-section image of ZATO TFT. The ZATO target (Zn:Al:Sn = 4:0.5:7 at.%) was used to
deposit 30 nm-thick ZATO active layers patterned through a stencil shadow mask [20]. In
order to obtain the optimal growth condition of the films, ZATO target was sputtered at a
power of 80 W with different pressure and oxygen/argon flow ratios. After that, the active
layers were annealed at 523 K, 573 K, 623 K and 673 K in air atmosphere for 1 h. Ultimately,
the 200 nm-thick Al source and drain electrodes patterned through a stencil shadow mask
were prepared at a power of 100 W by radio frequency (RF) magnetron sputtering.
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Experimental schemes for ZATO films in this work were determined by Taguchi
orthogonal design. Eighteen schemes were obtained with sputtering pressure of 3 levels
(3 mTorr, 5 mTorr and 8 mTorr); oxygen/argon ratio of 3 levels (0%, 5% and 10%) and
annealing temperature of 6 levels. The five most represented groups were selected for
research, as shown in Table 1.



Coatings 2021, 11, 585 3 of 13

Table 1. Different conditions for ZATO thin films fabrication.

Pressure (mTorr) Oxygen/Argon Ratio (%) Annealing Temperature (K)

3 5 298
5 5 298
3 0 298
3 5 523
3 5 623

Atomic force microscopy (AFM) (BY3000, Being Nano-Instruments Ltd., Guangzhou,
China) was used to characterize the morphology of 50 nm ZATO films with different
pressures, different oxygen/argon ratios and different annealing temperatures prepared
on glass substrate. The absorption and transmittance of the films were measured with
ultraviolet–visible spectrophotometer (Shimadzu UV-2600, Shimadzu Corporation, Shi-
madzu, Japan). The semiconductor properties of the films were tested by microwave
photoconductivity decay (µ-PCD) (LTA-1620SP, KOBELCO, Kobe, Japan). The semiconduc-
tor parameter analyzer (Aglient 4155C, Dongguan nuozhan electronic instrument Co. Ltd.,
Dongguan, China) was used to investigate the electrical characteristics of TFTs, and the
carrier mobility (µsat), threshold voltage (Vth), switching state current ratio (Ion/Ioff) and
subthreshold swing (SS) are extracted from the measured transfer output characteristic
curves to characterize the properties of TFTs.

3. Results and Discussion
3.1. Film Morphology

Figure 2 shows the surface images of the ZATO films prepared under different condi-
tions by using AFM, with a scanning range of 1.5 µm × 1.5 µm. The root mean square (Sq)
of these films is as low as 0.506 nm, and all films are smooth and flat, which can ensure
the normal operation of the TFTs. From Figure 2a,b, it can be seen that the roughness of
the ZATO films is rarely reduced with the increasing pressure. Besides, compared with
Figure 2a,c, it is found that increasing the oxygen content is beneficial to improve the sur-
face morphology of the ZATO films. However, Figure 2a,d,e indicate that the evaporation
intensifies with the increase of annealing temperatures, and the film particles are fused and
result in the growth of film grains, which finally causes greater roughness of the ZATO
films [21,22].
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Figure 2. (a–e) AFM images of ZATO films at different pressure, oxygen contents and annealing temperatures.

3.2. Optical Characterization

Figure 3 illustrates the optical transmittance spectra (300–800 nm) and (αhv)2 versus hv
plots of the ZATO films at different pressures, different oxygen/argon ratios and different
annealing temperatures. In order to eliminate the influence of the substrate, the deposited
ZATO films were measured and analyzed with an uncoated glass substrate as calibration
when testing the transmittance of the ZATO films.

Figure 3a,b are the transmission spectra for the ZATO thin films at different pressures
and different oxygen/argon ratios. From Figure 3a,b, they show that the transmittance
of the films in the visible light region is above 70%. With the increasing pressure, oxygen
vacancy defects decrease, and the loss of light reduces, which leads to the enlargement
of transmittance [23–25]. Besides, as the oxygen content continues to increase, the trans-
mittance decreases. The transmittance of the ZATO films gradually decreases with the
decrease of the spectral wavelength, which is attributed to the increase of light absorption
in the near-ultraviolet band. Figure 3c is the transmission spectra for the ZATO thin films
at 3 mTorr and 5% oxygen content with different annealing temperatures. From Figure 3c,
it can be found that the optical properties of the ZATO films are greatly improved after the
523 K and 623 K annealing. All the ZATO films have high average transmittance values (up
to 90%) in the visible region, which suggests that the ZATO films have the potential ability
for fabricating transparent TFTs. As the annealing temperature increases, the residual stress
of the films is released, and the defects of the thin film are recovered, so the absorption and
visible light scattering of the thin film are decreased. As a direct band gap semiconductor,
the value of the optical band gap (Eg) of the ZATO films is fitted from the extrapolation
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of the linear line portion of the plot of (αhv) 2 versus (hv), as shown in Figure 3a–c. The
following equation is satisfied between the absorption coefficient (α) and the incident
photon energy (hv) as Formula (1) [26]:

(αhv)2 = A
(
hv− Eg

)
(1)

In this formula, h is Planck’s constant, v is the frequency of light, A is the constant and
Eg is the optical band gap. The linear absorption edge was obtained from the (αhv)2 versus
hv diagram of the absorption spectrum, and the band gap can be obtained at the intercept
of the energy axis by extending the linear absorption edge in reverse.
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Figure 4 is the relationship between the optical band gaps and samples under different
conditions. From Figure 4, it can be seen that the band gap widens with the increasing of
the oxygen content. The possible reason is that, with an increasing of the oxygen content,
the defects in the films reduce, and the carrier concentration of the ZATO films increases;
the rise in the Fermi level in the semiconductor causes the band gap to increase, which
may be explained by the Burstein–Moss effect [27,28]. When the pressure is low, there are
lots of oxygen vacancies in the films, and the carrier concentration is high; for this reason,
the band gap of the ZATO films at 3 mTorr and 5% oxygen content is larger than that at
5 mTorr and 5% oxygen content. Besides, the improvement of the optical band gap after
the annealing identifies that the annealing is helpful to increase the carrier concentration of
the thin films.
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3.3. Characterization of Semiconductor Properties of Thin Films

Figure 5a–e are the images of the microwave photoconductive decay (µ-PCD) mapping
scan of the ZATO films at different pressures, oxygen contents and annealing temperatures.
From Figure 5, it shows that the homogeneity and carrier mobility of the ZATO films after
the annealing are greatly improved. Figure 6 shows the photoelectric response curves
of the ZATO films under different conditions by the µ-PCD method. From Figure 6, the
mean peak value and D value can be extracted from the curves, and the mean peak and
D value change under different conditions that are obtained. Figure 7 is the relationship
between the mean peak value, D value and samples under different conditions. From
Figure 7, it can be found that the peak value of the annealing sample is higher than that
of no annealing sample, and the D value has a slight decrease, which indicates that the
annealing process is beneficial to the suppression of the defects in the mid-gap states. When
gas pressure increases, the mean peak value and D value of the ZATO films become higher.
As the oxygen/argon ratios increase from 0% to 5%, the mean peak value and D value
of the ZATO films are also becoming higher, perhaps the density of mid-gap defects and
shallow localized defects decrease greatly, and it can help the TFT devices to improve their
performance and stability [29,30]. The peak reflectivity signal can reflect the density of
the conduction band tail state; the high peak value indicates that the defect density of the
gap state is low, which is closely related to the performance of the transistors. The shallow
localized states are evaluated by the D values; the higher D values indicate the lower defect
density of the captured or released shallow localized states, which is related to the device
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stability [31–35]. In addition, the optimization of the ZATO film is as follows: 3 mTorr
pressure and 5% oxygen content at the 523 K annealing.Coatings 2021, 11, x FOR PEER REVIEW 7 of 13 
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3.4. Characterization of ZATO TFTs with Different Annealing Temperatures

The 30 nm ZATO film was prepared as the active layer at 3 mTorr and 5% oxygen
content by radio frequency (RF) magnetron sputtering. The 200 nm Al electrodes [36,37]
were prepared on the active layer as the S/D after the films were annealed at 523 K,
573 K, 623 K and 673 K. The TFT devices with the ZATO films as the active layer were
successfully prepared in this way. The electrical characteristics of the TFTs at different
annealing temperatures were measured using a semiconductor analyzer (Aglient 4155C,
Dongguan nuozhan electronic instrument Co. Ltd., Dongguan, China) in dark and air
environments, and the output and transfer characteristics for the 523 K annealing, 573 K
annealing, 623 K annealing and 673 K annealing devices are shown in Figure 8a–d. The
output curves of the ZATO TFTs were obtained with VG = 0–20 V in steps of 1 V, while the
transfer characteristics were measured with VD = 20 V.
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Figure 8. The output and transfer curves of TFT devices at: (a) 523 K, (b) 573 K, (c) 623 K and (d) 673 K.

Figure 9 shows the main device performances of the TFTs at different annealing
temperatures. From Figure 9, it can be analyzed that the on-state current increases gradually,
while the off-state current decreases gradually with increasing annealing temperatures,
which causes the Ion/Ioff ratio increases in the meanwhile, and it reaches the maximum
value of 5.55 × 107 after the 623 K annealing.
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The leakage current of the TFT at the 623 K annealing is suppressed, which leads to
the low off-state current. When the annealing temperature continues to increase, the carrier
concentration increases; it causes the rising of the off-state current, and the Ion/Ioff ratio
drops significantly. The Ion/Ioff ratio decreases to 8.72 × 104 when the temperature rises to
673 K. Meanwhile, the SS also decreases at first and then increases with the rising of the
annealing temperature; the SS becomes lower when the temperature increases from 573 K
to 623 K, which means that the gate control ability of the devices is becoming enhanced, but
it becomes so large that the performance of the TFTs becomes worse when the annealing
temperature rises to 673 K. The factors that contribute to this situation include the density
of the surface defects at the interface layer and the decrease of the insulation layer when
the annealing temperature rises, and it enhances the ability of the gate voltage to control
the channel current so that the SS improves [38,39]. However, when the temperature
reaches a high level, the electron concentration also becomes high, and there will be more
defects related to oxygen in the active layer, and their abilities to scatter and trap electrons
become stronger, which raises the density of the surface defects instead, and thus the SS
ultimately increases. Furthermore, the improvement in the carrier mobility of the TFTs
suggests that the performance of the devices becomes better in this respect. After the
parameter optimization, the TFT devices with the ZATO films performed at the 623 K
annealing with an Ion/Ioff ratio of 5.55× 107, an SS value of 0.15 V/decade and a saturation
mobility (µsat) of 3.73 cm2·V−1·s−1. On the basis of the results, the ZATO TFTs show better
properties compared to the ZTO TFTs of 2 × 106, 0.45 V/decade and 1.47 cm2·V−1·s−1 by
Lun et al. [40]. Besides, the SnO2 materials have hygroscopicity, which may reduce the
stability of the TFT. An appropriate Al addition has the potential to improve its stability [17]
and decrease the UV photoconductivity [41], which is conducive to the TFT applications in
the display fields.

3.5. Electrical Stability of ZATO TFT

Figure 10a shows the transfer curves of the ZATO TFT at the 623 K annealing under
the negative/positive bias stress (N/PBS) for 3600 s. Figure 10b shows the shifts of Vth
(4Vth) in the ZATO TFT under the NBS/PBS. From Figure 10, it can be seen that the shifts
of the Vth value (4Vth) are −8.01 V after the NBS was applied for 3600 s, while 4Vth is
2.66 V after the PBS was applied for 3600 s.
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4. Conclusions

In this paper, the 50 nm ZATO thin films were deposited on the glass substrate by
RF magnetron sputtering with different gas pressures and oxygen/argon ratios, and the
ZATO thin films are very smooth (Sq < 0.6 nm) and highly transparent (90% in the visible
region). Then, the ZATO thin films were used to fabricate the TFT devices successfully;
the optimization parameter is 30 nm-thick, the gas pressure is 3 mTorr, the oxygen/argon
ratio content is 5% and the annealing temperature is 623 K. The best comprehensive
performance of the TFTs is as follows: the µsat is up to 3.73 cm2·V−1·s−1, the Ion/Ioff ratio
reaches 5.55 × 107 and the SS value is 0.15 V/decade. The ZATO TFT at the 623 K annealing
shifts −8.01 V to the negative direction under the −20 V NBS, while it shifts 2.66 V to the
positive direction under the 20 V PBS. Based on the above, the TFT devices with the ZATO
active layer have the advantages of being environmentally friendly and low-cost and have
the potential for applications in next-generation displays.
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