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Abstract: Modifications of biomaterials based on the combination of physical, chemical, and bio-
logical cues for manipulating stem cell growth are needed for modern regenerative medicine. The
exploitation of these sophisticated modifications remains a challenge, including substrate limitation,
biocompatibility, and versatile and general cues for stem cell activities. In this report, a vapor-phase
coating technique based on the functionalization of poly-p-xylylene (PPX) was used to generate a
surface modification for use with stem cells in culture. The coating provided the ability for covalent
conjugation that immobilized bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2
(FGF-2), and the modified coating surfaces enabled direct stem cell differentiation and controlled
proliferation because of the specific activities. The ligations were realized between the growth factors
and the maleimide-modified surface, and the conjugation reactions proceeded with high specificity
and rapid kinetics under mild conditions. The conjugation densities were approximately 140 ng·cm−2

for BMP-2 and 155 ng·cm−2 for FGF-2. Guiding the activities of the human adipose-derived stem cells
(hADSCs) was achieved by modifying surfaces to promote the hADSC differentiation capacity and
proliferation rate. The reported coating system demonstrated biocompatibility, substrate-independent
conformity, and stability, and it could provide an effective and versatile interface platform for further
use in biomedical applications.

Keywords: growth factor; surface modification; CVD polymerization; biointerface; stem cells

1. Introduction

Surface properties are fundamental to advanced biomaterials that are designed to
induce biological functions, and they include tuning surface wettability; the ability to
enhance or to resist protein adsorption, cell adhesion or resistance; antibacterial action;
and engineered niches for stem cell proliferation, migration, and differentiation [1–5]. In
particular, sophisticated applications of these modification techniques that make stem
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cells renew themselves and retain their potency (i.e., the capability to differentiate into
specialized cell types) [6,7] are under development. Promising results of unlimited cell
expansion or lineage-specific differentiation in a reproducible and controlled manner
and efficient and controlled differentiation commitment of specific cells and tissues were
achieved in vitro and in vivo with combinations of mimicked physical, chemical, and/or
biological cues [8–10]. Emerging therapeutic uses, encouraged by the advances in modern
regenerative medicine, have also benefited from these promising results from research on
stem cells used for tissue transplantation and repair. The current obstacles to achieving
sophisticated material modifications include the potential harm from substances used
during the process, the need for multiple steps to achieve the required sophistication, and
techniques that are based on previous performance in a case-by-case manner and with a
limited selection of materials.

The study herein aims to demonstrate an effective and general interface modification
method for use in defining stem cell fate and enhancing the functions related to proliferation
rate and multilineage differentiation capacity. The proposed modification technique was
realized by the functionalization of poly-p-xylylene that includes a maleimide side group.
The functional polymer was synthesized as an interface layer generated in one vapor-phase
coating process and applied to the material surface through the exploitation of a chemical
vapor deposition (CVD) polymerization process used to prepare maleimide-functionalized
poly-p-xylylene (hereafter referred to as maleimide-PPX) coatings. Compared to other
similar poly-p-xylylene systems, this technology, free of solvents, initiators, and catalysts,
produced a coating that exhibited good conformability with the topology and geometry
of substrates [11–13] with excellent cohesive properties and thermal stability on various
substrates, including metals, oxides, polymers, nonvolatile liquids, silicon, and glass [12].
Most importantly, in the current study, conjugation-immobilized (i) bone morphogenetic
protein 2 (BMP-2) and (ii) fibroblast growth factor 2 (FGF-2) enabled the modified coat-
ing surfaces to direct stem cell differentiation and controlled proliferation driven by the
functions specified by (i) and (ii), respectively. The resulting BMP-2- and FGF-2-modified
substrates were expected to be sustainable and multifunctional, so that they could provide
an effective and flexible interface platform for biomedical applications.

2. Materials and Methods
2.1. CVD Surface Modifications

The synthesis of the coating, poly[(4-N-maleimidomethyl-p-xylylene)-co(p-xylylene)]
(maleimide-PPX), was conducted by a custom-built CVD system (Kao Duen Technology Co.,
Ltd., Taipei, Taiwan) consisting of a sublimation zone, pyrolysis furnace, and deposition
chamber. During the CVD process, the starting material (dimer) of 4-N-maleimidomethyl-
[2.2]paracyclophane, which was prepared following procedures reported elsewhere [14],
was first sublimated at approximately 120 ◦C in the sublimation zone. The sublimated
species were then transferred to the pyrolysis furnace (560 ◦C) with a constant flow
(30–50 sccm) of argon carrier gas. Following pyrolysis, the resulting highly reactive
monomers were transferred into the deposition chamber and polymerized onto a ro-
tating holder at 20 ◦C to form a uniformly deposited film of maleimide-PPX. To optimize
the deposition, a pressure of 75 mTorr was maintained throughout the CVD process, and
deposition rates were controlled at approximately 0.5 Å·s−1, which was monitored via
an in-situ quartz crystal microbalance (STM-100/MF, Sycon Instruments, Syracuse, NY,
USA). The thickness of the polymer layer was measured as approximately 100–150 nm
by using spectroscopic ellipsometry (M2000, Woollam Co., Inc., Lincoln, NE, USA) after
retrieving the coated samples from the CVD system. The resultant polymer coating was
also characterized by using Fourier transform infrared (FT-IR, PerkinElmer, Waltham, MA,
USA) and X-ray photoelectron spectroscopy (XPS, Thermo Scientific, Leicestershire, UK) to
verify the anticipated chemical compositions.
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2.2. Growth Factor Immobilization

Selected human recombinant growth factors, including BMP-2 and FGF-2, were ob-
tained commercially from R&D Systems Inc. (Minneapolis, MN, USA) and reconstituted
into a 100 µg·mL−1 solution following the manufacturer’s instructions. These two growth
factors were then conjugated to the maleimide-PPX coated substrates via a coupling reac-
tion between the maleimide and the thiol (sulfhydryl) groups under conditions of 4 ◦C and
pH 6.5–7.5 for 6 h. Dithiothreitol (DTT, Sigma Aldrich, St. Louis, MO, USA) (5 mM) was
used as a reducing agent for the BMP-2 and FGF-2 immobilization. A rinsing process was
performed three times with PBS to remove any unbound molecules.

2.3. Characterizations

FT-IR spectra were recorded using a spectrum 100 FT-IR spectrometer (PerkinElmer,
Waltham, MA, USA) equipped with an advanced grazing angle specular reflectance acces-
sory (AGA, PIKE Technologies, Fitchburg, WI, USA) and a liquid nitrogen-cooled MCT
detector. The samples were mounted in a nitrogen-purged chamber to eliminate noise
from the CO2 and H2O, and the recorded spectra were corrected for any residual baseline
drift. The XPS data were recorded using a Theta Probe X-ray photoelectron spectrometer
(Thermal Scientific, Leicestershire, UK) with a monochromatized AlKα X-ray source at an
X-ray power of 150 kW. The pass energies were 200.0 eV and 20.0 eV for the survey scan and
the high-resolution C1s elemental scan, respectively. The XPS spectrum atomic analysis was
reported based on atomic concentrations (%), and the results were compared to theoretical
values calculated based on the structure. The binding capacities of the modified surfaces
for the growth factor protein were measured using a standard QCM instrument (ANT
Technologies, Taipei, Taiwan) with a quiescent mode under sealed conditions, and the
measuring of the deposited protein mass was based on the fundamental frequency shift as
compared with unbinding or unmodified surfaces. For the antibody affinity experiments
performed by flow mode, the QCM instrument was further equipped with a flow injection
analysis (FIA) device (MasterFlex, Cole-Parmer Instrument Co., Chicago, IL, USA), and a
continuous frequency variation recording device was used for the characterization. The
flow rate was controlled using a peristaltic pump connected to the FIA device, and the
pumping process was temporarily stopped for 25 min (10 min after injection) to allow
anti-BMP-2 or anti-FGF-2 antibodies to bind to the proteins. All experiments were carried
out at 25 ◦C, and each sample was measured in triplicate. The frequency shift ∆F resulting
of a deposited mass ∆m is described by the Sauerbrey equation [15]:

∆F =
−2∆m f 2

A√µρq
= −C f ∆m

where f is the intrinsic crystal frequency (9 MHz), A is the piezo-electrically active area
(0.091 cm2), ρq is the quartz crystal density (2.648 g/cm3), µ is the shear modulus of the quartz
crystals (2.947× 1011 dyn/cm2), C f is the mass sensitivity (2.013 Hz/ng for a 9 MHz crystal),
and ∆m is the adding mass on the crystal surface due to specific binding, respectively.

2.4. µCP and Immunofluorescence

Confinement of the reactions using µCP was performed using two different poly-
(dimethylsiloxane) (PDMS) stamps consisting of squares with 30 µm × 30 µm sides (for
BMP-2) and 50 µm × 50 µm sides (for FGF-2) and arrays with 100 µm center–center
spacing. Solutions with the growth factor proteins (BMP-2 or FGF-2) were used as the
inking solutions and allowed to react on top of the maleimide-PPX-modified substrates for
6 h. The µCP process was performed at 4 ◦C and 55% humidity. The resulting sample was
washed twice with PBS to remove any unbound molecules. For the self-assembled binding
of the primary and secondary antibodies, the BMP-2- and FGF-2-modified samples were
incubated in the corresponding antibody solution, anti-BMP-2 antibody (50 µg·mL−1 in
PBS, R&D Systems, Minneapolis, MN, USA) or anti-FGF-2 antibody (50 µg·mL−1 in PBS,
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R&D Systems, Minneapolis, MN, USA), for 2 h, and the samples were washed twice with
PBS to remove any unbound antibodies. Subsequently, fluorescently labeled secondary
antibodies were incubated with the samples for 1 h and washed twice with PBS to remove
any unbound antibodies. The samples with fluorescence signals were analyzed under a
LEICA fluorescence microscope (DMI3000B, Leica Microsystems, Wetzlar, Germany).

2.5. Induced Cellular Activities

Tissue culture polystyrene (TCPS) plate substrates (24 well, Corning) were modified
with a CVD copolymer coating and conjugated with BMP-2 or FGF-2 growth factor proteins
following the procedures described above, and the modified TCPS plates were used for
cell culture experiments. The pure maleimide-PPX coating surface and the untreated TCPS
plate surface served as controls for the comparison. Normal human adipose-derived stem
cells (hADSCs) were isolated from subcutaneous adipose tissue following the reported
procedures [13], and the protocols were approved by the Internal Ethical Committee
of National Taiwan University Hospital. To evaluate differentiation and proliferation
activities, the hADSC cultures were initially seeded at a density of 1 × 105 cells·cm−2 and
2 × 104 cells·cm−2, respectively, for the following characterization. Each experiment was
conducted in triplicate.

2.6. Osteogenesis

Osteogenic differentiation-induced activity was examined by culturing hADSCs in
osteogenic differentiation medium [16]. The osteogenic activity of early stage alkaline phos-
phatase (ALP) expression was analyzed using a 5-Bromo-4-Chloro-3-Indolyl Phosphate /
Nitroblue Tetrazolium (BCIP/NBT) liquid substrate system (Sigma-Aldrich, St. Louis, MO,
USA) at day 10, whereas the late stage osteogenic activity, as indicated by calcium depo-
sition, was confirmed by staining with a 2% alizarin red S solution (ARS, Sigma Aldrich,
St. Louis, MO, USA) at day 21. The resulting ALP and ARS signals were quantitatively
measured using a microplate spectrophotometer (BioTek Instruments, Winooski, VT, USA)
with an absorbance wavelength of 405 nm following the manufacturer’s instructions.

2.7. Chondrogenesis

Chondrogenic differentiation-induced activity was examined in chondrogenic differ-
entiation medium [16] for 14 days. The cultured cells were fixed in 10% formalin (Macron
Fine Chemicals, Center Valley, PA, USA), and the proteoglycan present in the cartilage
matrix was detected by staining with 0.4% (w/v) toluidine blue O (Sigma-Aldrich) in
0.1 M sodium acetate buffer (pH 4.0). The sulfated glycosaminoglycan (sGAG) content
was further analyzed by using a 1,9-dimethylmethylene blue (DMMB, Sigma-Aldrich)
dye-binding spectrophotometric assay, and quantification was based on the absorbance dif-
ference between 525 and 595 nm [17]. The expression profiles of the chondrogenesis-related
gene encoding collagen type II were also analyzed.

2.8. Adipogenesis

For the analysis of adipogenic differentiation induced activity, hADSCs were cultured
in adipogenic differentiation medium [16]. On day 10, the cells were fixed with 10% forma-
lin and then stained with 0.25% (w/v) oil red O (Sigma-Aldrich) to observe lipid droplets.
The resulting oil red O signals were further quantified using a microplate spectrophotome-
ter (BioTek Instruments, Winooski, VT, USA) with an absorbance wavelength of 510 nm
following the protocol reported [18]. The expression profiles of the adipogenic gene Fatty
Acid-Binding Protein 4 (FABP-4) were also analyzed.

2.9. Proliferation Activities

To judge proliferation activities, a cell growth medium recipe and culture conditions
were used as previously described [19]. After culturing with cells for 1 day and 5 days,
the resulting cultured sample surfaces were observed and photographed using an opti-
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cal microscope to determine cell proliferation levels. The cell numbers for the studied
surfaces were further measured quantitatively using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium Bromide (MTT) assay (Sigma-Aldrich) according to the manufac-
turer’s instructions. The normalized ratio of cells on day 5 to cells on day 1 was used to
evaluate the cell proliferation-induced capacities of the modified surfaces.

2.10. Gene Expression Profiles

The gene expression levels were determined by quantitative real-time polymerase
chain reaction (qPCR) analysis following the manufacturer’s protocols. Briefly, total RNA
from the hADSCs and differentiated cells was extracted with TRIzol reagent (Thermo Fisher
Scientific, Waltham, MA, USA), and then the RNA concentration was determined using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific). Complementary DNA
(cDNA) was synthesized subsequently from the RNA template using a high-capacity cDNA
reverse transcription kit (Thermo Fisher Scientific). Gene expression level was analyzed
using a StepOnePlus™ Real-Time PCR System (Thermo Fisher Scientific) with gene-specific
primers (as indicated in Table 1), and the β-actin was used as a loading control to normalize
the expression of the target gene(s) between different samples. The thermal program for
PCR was as follows: 35 cycles of 94 ◦C for 30 s; 60 ◦C for 30 s; and 72 ◦C for 1 min followed
by incubation at 72 ◦C for 5 min. The fold changes in gene expression were calculated with
the delta-delta Ct method [20].

Table 1. PCR primer sets used in this study.

Gene
Name

Primer
Sequence (5′-3′)

Product
Length (bp)

Collagen
type II

Forward- ACG GCG AGA AGG GAG AAG TTG
Reverse- GGG GGT CCA GGG TTG CCA TTG 352

FABP-4 Forward- TGG GCC AGG AAT TTG ACG AA
Reverse- GAC GCA TTC CAC CAC CAG TT 158

β-Actin Forward- CAG GAG ATG GCC ACT GCC GCA
Reverse- TCC TTC TGC ATC CTG TCA GCA 275

2.11. Statistical Analysis

All data are reported as the mean± standard deviation (S.D.) and are representative of
three or more independent experiments. According to the unpaired t-test, GraphPad Prism
7 software (GraphPad Software, Inc., San Diego, CA, USA) was used to test the statistical
differences between the experimental group and the control group, and a two-tailed p-value
less than 0.05 was considered significant.

3. Results

The synthesis of the maleimide-PPX coating was conducted similarly to that of other
poly-p-xylylene (PPX) systems; that is, a precursor of a maleimide-substituted [2.2]paracy-
clophane (prepared in-house) [21] was sublimated at approximately 120 ◦C and pyrolyzed
at approximately 560 ◦C to generate reactive monomers of quinodimethane. The entire
process involved vapor-phase deposition and polymerization (chemical vapor deposi-
tion, CVD) under a reduced pressure of 75 mTorr, and a deposition rate of approximately
0.5–1.0 Å·s−1 was regulated during the CVD process with a linear-dependent time theo-
retical parameter [22,23] that was controlled to ensure that the final coating thickness was
in the range of 100–150 nm. As shown in Figure 1a, the rational maleimide functionality
enabled the resultant coating to readily undergo a maleimide-thiol coupling reaction to
the target molecules that contain thiols through a Michael-type nucleophilic addition at
pH 6.5–7.5 [14], and successful conjugation created through this reaction to attach protein
molecules without compromising protein structures and functions has been shown [24].
The important application of using maleimide-PPX to conjugate FGF-2 and BMP-2 growth
factor proteins was therefore exploited under mild reaction conditions. The successful
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conjugation was confirmed by comparing the Fourier transform infrared (FT-IR) spectra
with those of a pure maleimide-PPX coating, and the characteristic absorption values
of N–H peaks in the range from 3200 to 3600 cm−1, which represent the immobilized
FGF-2 and BMP-2 proteins, were detected (Figure 1b). The additional FT-IR spectra that
comparing maleimide-PPX surface with parylene-C surface combined with the X-ray pho-
toelectron spectroscopy (XPS) survey to verify the anticipated chemical compositions of
the maleimide-PPX coating are included in Supplementary Figure S1. Most importantly,
the FT-IR spectra showing the thiol groups of BMP-2 and FGF-2 proteins (i.e., the S-H band
at 2634 cm−1) were highlighted in Supplementary Figure S2. After conjugating BMP-2 and
FGF-2 to the coating surface, the S-H peak disappeared (see Figure 1). This result proved
that the two adhesion cues BMP-2 and FGF-2 are covalently bonded to the coating surface.
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immobilize the BMP-2 and FGF-2 growth factor proteins. (b) FT-IR spectra show the immobilized BMP-2 and FGF-2 on
the maleimide-PPX surface. The peaks in the range from 3200 cm−1 to 3600 cm−1 indicate the characteristic N–H band
absorption of BMP-2 and FGF-2. FT-IR spectra of the pure maleimide-PPX surfaces are also presented for comparison.
The peaks located at 1396 cm−1 (C–N) and 1706 cm−1 (C=O) correspond to the characteristic stretching bands for the
maleimide groups.

Furthermore, the generation of the maleimide-PPX coating and the subsequent conju-
gation of FGF-2 and BMP-2 were seamlessly performed on a quartz crystal microbalance
(QCM) sensor chip, and the recorded frequencies before and after conjugation were com-
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pared to estimate the density of conjugated FGF-2 and BMP-2, which was thus determined
as approximately 140 ng·cm−2 for BMP-2 and 155 ng·cm−2 for FGF-2 (Figure 2a). These
results showed agreement with other similar PPX systems that have been used to attach
biomolecules. Theoretically, the conjugation density is tunable, and the effectiveness of
the resultant biological activities is predictable [25]. On the other hand, as presented in
Figure 2b, a dynamic QCM analysis in which anti-BMP-2 or anti-FGF-2 antibodies could
bind to the modified surfaces was performed in the elapsed time, and the results indicated
significantly decreasing frequencies due to the binding of anti-BMP-2 antibody and anti-
FGF-2 antibody on the BMP-2-modified and the FGF-2-modified coatings, respectively,
compared to the nearly unchanged frequencies on the pure coating surfaces. Notably,
the small frequency drop in the pure coating study cannot be considered as expected
antibody-antigen specific bonding, because this reduction level of frequency may be due
to the limitations of the QCM equipment and the measurement errors caused by random
fluctuations in the experimental phase [26]. The results not only confirmed the identity and
activity of the immobilized FGF-2 and BMP-2 proteins but also indicated a firm attachment
of these proteins by covalent conjugation, which was also found by the abovementioned
FT-IR data. Other supporting data were used to verify the reactivity and specificity of
the immobilized FGF-2 and BMP-2 surfaces. As shown in Figure 2c, they were derived
from the use of a microcontact printing (µCP) technique with a PDMS stamp to induce a
selective reaction with BMP-2 and FGF-2 at confined locations of the maleimide-PPX coat-
ing surfaces. Subsequently, solutions with a primary antibody and a fluorescently labeled
secondary antibody (fluorescein for the BMP-2 secondary antibody and Alexa Fluor® 555
for the FGF-2 secondary antibody) were incubated with these selectively modified samples,
and the combined self-assembled bindings between the growth factor proteins and these
antibodies showed strong, distinguishable fluorescence signals in the green channel with
fluorescein on the BMP-2-modified regions and in the red channel by Alexa Fluor® 555 on
the FGF-2 regions. These patterns were consistent with those from the µCP stamps. The
specific binding affinities of the two growth factor proteins were unambiguously verified.
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Figure 2. (a) Quantification of the conjugation densities of BMP-2 and FGF-2 by using QCM analysis. (b) QCM dynamic
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specificity of the immobilized growth factors were verified by exploiting a µCP technique to spatially confine the conjugation
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and anti-FGF-2) and by secondary antibodies (fluorescently labeled secondary antibodies) show that the fluorescence
patterns are consistent with the µCP patterns.
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The induction of these hADSCs toward osteogenic differentiation was studied by
examining their alkaline phosphatase (ALP) expression in the early stage and alizarin red
staining (ARS) in the mature stage of osteogenesis, and the results in Figure 3a indicated
the enhanced ALP expression at day 10 on the modified surfaces of BMP-2 compared
to the expression levels on the control surfaces consisting of pure maleimide-PPX and
unmodified tissue culture polystyrene (TCPS) plates. Similar results from experiments on
enriched calcium deposition, as evaluated by ARS signals at day 21, were also observed
for the BMP-2 surfaces. Statistical analysis of these ALP and ARS signals, shown in
Figure 3b,c, further confirm the enhanced osteogenesis on the growth factor-modified
surface (*** p < 0.001 relative to the control surfaces). The BMP-2-modified surface had
a greater level of osteogenesis activity signal expression, with a 276.9% higher intensity
compared to the lowest level, which was for the TCPS control surface. Furthermore, the
hADSC activity toward chondrogenic differentiation was investigated on those surfaces
by detecting the known mechanism and characteristic indications of chondrogenesis, as
determined at day 14 by (i) staining and characterizing the color and intensity changes
caused by the metachromatic binding between toluidine blue and cartilage polysaccharides,
(ii) sulfate glycosaminoglycan (sGAG) deposition, and (iii) collagen type II expression. The
results presented in Figure 4a–c reveal that the intensities and signals for (i), (ii), and (iii)
were all consistently greater on the BMP-2-modified surface than they were on the other
surfaces (*** p < 0.001), indicating that chondrogenesis was best enhanced on this modified
surface among those studied.
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Figure 3. The osteogenesis activities of hADSCs were examined on the modified surfaces with immo-
bilized BMP-2 growth factor protein. Pure maleimide-PPX coating surfaces and unmodified tissue
culture polystyrene (TCPS) surfaces were used for the comparison. (a) The early stage osteogenesis
marker, ALP expression, was analyzed at day 10, and the mature stage marker, calcium deposition,
was observed at day 21 using alizarin red staining (ARS). The results of statistical analyses of the
quantified (b) ALP signals and (c) ARS signals were also compared for the studied surfaces. The data
bars represent the mean value (n = 3) and the standard deviation (±SD) based on three independent
experiments. The significance level *** stands for *** p < 0.001, and is shown by the results of the
unpaired t-test.
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Figure 4. Chondrogenic activities of hADSCs were examined on the studied surfaces. (a) Toluidine blue staining was
performed on day 14 to trigger the metachromatic color change (yellow arrows). The detected intensities from (b) sulfated
glycosaminoglycan (sGAG) by using a spectrophotometric 1,9-dimethylmethylene blue (DMMB) dye binding assay and
(c) the chondrogenic marker collagen type II gene expression by quantitative PCR analysis were statistically analyzed and
compared for the studied surfaces. The data bars represent the mean value (n = 3) and the standard deviation (±SD) based
on three independent experiments. The significance level *** stands for *** p < 0.001, and is shown by the results of the
unpaired t-test.

Furthermore, the adipogenic induction of hADSCs on the modified coating surfaces
was analyzed by observing the light-refraction of lipid droplets, which accumulate during
adipogenesis, within the differentiated cells at day 10. A characteristic staining tech-
nique in which oil red O dye binds to lipids was used to visualize the lipid droplets
(Figure 5a). In addition, 172.3% increases in adipogenesis activity based on quantitative
oil red O staining were confirmed for the FGF-2-modified surfaces, significant difference
(*** p < 0.001) compared to that for other surfaces (Figure 5b), and the expression of the
FABP-4 gene was detected (Figure 5c), further supporting the quantitative results. Fi-
nally, in another demonstration, the functions that determine stem cell action, as based
on the use of the growth factor-modified coating, were examined by culturing normal
human adipose-derived stem cells (hADSCs) on the modified surfaces. As displayed in
Figure 6, the analysis by using phase-contrast microscopy and MTT assay revealed high
biocompatibility for cell growth (data are included in Supplementary Figure S3) and re-
flected a consistent level of cell adhesion for all the studied surfaces on day 1 (Figure 6a,b).
Notably, significant variation was discovered between these surfaces over an extended
culture time frame such that, at day 5, the FGF-2-modified surfaces specifically exhibited
profound proliferation of hADSCs compared to that of the pure maleimide-PPX coating
surface and unmodified TCPS surface (Figure 6a,b). Statistically, the proliferation ratio of
cell number that was normalized by day 5 to day 1 unambiguously revealed the anticipated
results by showing an approximate 377.8% higher ratio for the FGF-2-modified surfaces, a
significant difference (*** p < 0.001) compared to that for other surfaces, and the enhanced
hADSC proliferation activity from using the growth factor-modified coating technique was
also evident (Figure 6c).
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The conjugation was attributed to the maleimide-equipped functionality, which was
readily accessible to site-specific and covalent binding to thiol moieties through Michael-
type nucleophilic addition with high specificity and rapid kinetics under mild conditions
at room temperature in aqueous solutions of pH 7.4. Such conjugation reactions have been
shown to be successful without perturbing the protein structures or functions [13,24,27].
In addition, the covalent immobilization of the growth factors to biomaterial interfaces
addresses challenges associated with delivering freely diffusible growth factors and has
thus emerged as a promising method of achieving localized and sustained growth factor
delivery based on a phenomenon called juxtracrine signaling (or contact-dependent sig-
naling) [3,28,29]. Immobilized growth factors (i.e., BMP-2 and FGF-2) provide chemical
cues for the guidance of stem cell behaviors and are therefore applicable to the material
surface, where they demonstrate the concept. More importantly, both BMP-2 and FGF-
2-functionalized surfaces can promote multilineage differentiation. However, only the
FGF-2-functionalized surface had an enhanced effect on the normal growth of cultures, and
this result is consistent with other publications. BMP-2, which belongs to the transforming
growth factor beta (TGF-β) family, is now recognized as a multipurpose cytokine. When
the chemical composition of the modified coatings and the conjugation reactions were
confirmed, the current coating technique was also demonstrated to direct cellular activities
for mesenchymal stem cells (MSCs) and induce BMP-2 function via activation of the SMAD
signaling mechanism [30,31], which leads to MSC multilineage differentiation that includes
not only osteogenesis and chondrogenesis [32] but also adipogenesis [33–35]. On the other
hand, FGF-2 has been shown to be part of a signaling pathway distinct from that of BMP-2
that enhances the self-renewal of MSCs such that they maintain their multilineage differen-
tiation potential [36–38]. The coating material, poly-p-xylylene, is a highly biocompatible
polymer of Class VI in the United States Pharmacopeia (USP), and the biocompatibility (or
cell viability) examinations associated with the polymer system (thin films) or the same



Coatings 2021, 11, 582 11 of 15

produced devices were well-reported during the past including biocompatibility against
various types of cells (including hADSCs). The convincing results of stem cell differen-
tiation in this report also clearly support the argument that the cells are alive, especially
in the final stage of cell differentiation. Compared with committed or differentiated cells,
the most fascinating feature of undifferentiated stem cells is their strong plasticity [39,40],
and the coating technology based on the proposed growth factor modifications by using
vapor-phase maleimide-PPX can give full play to these characteristics of stem cells. The
statistical quantification of these guided cellular activities and, for comparison, that of
the pure maleimide-PPX coating surfaces and the unmodified TCPS control surfaces, is
further analyzed and summarized in Table 2. These results clearly support that the surface-
modified products can promote the differentiation and proliferation of stem cells under
various induction conditions, so as to achieve the expected effects for potential regenerative
medicine applications.
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Figure 6. The proliferation activities of hADSCs were examined on the studied surfaces. (a) Phase-contrast micrographs
of cell growth patterns recorded on day 1 and day 5. (b) Estimated cell numbers on day 1 and day 5 were compared for
these surfaces. (c) The proliferation ratio that statistically normalized the cell numbers on day 5 to day 1 was compared
for these studied surfaces. The data bars represent the mean value (n = 3) and the standard deviation (±SD) based on
three independent experiments. The significance levels n.s. and *** stand for nonsignificant difference and *** p < 0.001,
respectively, and are shown by the results of the unpaired t-test.
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Table 2. Enhanced induction properties of growth factor-modified surfaces based on the maleimide-functionalized poly-p-
xylylene (maleimide-PPX) coating a.

Induction b BMP-2
Modified

FGF-2
Modified

Maleimide-PPX
Coating

Unmodified
TCPS

Potential
Applications

osteogenesis 277% - 108% 100% bone regeneration [41,42]
chondrogenesis 156% - 100% 100% cartilage regeneration [43]

adipogenesis - 172% 94% 100% soft tissue reconstruction [44–46]
proliferation - 378% 94% 100% repair damage from wound or cuts [47]

a Data were normalized and compared against data from a control surface of commercially available tissue culture polystyrene (TCPS)
plates. b Data were compared and shown based on results from alizarin red staining, 1,9-dimethylmethylene blue staining, oil-red O
staining, and cellular expansion rates.

4. Conclusions

In this study, an effective and general interface modification method for use in defining
stem cell fate and enhancing the functions related to proliferation rate and multilineage
differentiation capacity was demonstrated. The introduced surface modification was
synthesized based on a clean and dry vapor deposition process that rendered a functional
polymer coating. Most importantly, the facile integration of the maleimide functionality
into the coating enabled the covalent conjugation of BMP-2 and FGF-2 growth factor
proteins in mild conditions, which enabled guided differentiation and proliferation of the
MSCs. With the proven concept that coating technology can be used not only on a variety
of substrate materials, but also for conformity and stability on devices with sophisticated
topology and geometry, we foresee that these findings have significant potential for further
use in biomedical applications because of the various controllable parameters in favorable
conditions offered by this coating technology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/coatings11050582/s1, Figure S1: Maleimide-functionalized poly-p-xylylene (maleimide-PPX)
coating. (a) Infrared reflec-tion-absorption spectroscopy (IRRAS) spectra for the maleimide-PPX
coating. The peaks located at 1396 cm−1 (C–N), 1706 and 1767 cm−1 (C=O) correspond to the
characteristic band stretches for the maleimide groups. Infrared reflection absorption spectroscopy
(IRRAS) spectra for the Parylene-C coating which has no maleimide was also shown for the better
comparison. (b) X-ray photoelectron spectroscopy (XPS) characterization of the maleimide-PPX
coating. The table com-pares the experimental values of the XPS survey high-resolution C1 s spectra
with the theoretical predictions. The signal at 285.0 eV is attributed to the aliphatic and aromatic
carbons (C–C, C–H), and the intensity at 84.5 at% compares well with the theoretical concentration of
84.2 at%. The C–N bond was detected with 5.6 at%, which compares well with the theoretical value of
5.3 at%. The peak at 288.6 eV was assigned to the O=C–N group of the maleimide (7.1 at%) and agrees
with the theoretical value of 10.5 at%. The signal at 291.4 eV (2.8 at%) indicates π→π* transitions,
Figure S2: FT-IR spectra of BMP-2 (bone morphogenetic protein 2) and FGF-2 (fibroblast growth
factor 2) alone. The thiol groups of the BMP-2 and FGF-2 proteins (i.e., S-H band at 2634 cm−1) in
the spec-tra were highlighted, Figure S3: Biocompatibility analysis of the maleimide-PPX coatings.
The human adipose-derived stem cells (hADSCs) were cultured on each surface for 1 day and the
cell viabilities were then quantified by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. The data bars represent the mean value and the standard deviation (±SD)
based on three inde-pendent samples. The p-value large than 0.05 indicates the studied surface
has a good biocom-patibility with no significant difference (n.s.) as compared to the unmodified
TCPS surfaces.

https://www.mdpi.com/article/10.3390/coatings11050582/s1
https://www.mdpi.com/article/10.3390/coatings11050582/s1
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PPX Poly-p-xylylene
BMP-2 Bone Morphogenetic Protein 2
FGF-2 Fibroblast Growth Factor 2
hADSCs Human Adipose-Derived Stem Cells
CVD Chemical Vapor Deposition
Maleimide-PPX Poly[(4-N-maleimidomethyl-p-xylylene)-co(p-xylylene)]
TGF-β Transforming Growth Factor Beta
MSCs Mesenchymal Stem Cells
FT-IR Fourier Transform Infrared
XPS X-ray Photoelectron Spectroscopy
DTT Dithiothreitol
QCM Quartz Crystal Microbalance
µCP Microcontact Printing
PDMS Poly(dimethylsiloxane)
TCPS Tissue Culture Polystyrene
ALP Alkaline Phosphatase
ARS Alizarin Red S
sGAG Sulfated Glycosaminoglycan
DMMB 1,9-Dimethylmethylene Blue
FABP-4 Fatty Acid-Binding Protein 4
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide
qPCR Quantitative Real-Time Polymerase Chain Reaction
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