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Abstract: PtRu nanoparticles decorated on carbon-based supports are of great interest for direct
methanol fuel cells (DMFCs). In this study, PtRu alloy nanoparticles decorated on carbon Vulcan
XC-72 (C), multi-walled carbon nanotubes (MWCNTs), and C-MWCNTs composite supports were
synthesized by co-reduction method. As a result, PtRu nanoparticles obtained a small mean size
(dmean = 1.8–3.8 nm) with a size distribution of 1–7 nm. We found that PtRu/C60MWCNTs40 possesses
not only high methanol oxidation activity, but also excellent carbonaceous species tolerance ability,
suggesting that C-MWCNTs composite support is better than either C or MWCNTs support. Fur-
thermore, detailed investigation on PtRu/C100−xMWCNTsx (x = 10–50 wt.%) shows that the current
density (Jf), catalyst tolerance ratio (Jf/Jr), and electron transfer resistance (Ret) are strongly affected
by C-MWCNTs composition. The highest Jf is obtained for PtRu/C70MWCNTs30, which is considered
as an optimal electrocatalyst. Meanwhile, both PtRu/C70MWCNTs30 and PtRu/C60MWCNTs40

exhibit a low Ret of 5.31–6.37 Ω·cm2. It is found that C-MWCNTs composite support is better than
either C or MWCNTs support in terms of simultaneously achieving the enhanced methanol oxidation
activity and good carbonaceous species tolerance.

Keywords: composite support; electrocatalysts; methanol oxidation; multi-walled carbon nanotubes;
PtRu nanoparticles

1. Introduction

Currently, green energy research is more urgent than ever due to environmental
pollution and the gradual depletion of fossil energy. As a green and clean electric power
source, fuel cells are able to directly transform chemical energy into electrical energy, and
used as power generation in portable, stationary, and transportation applications [1–3].
Among various types of fuel cells, direct methanol fuel cells (DMFCs) have been considered
as a promising energy source owing to their low operation temperature (below 100 ◦C),
operation safety, superior specific energy, and durability [3,4]. The commercialization of
DMFCs requires further reducing the cost and increasing the performance of the electrode
catalyst. However, precious and expensive metal catalyst (i.e., Pt or Pt alloy) has been
generally used as the catalyst for methanol oxidation reaction (MOR) in DMFCs [5–10].
Moreover, carbon monoxide (CO) gas released in MOR poisons Pt catalyst and limits the
performance of DMFCs. In order to solve these problems, various Pt-based alloys have
been developed to reduce Pt usage and enhance the catalyst activity, including PtRu [11,12],
PtCo [13], PtMo [14], PtRuNi [15], PtRuMo [16], etc. Among the catalyst systems, PtRu
is well known, owing to its superior performance in preventing the poisoning of the Pt
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surface by CO gas. It is because Ru forms an oxygenated species at lower potentials than
that of Pt, and thus Ru promotes the oxidation of CO gas produced during MOR [17].

Membrane electrode assembly (MEA), which is the main component of DMFCs, has
a significant effect on fuel cell performance. An effective anode catalyst is one of the
prerequisites for an ideal MEA [18]. In DMFCs, supporting materials (or substrates) for
catalysts play a certain important role that can significantly affect the catalyst activity.
Carbon black (CB) is commonly used for supporting catalyst nanoparticles in DMFCs
because of its large specific surface area and high electrical conductivity [19], but it poses
several drawbacks—poor corrosion resistance and limitation of mass transfer due to its
dense structure [20]. Carbon nanotubes (CNTs) with high chemical stability and high
electrical and thermal conductivities are considered as an excellent support material [21].
Indeed, the catalysts/CNTs possess 1.3–1.6 times greater methanol oxidation activity than
that of catalysts/Vulcan carbon [22–24]. However, the electrical and thermal conductivities
at CNT–CNT inter-tube junctions are at least an order of magnitude lower than those of
individual CNTs [25,26]. In recent years, the development of carbon-based nanomaterial
supports with different structures–morphologies to enhance DMFCs performance has
attracted much attention. Graphene, carbon xerogels, carbon nanofiber, mesoporous
carbon, and functionalized or doped carbon supports exhibited the enhancements in
methanol oxidation efficiency as compared to the traditional carbon supports [22–24,27–33].
Interestingly, PtRu nanoclusters decorated on three-dimensional porous composite support
of graphene sheets (GS) and CNTs presented ~3.2 times higher current intensity than
the catalysts on carbon substrate, which was attributed to the decreased aggregation of
metallic nanoparticles in the PtRu/GS-CNT [24]. In addition, Yang et al. reported that Pt
nanoparticles decorated on a composite support of 10 wt.% MWCNTs and CB resulted
in an enhanced power density of 1.5 and 2 times greater than those of the Pt catalyst
on MWCNTs- and CB-supports, respectively [34]. Moreover, MWCNTs support showed
better durability than CB support [34]. These results suggest that, besides developing
catalyst materials, studies on composite carbon-based supporting nanomaterials are a new
promising approach toward further enhancement of DMFCs performance.

In this study, PtRu alloy nanoparticles synthesized by a co-reduction method were decorated
on C100−xMWCNTsx composites with various mixing weight percentages (i.e., x = 0–100 wt.%).
The structure and morphology of the PtRu/C100−xMWCNTsx (x = 0–100 wt.%) samples
were studied by X-ray diffraction (XRD) and transmission electron microscope (TEM)
analyses. The effect of MWCNTs content on the electrocatalytic activity of the nanomaterials
was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy
(EIS) analyses. This study provides the optimal composition of C-MWCNTs support for
the enhanced catalytic activity of PtRu/C-MWCNTs, and gains insight into the support
role to the overall performance of an electrocatalyst.

2. Materials and Methods

PtRu/C100−xMWCNTsx (x = 0, 10, 20, 30, 40, 50, and 100 wt.%) were synthesized using
the following procedure. First, solutions containing C100−xMWCNTsx (x = 0, 10, 20, 30,
40, 50, and 100 wt.%) were prepared by mixing accurate amounts of the commercial C
(carbon Vulcan XC-72, Fuelcellstore, College Station, TX, USA) and MWCNTs (>95%, OD:
10–20 nm, US Research Nanomaterials, Inc., Houston, TX, USA) with 10 mL deionized
(DI) water in an ultrasonic bath for 15 min. Noticeably, since the pristine MWCNTs lacks
bonding sites, namely –COOH, =O, and –OH groups, the deposition of metal nanoparticles
on the surface of MWCNTs is difficult. Thus, it requires functionalizing MWCNTs to keep
metal nanoparticles on its surface by several developed methods [35–37]. The common
method is the treatment of MWCNTs with HNO3 and H2SO4 acids under suitable time and
temperature to activate MWCNTs. To our knowledge, MWCNTs are activated effectively
under refluxing condition in 65% HNO3 and 98% H2SO4 acids (1:1) at 50 ◦C for 5 h. Next,
30 mL ethylene glycol and 15 mL sulfuric acid (H2SO4 98%) solutions were added to
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the C100−xMWCNTsx solutions, and the mixture solutions were then stirred at 170 ◦C for
30 min.

The PtRu precursor solutions were prepared by mixing 3.5 mL H2PtCl6·6H2O 0.02 M
and 3.5 mL RuCl3·xH2O 0.02 M (corresponding to 13 mg Pt and 7 mg Ru, the atomic
ratio of Pt:Ru = 1:1) in an ultrasonic bath for 15 min. Next, the mixture of PtRu precursor
solution was slowly dropped into the C100−xMWCNTsx solutions, following by a sprinkle
of 0.2 M NaBH4 solution. The pH solution was adjusted to 10 by using 10 M NaOH. The
mixture was stirred at room temperature for 8 h. Finally, the PtRu/C100−xMWCNTsx (x = 0,
10, 20, 30, 40, 50, and 100 wt.%) products were collected by filtration, washed thoroughly
with DI water, and dried overnight at 90 ◦C. The H2PtCl6·6H2O, RuCl3·xH2O, H2SO4 98%,
HNO3 65%, NaBH4, CH3OH, and NaOH were purchased from Merck KGaA of Darmstadt,
Germany. The mass of each support type, Pt and Ru metals, and their proportions in each
sample are listed in Table 1.

Table 1. Detailed preparation conditions of the catalytic samples investigated.

Sample

C-MWCNTs Support Pt and Ru Metal

Carbon Vucal
XC-72 Mass

(mg)

MWCNTs
Mass
(mg)

Mass Ratio of C
and C-MWCNTs

(wt.%)

Mass Ratio of
MWCNTs and
C-MWCNTs

(wt.%)

Mass Ratio of
C-MWCNTs
and Sample

(wt.%)

Pt
Mass
(mg)

Ru
Mass
(mg)

Mass Ratio of
Pt + Ru and

Sample
(wt.%)

PtRu/C 80 0 100 0 80 13 7 20
PtRu/MWCNTs 0 80 0 100 80 13 7 20

PtRu/C90MWCNTs10 72 8 90 10 80 13 7 20
PtRu/C80MWCNTs20 64 16 80 20 80 13 7 20
PtRu/C70MWCNTs30 56 24 70 30 80 13 7 20
PtRu/C60MWCNTs40 48 32 60 40 80 13 7 20
PtRu/C50MWCNTs50 40 40 50 50 80 13 7 20

The crystalline orientations of the nanomaterials were studied via XRD analysis using
Bruker D8 and Cu Kα (1.5406 Å) radiation. Structural characterization at atomic scale was
performed by using a TEM (JEOL JEM1010, Hanoi, Vietnam). A three-electrode test cell
configuration using an Ag/AgCl reference electrode was used for electrochemical analyses.
The electrolyte was a mixture solution of 0.5 M H2SO4 98% and 1.0 M CH3OH. The working
electrode was made using 4 mg of catalytic powder (Pt and Ru masses were 0.52 mg and
0.28 mg, respectively) mixed with 1 mL of 2-propanol (Merck, Darmstadt, Germany) in
an ultrasonic bath. Afterward, the catalytic powder was swept onto 1 cm2 carbon paper
using Nafion 117 binder solution (Aldrich, Darmstadt, Germany). The carbon paper was
then scanned into catalytic powder, which was assembled in a sealed plastic frame with a
blank area of 1 cm2. This active area was completely immersed in the electrolyte during
CV measurements. CV curves were recorded using an Autolab 302N system (Ho Chi Minh
City, Vietnam) within a potential range of −0.2–1.2 V vs. Ag/AgCl (3M KCl) at a scan
rate of 50 mV·s−1. Electrochemical impedance spectroscopy (EIS) measurements were
performed using the same system with a potential amplitude of ±10 mV in a frequency
range of 0.1–100 kHz.

3. Results and Discussion
3.1. Effect of Catalyst Supports on Structure–Composition and Methanol Oxidation Performance of
PtRu/C100−xMWCNTsx (x = 0, 40, 100%)

Figure 1 shows the XRD patterns of PtRu/C, PtRu/MWCNTs, and PtRu/C60MWCNTs40.
Clearly, the XRD patterns of all three types of nanomaterials are similar, whose peaks can
be indexed to the (111), (200), (220), and (311) planes of a face-centered cubic (f.c.c) lattice
structure of platinum. In addition, the patterns of the hexagonal closest packed (h.c.p)
structure of ruthenium should be included inside these diffraction peaks, namely Ru (002)
at 42.2◦, Ru (101) at 44.1◦, Ru (110) at 69.5◦, and Ru (112) at 84.8◦. In addition, a broad
diffraction peak at approximately 26◦ is attributed to hexagonal graphite structure [C (002)],
suggesting that these supports could have good electrical conductivity [38]. The present
XRD results confirm for the PtRu alloy on C-based supports, and they are similar to those
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results reported in [39–41]. It was found in a PtRu alloy that if Ru content in PtRu alloy
is lower than 60 wt.%, the alloys will stay in the f.c.c structure of platinum; inversely, if
Ru content in PtRu alloy is higher than 60 wt.%, the PtRu alloy will exhibit h.c.p structure
of ruthenium [40,41]. Since the XRD patterns matched better with the f.c.c structure of
platinum, the Ru content in the PtRu alloys in this study should be lower than 60 wt.%.
Furthermore, no XRD peak shift was observed, thus the composition of PtRu should be
stable among the prepared samples.
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Figure 1. XRD patterns of PtRu/C, PtRu/MWCNTs, and PtRu/C60MWCNTs40.

Figure 2 shows the typical TEM images and the particle size distribution histograms
of PtRu/C, PtRu/MWCNTs, and PtRu/C60MWCNTs40. Obviously, PtRu nanoparticles
were well distributed and decorated on the C100−xMWCNTsx (x = 0, 40, 100%) supports.
All the samples had narrow size distributions and small mean values (dmean) of 2.4 ± 0.2,
3.8 ± 0.1, and 2.2 ± 0.1 nm for PtRu/C, PtRu/MWCNTs, and PtRu/C60MWCNTs40,
respectively (Figure 2). It is known that particle size of catalysts can affect the methanol
oxidation activity of PtRu alloy catalysts. It is plausible that when the present PtRu
sizes with dmean between 2.2 ± 0.1 and 3.8 ± 0.1 nm are close to the reported optimal
PtRu size of ~3 nm, high methanol oxidation activity is achieved [42]. Importantly, the
uniformities in size and distribution of PtRu nanoparticles among the samples investigated
were sufficient to allow for studying the compositional effects of C100−xMWCNTsx supports
on the electrocatalytic activity of PtRu/C100−xMWCNTsx (x = 0–100 wt.%), as described in
a later section. Interestingly, by considering both dmean values and the upper tails of the
size distributions, the C60MWCNTs40 composite support with high porosity likely hinders
the growth of PtRu nanoparticles. This finding agreed well with that in [11], in which the
mesoporous carbon support was found to restrict the crystal growth of PtRu nanoparticles.

Cyclic voltammograms (CV) of PtRu/C, PtRu/MWCNTs, and PtRu/C60MWCNTs40
are shown in Figure 3a,b. These samples exhibited different current density (J); the peak cur-
rent density values of forward and reverse scans (Jf and Jr) and Jf/Jr ratio were determined
and are listed in Table 2. The Jf (Jr) values are 21.6 (6.0) mA/mgPtRu, 67.0 (36.0) mA/mgPtRu,
and 65.4 (19.4) mA/mgPtRu for PtRu/C, PtRu/MWCNTs, and PtRu/C60MWCNTs40, re-
spectively. Obviously, PtRu/C had lowest Jf value, while PtRu/MWCNTs and PtRu/C-
MWCNTs achieved Jf values more than three times higher. In contrast, the PtRu/C obtained
the highest Jf/Jr ratio of 3.6, and PtRu/C60MWCNTs40 also reached a high Jf/Jr value of



Coatings 2021, 11, 571 5 of 13

3.4, whereas PtRu/MWCNTs exhibited a low Jf/Jr ratio of 1.9. The Jf/Jr ratio is used
to describe the catalyst tolerance to carbonaceous species accumulation [43]. The larger
Jf/Jr value indicates a better CO resistant catalyst. In MOR, CO is a critical intermediate
that reduces both fuel cell potential and energy conversion efficiency. A forward scan is
attributable to methanol oxidation, forming Pt-adsorbed carbonaceous intermediates (e.g.,
carbon monoxide). The adsorbed carbon monoxide causes a suppression of the electrocat-
alyst activity. The reverse oxidation peak is attributed to the additional oxidation of the
adsorbed carbonaceous species to carbon dioxide (CO2) [44].
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Table 2. Electrochemical parameters of PtRu/C, PtRu/MWCNTs, and PtRu/C60MWCNTs40.

Sample
Jf Jr Jf/Jr Ret

(mA·cm−2) (mA/mgPtRu) (mA·cm−2) (mA/mgPtRu) – (Ω·cm2)

PtRu/C 17.3 21.6 4.8 6.0 3.6 7.39
PtRu/MWCNTs 53.6 67.0 28.8 36.0 1.9 11.19

PtRu/C60MWCNTs40 52.3 65.4 15.5 19.4 3.4 6.37

Based on these results, the best carbonaceous species tolerance ability (Jf/Jr = 3.6)
was achieved in the PtRu/C. For the support effect, the Jf value of PtRu/MWCNTs is
higher than that of PtRu/C (Figure 3a and Table 2), which could be attributed to the higher
porosity and better catalyst dispersion–distribution of MWCNTs support than those of
C support [21]. However, the carbonaceous species tolerance ability of PtRu/MWCNTs
(Jf/Jr = 1.9) is very limited. Nevertheless, PtRu/C60MWCNTs40 can simultaneously achieve
a high Jf of 52.3 mA·cm−2 (or 65.4 mA/mgPtRu) and a high Jf/Jr ratio of 3.4. This means
that PtRu/C60MWCNTs40 possesses not only high MOR activity, but also excellent car-
bonaceous species tolerance ability, suggesting that the composite of C-MWCNTs support
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is better than either C or MWCNTs support. Thus, it is necessary to further optimize the
composite composition of C100−xMWCNTsx with x = 10–50 wt.% toward achieving the
highest methanol oxidation activity and excellent carbonaceous species tolerance ability, as
described in the next section.
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Figure 3c shows the Nyquist plot curves of PtRu/C, PtRu/MWCNTs, and PtRu/C60MW
CNTs40 at a potential of 0.8 V (vs. Ag/AgCl). Although the Nyquist curves of the samples
do not show full semicircles, it is still clear that the total complex impedance Z of the
samples has a decreasing order of PtRu/MWCNTs < PtRu/C < PtRu/C60MWCNTs40. For
quantitative analysis of the EIS data, we employed the Randles equivalent circuit model
to fit the plots with one semicircle [45], whose model was also used to fit the EIS data of
Fe2O3 films [46], Pt–MnO2 nanoparticles decorated on reduced graphene oxide sheets [47],
and carbon-supported Ru-Pt nanoparticles [48]. The circuit included the electron transfer
resistance (Ret), solution resistance (Rs), and double layer capacity (Cdl). The circular
fits with the Randles circuit yield Ret values of 7.39, 11.19, and 6.37 Ω.cm2 for PtRu/C,
PtRu/MWCNTs, and PtRu/C60MWCNTs40, respectively. The lowest Ret was obtained
for PtRu/C60MWCNTs40, indicating composite C-MWCNTs support offered excellent
electron transfer that was attributed to the highest current density at 0.8 V. The highest
electrocatalytic activity and the smallest Ret of PtRu/C60MWCNTs40 indicates that the
composite of C-MWCNTs is a superior support over either C or MWCNTs.

These results can be explained by considering the structure–morphology of the three
types of supports. Indeed, MWCNTs are chemically inert, so PtRu nanoparticles will be
unable to stick well on the tube walls if MWCNTs are not treated. In this study, after
being treated with 98% H2SO4 + 65% HNO3 at 50 ◦C for 5 h, functional groups =O, –OH,
–COOH are formed on the surfaces of MWCNTs, and consequently PtRu nanoparticles
resides on these functional groups (Figure 4). Although commercial carbon Vulcan XC-72
has high porosity, it clumps easily and reduces the surface area if this C support is used
in a large quantity. The blending of carbon Vulcan XC-72 with the activated MWCNTs
allows dispersed C sheets/ bulks into the gaps between MWCNTs (Figure 4). Therefore,
this composite support can exhibit high porosity and large surface area. Consequently, the
deposition of PtRu nanoparticles on C-MWCNTs will be easier and distributed more evenly,
which is attributed to the enhanced methanol oxidation catalytic efficiency (Figure 4).
Furthermore, C-MWCNTs support can combine the advantages but limit the disadvantages
of each component (i.e., C, MWCNTs).
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Figure 4. Schematic diagram of PtRu nanoparticles deposited on C-MWCNTs composite support,
where Vulcan XC-72 carbon dispersed into the gaps between activated MWCNTs.

3.2. Effect of MWCNTs Percentage (x = 10–50 wt.%) in PtRu/C100−xMWCNTsx Samples on the
Methanol Oxidation Activity

To determine the most suitable C-MWCNTs supports, a series of PtRu/C100−xMWCNTsx
(x = 10–50 wt.%) were prepared and characterized. The PtRu/C100−xMWCNTsx samples
had the same amount of PtRu nanoparticles with 20 wt.% and Pt/Ru atomic ratio of 1;
meanwhile, the C100−xMWCNTsx supports had various weight percentages of MWCNTs
(x) from 10 to 50%. Figure 5 shows TEM images and particle size distributions of the
PtRu/C100−xMWCNTsx samples. It can be seen clearly that Vulcan XC-72 carbon substrate
was dispersed into MWCNTs. In addition, PtRu nanoparticles were deposited and evenly
distributed on both carbon Vulcan XC-72 and MWCNTs for all the samples. Moreover,
particle size distribution of all the samples was in the range 1–6 nm with the peak of the
distribution at 2 nm. Intriguingly, when the MWCNTs content was small (x = 10 wt.%)
or large (x = 50 wt.%), the particle sizes were less uniform with wider size distribution as
compared to those of the other three samples (x = 20–40 wt.%).

Figure 6a,b present the CV curves of PtRu/C100−xMWCNTsx (x = 10–50 wt.%) in
the electrolyte solution. Clearly, the MWCNTs content strongly affected the current den-
sity of PtRu/C100−xMWCNTsx samples. The value of Jf, Jr, and Jf/Jr ratio are summa-
rized in Table 3. The Jf and Jr of PtRu/C100−xMWCNTsx increased when x increased
from 10% to 30%, and then decreased with further increasing the MWCNTs weight
percentage (x = 40–50 wt.%). The PtRu/C70MWCNTs30 obtained the highest Jf value,
115.8 mA/mgPtRu (92.6 mA·cm−2), or achieving the highest MOR activity. Meanwhile,
PtRu/C90MWCNTs10 obtained the highest Jf/Jr value of 4.4, and PtRu/C80MWCNTs20 ex-
hibited a high Jf/Jr of 4.0, whose values were higher than that of PtRu/C (Jf/Jr = 3.6,
Tables 2 and 3), indicating that C100−xMWCNTsx (x = 10–20 wt.%) achieved the en-
hanced carbonaceous species tolerance. Moreover, Figure 6c shows the Nyquist plot
of PtRu/C100−xMWCNTsx (x = 10–50 wt.%) at a potential of 0.8 V (vs. Ag/AgCl). The
semicircle of PtRu/C70MWCNTs30 and PtRu/C60MWCNTs40 are smaller as compared
with that of the other samples. By fitting the semicircles with the Randles equivalent circuit
model, PtRu/C70MWCNTs30 has the smallest Ret, 5.31 Ω·cm2 (Table 3). Owing to reaching
the highest electrocatalytic activity and the smallest Ret, PtRu/C70MWCNTs30 is proposed
as the best sample.

Table 4 summarizes the methanol oxidation activity results of PtRu nanoparticles deco-
rated on various carbon-related supports in the literature and in this study, in which current
density (Jf) and current density ratio (Jf/JfC) are used to evaluate the activity. Here, Jf/JfC
is the ratio between Jf of the present sample and JfC of the conventional carbon-supported
PtRu nanoparticle sample in each reference and in this study; thus Jf/JfC indicates the
current density enhancement of a particular sample relative to the conventional PtRu/C. By
observing Jf/JfC > 1 in Table 4, CNTs or MWCNTs, graphene-related, or composite support
generally exhibited the enhancements in methanol oxidation activity over the conventional
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carbon-supported sample. In other words, PtRu catalytic materials on the modified sup-
ports or composite supports present higher catalytic results than samples using traditional
carbon support (e.g., 82.7 mA·cm−2 for PtRu/N-CNTs vs. 27.5 mA·cm−2 for PtRu/CB [23];
and 136.7 mA·mg−1 for PtRu/CTNs-GS vs. 42.7 mA·mg−1 for PtRu/C [24]). In our study,
the current intensity of catalyst with PtRu nanoparticles deposited on C70MWCNTs30 com-
posite support is 5.35 times higher than that of Vulcan XC-72 carbon support. Therefore,
C70MWCNTs30 composite support is recommended to use in the electrodes of DMFC.
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Table 3. Electrochemical parameters of PtRu/C90MWCNTs10, PtRu/C80MWCNTs20, PtRu/C70MWCNTs30, PtRu/C60MW
CNTs40, and PtRu/C50MWCNTs50.

Sample
Jf Jr Jf/Jr Ret

(mA/cm2) (mA/mgPtRu) (mA/cm2) (mA/mgPtRu) – (Ω·cm2)

PtRu/C90MWCNTs10 29.8 37.3 6.7 8.4 4.4 29.2
PtRu/C80MWCNTs20 52.8 66.0 13.5 16.9 4.0 6.16
PtRu/C70MWCNTs30 92.6 115.8 42.9 53.6 2.2 5.31
PtRu/C60MWCNTs40 52.3 65.4 15.5 19.4 3.4 6.37
PtRu/C50MWCNTs50 38.6 48.3 9.7 12.1 3.9 8.87
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Figure 6. (a,b) Cyclic voltammograms of PtRu/C90MWCNTs10, PtRu/C80MWCNTs20, PtRu/C70MWCNTs30, PtRu/C60MW
CNTs40, and PtRu/C50MWCNTs50 with current density units of mA·cm−2 and mA/mgPtRu. (c) Nyquist plots of the EIS for
these samples in a frequency range from 0.1 Hz to 100 kHz. The electrolyte was a mixture solution of 0.5 M H2SO4 and
1.0 M CH3OH.
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Table 4. Comparison of CV results of the selected studies of PtRu nanoparticles decorated on novel carbon-related substrates in the literature and in this study. Current density ratio
(Jf/JfC) is the ratio between Jf of a PtRu/modified support and the Jf of a PtRu/conventional carbon support in each reference and in this study.

Sample Support Material Measurement Condition
Evaluate Performance

Reference
Current Density (Jf) Current Density Ratio (Jf/JfC)

PtRu/E-Tek
PtRu/CX

Vulcan XC-72R
Carbon xerogels

2 M CH3OH + 0.5 M H2SO4,
0.02 V·s−1

0.29 mA·cm−2

0.36 mA·cm−2
–

1.44 [27]

PtRu/C
PtRu 70%/CNF

Carbon
Carbon nanofiber

1 M CH3OH + 0.5 M H2SO4,
2 mV·s−1

340 mA·cm−2

390 mA·cm−2
–

1.15 [28]

PtRu/XC-72
PtRu/CMK-8-II Vulcan XC-72R Mesoporous Carbon 1 M CH3OH + 0.5 M H2SO4,

50 mV·s−1
27 mA·cm−2

60 mA·cm−2
–

2.22 [29]

PtRu/C
PtRu/CNTs

Vulcan XC-72R
Carbon nanotube

1 M CH3OH + 0.5 M H2SO4,
20 mV·s−1

22.5 mA·cm−2

33.5 mA·cm−2
–

1.49 [22]

PtRu/CB
PtRu/CNT

PtRu/N-CNTs

Carbon
Carbon nanotube

Carbon nanotube doping N

1 M CH3OH + 0.5 M H2SO4,
50 mV s−1

27.5 mA·cm−2

44.1 mA·cm−2

82.7 mA·cm−2

–
1.60
3.00

[23]

PtRu/C
PtRu/CNTs

PtRu/GS
PtRu/CTNs-GS

Carbon
Carbon nanotubes

Graphene sheet
Carbon nanotubes + Graphene sheet

1 M CH3OH + 0.5 M H2SO4,
20 mV·s−1

42.7 mA·mg−1

56.0 mA·mg−1

78.7 mA·mg−1

136.7 mA·mg−1

–
1.31
1.84
3.20

[24]

PtRu/C
PtRu/RGO

Carbon
Reduced graphene oxide (RGO) 0.5 M H2SO4 + 1 M CH3OH 430 mA·mg−1

570 mA·mg−1
–

1.33 [31]

PtRu/C
PtRu/FGSs

Carbon
Functionalized graphene sheets

1 M CH3OH + 0.5 M H2SO4,
50 mV·s−1

8.21 mA·cm−2

14.05 mA·cm−2
–

1.71 [32]

PtRu/C
PtRu/MWCNTs

PtRu/C70MWCNTs30

Carbon Vulcan XC-72
Multi-walled carbon nanotubes

C + MWCNTs

1 M CH3OH + 0.5 M H2SO4,
50 mV·s−1

17.3 mA·cm−2

53.6 mA·cm−2

92.6 mA·cm−2

–
3.10
5.35

Our results
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4. Conclusions

PtRu alloy nanoparticles decorated on C, MWCNTs, and C-MWCNTs supports for
high-performance methanol oxidation were synthesized by co-reduction method. The
synthesized PtRu/C100−xMWCNTsx (x = 0–100 wt.%) exhibited the crystal structure closed
to the f.c.c lattice structure of platinum with (111), (200), (220), and (311) preferred orienta-
tions. In addition, PtRu nanoparticles obtained a narrow size distribution and a small mean
size (dmean = 1.8–3.8 nm). For the support effects, PtRu/C-MWCNTs offered higher Jf (or
higher electrocatalytic activity) and lower Ret than those of PtRu/C and PtRu/MWCNTs.
In addition, PtRu/C-MWCNTs has high Jf/Jr values, which means good carbonaceous
species tolerance ability. To optimize the C-MWCNTs composition, PtRu/C100−xMWCNTsx
(x = 10–50 wt.%) were synthesized and characterized. The highest Jf, 115.8 mA/mgPtRu,
was obtained for PtRu/C70MWCNTs30, which was considered an optimal nanomaterial
system. Meanwhile, both PtRu/C70MWCNTs30 and PtRu/C60MWCNTs40 exhibited low
resistances with Ret of 5.31–6.37 Ω·cm2. The results of this study demonstrate that C-
MWCNTs composite support is better than either C or MWCNTs support; significant
enhancements in methanol oxidation activity and carbonaceous species tolerance ability
can be achieved by controlling the MWCNTs content in C-MWCNTs support.
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