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Abstract: This article presents thermoplastic sound-absorbing composites manufactured on the
basis of renewable raw materials. Both the reinforcing material and the matrix material were
biodegradable and used in the form of fibers. In order to mix flax fibers with polylactide fibers, the
fleece was fabricated with a mechanical system and then needle-punched. The sound absorption of
composites obtained from a multilayer structure of nonwovens pressed at different conditions was
investigated. The sound absorption coefficient in the frequency ranging from 500 Hz to 6400 Hz was
determined using a Kundt tube. The tests were performed for flat composites with various structures,
profiled composites, and composite/pre-pressed nonwoven systems. Profiling the composite plate
by convexity/concavity has a positive effect on its sound absorption. It is also important to arrange
the plate with the appropriate structure for the incident sound wave. For the composite layer with
an added pre-pressed nonwoven layer, a greater increase in sound absorption occurs for the system
when a rigid composite layer is located on the side of the incident sound wave. The addition
of successive nonwoven layers not only increases the absorption but also extends the maximum
absorption range from the highest frequencies towards the lower frequencies.

Keywords: green composite; nonwoven; sound absorption; structure; profiling

1. Introduction

Green composites have less environmental impact at the production, use, and post-use
stages than in the case of composites based on chemical fibers [1]. As filling material for pro-
ducing biocomposites, the natural fibers of wood, cork, horsehair, nettle, leaves, paper cut
in a shredder, chicken feather calamus cut into small cubes, fine sawdust, and straw are usu-
ally used [2–7]. As the matrix material, among others, polylactide, poly-hydroxybutyrate,
starch, chitosan, gum Arabic, and green epoxy resin are used [1,8]. Nowadays, different
kinds of natural materials are investigated for the reinforcement of sound-absorbing com-
posites because of their cheap production cost, eco-friendly composition, and their relevant
properties related to the application of interest [9]. The results of the sound absorption of
composites based on natural filling materials and biopolymers are promising, and present
the high potential of such materials as sound absorbers. These composites exhibit different
sound absorption depending not only on the type of filling/reinforcing material, but also
on the sound frequency range. Usually, however, high sound absorption is observed at
frequencies above 2000 Hz [1,2,10]. Sound absorption of selected frequency ranges de-
pends on the structure, density, and thickness of the absorber. The results for pineapple
leaf/epoxy composite show that for a given material density, by increasing its thickness,
we extend the absorption range towards lower frequencies [11].

Coatings 2021, 11, 407. https://doi.org/10.3390/coatings11040407 https://www.mdpi.com/journal/coatings

https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings11040407
https://doi.org/10.3390/coatings11040407
https://doi.org/10.3390/coatings11040407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/coatings11040407
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/2079-6412/11/4/407?type=check_update&version=2


Coatings 2021, 11, 407 2 of 20

Among various forms of the filling component, the fibers are the most beneficial from
the point of view of the mechanical properties of the composite [12]. The tensile strength
of a composite based on flax fibers is much higher than those reinforced with particles. It
can be about 20 times the strength of the cork-based composite, and about 3.6 times the
strength of the straw-based composite [1]. Fibrous products are increasingly used as a
sound-absorbing material. New structures with the participation of natural or synthetic
fibers are still being developed, and the literature on the subject contains research results
concerning the use of fibers that differ in terms of raw material, dimensions, arrangement,
and specific surface area [13–15]. Mamtaz et al. stated that synthetic fibers, due to their
thinner diameter and antifungal quality, are a better sound absorptive material than natural
fibers; unfortunately, they also have a greater impact on the environment [16]. However,
when talking about the acoustic properties of the fibers, many factors should be taken into
account, such as their thinness, the shape of their cross-section, and the bulk density of the
material. For example, the sound absorption of fabrics made from 3 denier polyester fibers
is 5 times greater than that of the material from 15 denier fibers [17]. The polyester fibers
with octalobal or trilobal cross-sections are better as sound insulators than round fibers
because of their higher total surface area [17]. The absorption of glass fibers with a bulk
density of 54 kg/m3 is higher than that of kapok fibers, with a bulk density of 10 kg/m3,
but lower than those fibers with a density of 15 kg/m3 [18].

The microscopic structure and surface morphology of natural fibers such as flax,
bamboo, kenaf, kapok, coir, cotton, broom, giant reeds, cane, coconut, hemp, etc. are
conducive to sound absorption [18–22]. Natural fibers, due to their unique hollow and
multi scale structures, show better sound absorption compared to high-modulus fibers
such as glass or carbon, especially at frequencies above 1000 Hz. The ramie, jute, and
flax fibers are characterized by a noise reduction coefficient at the level of 0.6–0.65, while
glass fibers are at the level of 0.35, and carbon fibers at 0.45 [23]. The literature reports
indicate that, for example, natural kapok fibers show sound absorption comparable to
the widely used reinforcing glass fibers [18,24]. They are also characterized by a much
lower density, which is of great importance in the design of lightweight composites. Yang
and Li stated that composites made of natural fibers, such as jute, ramie, flax, and epoxy
resin can exhibit similar or even better sound absorption than composites based on high-
modulus fibers such as glass or carbon, which is important for aeronautical applications [23].
Mohanty and Fatima presented natural rubber-based jute composites manufactured by a
compression molding process as biodegradable soundproofing materials for noise control
applications, e.g., in home appliances, building construction, and cars [25]. Ersoy and
Kucuk proposed that biodegradable tea leaf-fibers, as a product of renewable bio-resources,
can be used as a sound absorber. The backing of these fibers with a cotton fabric layer gives
sound absorption comparable to nonwoven polypropylene [26]. According to Zulkifli
et al., an even better effect can be obtained by using coconut fibers [27]. The sound
absorption of composite materials is also positively influenced by the addition of ultra-
short/ultra-fine fibers obtained from natural fibers, e.g., flax fibers. Such fibers obtained
by an enzymatic process and mechanical treatment, due to the larger total fiber surface,
give greater interaction with sound waves, and thus increase the sound absorption of the
material [28,29]. Research has shown that urea formaldehyde resin fiber boards made of
various fibers, such as bagasse, banana, bamboo, coir, and corn husk, are characterized by
better sound absorption if they have a lower density [30].

Much attention is also paid to fibrous layered products, as increasing the thickness
and density of the sound-absorbing layer promotes sound absorption at the mid-to-high
frequency ranges [10]. Layer systems where the layers differ in the type of fibers and in
the textile structure are described. The most commonly used structures are nonwovens,
woven fabrics, knitted fabrics, or nanofiber membranes. Sometimes fibrous layers are
combined with other materials, such as cork [31,32], foam [33], or a honeycomb grid [34].
The use of several fibrous layers differing in apparent density favors increased sound
absorption and widened absorption bands. The same is true in the case of laminated
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composites based on textiles. The use of a system of textile layers differing in structure
allows for obtaining a composite that has a lower thickness than the system of textile layers,
and a comparable absorption [28,29,35]. By using layers that differ in structure, one can
control the dependence of the sound absorption on the sound frequency [36]. Each material
absorbs and reflects sound waves to some extent. The proportions between the energy of
the reflected and absorbed waves can vary depending on the frequency of the sound. Soft,
porous materials are good sound absorbing materials. Hard and smooth materials absorb
sound waves very poorly. However, for some applications, it is necessary that at least the
surfaces of the material should be hard and smooth. The structure of the material can be
created in the process of its production [37].

Much attention is also paid to the importance of the material shape for its acoustic
performance. Sharma et al. presented an analytical framework for a metasurface with a
lattice of closely spaced spherical cavities embedded in a thin, soft medium. The strong
resonance of the cavities was confirmed, and it has been shown that the high sound
absorption of the metasurface is due to the strong multiple scattering of waves between
the cavities and the conversion of longitudinal waves into shear waves dissipated then in
the elastic medium [38]. Azad et al. investigated the effects of large-scale pyramidal and
convex-shaped diffusers in an empty non-diffuse room on its acoustical parameters. The
statistical analysis and measurement results showed that the influence of diffuser type on
the room acoustic characteristics is significant, especially at high frequencies [39]. Recently,
a growing interest in practical applications has been enjoyed by sonic crystals, i.e., finite
arrays of periodically distributed scatterers for which very little sound transmission occurs
in certain frequency bands. It is caused by the destructive interference of scattered waves
in the latttice structure. These bands depend on the shape of the scatterers, the distance
between the scatterers as a lattice constant, and the filling fraction. The center frequencies
of these bands can be predicted from Bragg’s law, and, for a greater lattice constant, they
are at lower frequencies. The literature gives results for rigid diffusers in the form of steel
cylinders or trees. Measurement results indicated that if the diffusers are arranged in a
lattice configuration, they can more effectively attenuate certain low frequency bands. The
attenuation level depends on the filling fraction, and the attenuation frequencies depend
on the type of lattice pattern and the angle of sound incidence on the barrier [40,41].

In the case of thermoplastic composites, both the reinforcing component and the
thermoplastic polymer can be used in the form of fibers. Having fibers, they can be used in
the form of a hybrid structure, e.g., a needle-punched nonwoven. This structure allows for
a high degree of mixing of both components, necessary to ensure good wettability of the re-
inforcement by the matrix. Nonwovens provide a number of functional benefits, including
thermal and acoustic insulation. The most important advantages of the needle-punching
technology include high production efficiency, the possibility of obtaining structures of
high thickness, and the possibility of joining layers with different fiber orientation. The
literature reports present the results of the research on sound absorption by nonwovens
in terms of nonwoven technology and the aspect of web orientation angle. The effect
of the web orientation angle on the sound absorption properties for thermally bonded
nonwovens of multiangle layered webs was tested by Lee et al. [29].

The present work concerns research on the possibilities of producing green compos-
ite materials of various layered structures and different profiling from nonwovens, and
determining the impact of these factors on the sound absorption by the composite [23,42].

2. Materials and Methods

To obtain green composites, flax fibers (LI), from Safilin Ltd., Milakowo, Poland, were
used as a reinforcement. The dimensions and quality of waste short flax fibers, the so-called
noils, were very diverse, Figure 1. The length of the flax fibers ranged from a few mm up to
115 mm, and the transverse dimensions were from 16 µm to 560 µm. As a matrix material,
biodegradable polylactide fibers (PLA) were used [43,44]. These commercial thermoplastic
fibers, Ingeo Fiber type SLN2660D (linear density 6.7 dtex, length 64 mm), with a melting
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point in the range of 165–170 ◦C and finished with polylactide resin without any hazardous
substances, were delivered by Far Eastern Textile Ltd., Taipei, Taiwan. In order to obtain
a homogeneous composite material, it was necessary to perfectly blend the fibers in the
nonwoven fabric. The mixing process consisted of passing the fibers twice through the
carding machine. The fleece with a parallel system of fiber arrangement was obtained.
Then, the needle-punching process of the fleece layer was carried out on an Asselin needle-
punching machine (France). The following technological parameters were used: type of
needles—15 × 18 × 40 × 31/2 RB (Groz-Beckert®, Albstadt, Germany); number of needles
punching—40/cm2; depth of needle-punching—12 mm. The needle-punched nonwoven
was thus obtained.

Figure 1. View of waste flax fibers.

Composites were formed from textile multilayer structures in a hydraulic press ma-
chine, Hydromega, Gdynia, Poland, with heated top and bottom plates and a water cooling
system. A multilayer structure of nonwovens, sandwiched between two layers of Teflon
foil, was put into the press mold. The mold was then closed and the heating was turned
on. After reaching the pressing temperature, i.e., the melting point of the thermoplastic
fibers, the consolidation stage was carried out under a pressure of 0.58 MPa for 5 min.
Finally, the heating was turned off and the water cooling system was turned on to bring
the temperature down to room temperature. For profiling the composites, a Teflon plate
with holes was used (during pressing it was placed under the multilayer structure of
nonwovens), and a tool with a spherical tip was used to obtain concavities in the composite
plates, Figure 2.

The acoustic properties of the composites were determined by means of a small-
sized impedance tube, type 4206 (Bruel&Kjaer, Denmark) using two 1

4 -inch condenser
microphones, type 4187, Figure 3. The physical sound absorption coefficient (a quotient
of acoustic energy absorbed by the given material to the energy of the acoustic incident
wave) was determined for each sample by the method using the coefficient of a standing
wave, according to the standard procedure: PN-EN ISO 10534-2 in the frequency range
of 500–6400 Hz. This range of sound frequencies is adequate and sufficient to observe the
sound absorbing behavior of the tested materials [2,12,28]. In this method, using a Kundt
tube, the sound wave coming from sound source is directed perpendicularly at the surface
of tested material. The acoustic pressure is measured by microphones at two locations
on the wall of the tube. Then, the signals are transferred to analyzer. In this method, the
impedance tube is connected to the sound source on one side, and on the opposite side
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the test sample is placed. The noise source generates plane waves in the tube directed
perpendicular to the sample surface. The sound pressure is measured thanks to the two
microphones in fixed positions in the tube wall. Then, the signals are transferred to the
analyzer and the interference distribution of the field is determined. Based on this, the
sound absorption coefficient is calculated. Before the measurement, the instrument was
calibrated each time the sample material was changed. The samples with a diameter of
29 mm were cut with a punch. Three samples were tested for each variant.

Figure 2. View of the composites and the Teflon plate (in white color).

Figure 3. The Kundt device.
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3. Results

Comparatively, the pre-pressed nonwovens, the composites made of nonwovens, and
the layered systems composed of pre-pressed nonwovens and composites were used for
the acoustic measurements.

3.1. Nonwovens

Nonwovens were obtained with an area weight of 180 g/m2, differing in fiber composition:

fiber composition I—20% LI fibers and 80% PLA fibers, mixed together—“LI/PLA”,
fiber composition II—100% PLA fibers—“PLA”.

3.2. Pre-Pressed Nonwovens

The obtained LI/PLA nonwoven was pre-pressed on the nonwoven press machine at
different conditions. The parameters of the pre-pressing process and the characteristics
of the nonwoven sound-absorbing materials obtained after the pre-pressing process are
presented in Table 1.

Table 1. Variants and characterization of the pre-pressed nonwovens.

Process Parameters Characteristics of the Pre-Pressed Nonwovens

Temperature, ◦C Pressure, MPa Time, s Thickness, mm Surface Description

1N
(1 layer of

nonwoven)
130 5 30 1.55

Nonwoven with low compression, with a
very fibrous structure without hard or

plastic zones.

2N
(2 layers of
nonwoven)

130 10 30 1.75
Nonwoven similar to 1N, but with a

more compact structure and more rigid
because double the pressure was applied.

3N
(1 layer of

nonwoven)
140 15 60 1.08

Nonwoven more compact than the
other two. It presents an almost

plastic structure.

4N
(1 layer of

nonwoven)
140

15
(pressure with
metal mesh)

60 0.8
Structurally similar to 3N, but thinner
and with a drilled surface due to the

metal mesh.

5N
(1 layer of

nonwoven)
140 10 120 1.24

It could be described as a step between
nonwovens 2N and 3N. Quite compact

but more fibrous than 3N

The dependence of the sound absorption coefficient on the sound frequency for
individual variants of the pre-pressed nonwovens is shown in Figure 4. For single, very
thin layers of pre-pressed nonwovens, 0.8 to 1.75 mm thick, an increase in sound absorption
is observed with increasing sound frequency. In the case of sounds with frequencies up to
4800 Hz, the highest similar values of sound absorption coefficient were obtained for the
2N and 3N pre-pressed nonwovens. Higher frequency sounds are better absorbed by the
1.08 mm thick 3N pre-pressed nonwoven, presenting an almost plastic structure, than by
the 1.75 mm thick 2N pre-pressed nonwoven with a compact fibrous and rigid structure.
Nonwoven 3N shows the highest value of the sound absorption coefficient, i.e., 0.44 at
the sound frequency of 6400 Hz. The other three pre-pressed nonwovens show a lower
absorption. In all frequency ranges, the dependence of the sound absorption coefficient
on the sound frequency is similar for these three nonwovens. The maximum value of the
sound absorption coefficient, obtained at 6400 Hz, is 0.23 for 1.55 mm thick 1N nonwoven
with a fibrous structure, 0.20 for 1.24 mm thick 5N nonwoven with a compact/fibrous
structure, and 0.17 for 0.8 mm thick 4N nonwoven with an almost plastic structure but
with a mesh surface.
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Figure 4. Sound absorption coefficient of individual pre-pressed nonwovens.

The combination of successive nonwovens with each other causes the thickness of the
resulting absorbent systems to be greater than that of the individual layers, but does not
mean adding up their individual sound absorption. It can be seen from Figure 5 that adding
three nonwovens, i.e., 2N, 3N, and 4N, to the nonwoven 1N successively increases the
value of the absorption coefficient by a value corresponding to the individual nonwovens
in a given frequency range. The addition of another layer, i.e., a 5N nonwoven, no longer
increases the sound absorption by a value corresponding to this nonwoven, but rather only
slightly. The contribution of the next added layer with specific sound absorption character-
istics to the increase of a system’s sound absorption coefficient depends on the resulting
system structure and sound frequency. The same layer can show a different absorption as a
separate layer, and a different one to the arrangement with another layer, because then, a
new structure is created, which constitutes different conditions for attenuating the energy
of the acoustic wave. As a consequence, the sound absorption of the system is different
from that resulting from adding up the absorption of both layers. Table 2 shows that
the tested pre-pressed nonwovens, very thin and with low absorption, can be combined
into multilayer systems in order to increase sound absorption in the frequency range of
2500–5500 Hz in relation to the total absorption of the individual layers. The share of each
next added nonwoven layer characterized by a specific sound absorption in the increase
in the system’s sound absorption coefficient depends on the sound frequency and on the
sound absorption of the system without this layer.

If both previous graphs, Figures 4 and 5, are compared, it is possible to observe that
the shapes of the curves for individual nonwovens are completely different when the
nonwovens are together. For individual nonwovens, the curves are practically flat, with an
important increase for high frequencies. However, for the nonwovens together, the curves
are concave, more similar than a composite curve, which have higher values for a wider
range of frequencies.

In the case of sound-absorbing porous materials, a low-frequency sound absorption is
higher if the material is thicker. A homogeneous material of high thickness or a layered
material with layers of different structure can be used. Homogeneous material can be used
with a thick material layer or a different layer structure.
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Figure 5. Sound absorption coefficient of nonwoven layered systems.

Table 2. Comparison between sound absorption values for layered systems of pre-pressed
nonwovens—sound absorption coefficient calculated (in black color) and measured (in blue color).

Sound Frequency, Hz

Layered System
of Pre-Pressed Nonwovens 500 1500 2500 3500 4500 5500 6400

1N + 2N 0.06
0.06

0.14
0.14

0.20
0.20

0.25
0.30

0.36
0.41

0.39
0.52

0.56
0.56

1N + 2N + 3N 0.09
0.07

0.22
0.22

0.31
0.36

0.38
0.53

0.57
0.70

0.73
0.80

1.00
0.83

1N + 2N + 3N + 4N 0.12
0.07

0.27
0.25

0.36
0.46

0.44
0.66

0.66
0.84

0.89
0.94

1.17
0.96

1N + 2N + 3N + 4N + 5N 0.15
0.07

0.32
0.26

0.43
0.48

0.52
0.69

0.78
0.85

1.06
0.94

1.37
0.96

However, joining the layers of nonwovens, the thickness of the material can increase
up to several cm, which is why, in this work, pre-pressed nonwovens were used. However,
combining layers of nonwovens causes an increase in the material thickness of up to several
cm, so, in this research work, the pre-pressed nonwovens were proposed.

The multilayer structures consist of several pre-pressed nonwoven layers with dif-
ferent acoustic characteristics, and are a promising material for noise reduction. Thanks
to such acoustic systems, it is possible to increase the level of absorption and extend the
frequency range of high absorption.

3.3. Composites

Variants of the composites obtained from LI/PLA and PLA nonwovens are presented
in Table 3.

Composites obtained according to variants 1, 2, and 3 were made of a nonwoven
under conditions differing in system temperature, and this factor influenced the structure
of the composite. By changing the temperature of the pressing process in the range from 165
to 180 ◦C, we changed the structure of the composite from fibrous to plastic. Differences in
the sound absorption of the composites produced resulted from their structure. The values
of the sound absorption coefficient for the individual sound frequencies are presented in
Figures 6–8.
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Table 3. Variants and structure characterization of the composites.

No. Component Layers Temperature, ◦C Thickness, mm Description of Composite Structure
up/down

1 8xLI/PLA 165 6.0 fibrous/plastic

2 8xLI/PLA 170 5.0 porous plastic/more plastic

3 8xLI/PLA 180 5.5 porous plastic/porous plastic

4 1xPLA8xLI/PLA1xPLA 170 min 4.0 max 6.8 plastic/more fibrous/plastic, profiled

Figure 6. Sound absorption coefficient of composite 1.

Figure 7. Sound absorption coefficient of composite 2.
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Figure 8. Sound absorption coefficient of composite 3.

For each sample, two different curves, depending on the receptor surface of the
sound waves (two composite sides), are presented. For composite 1, Figure 6, the sound
absorption coefficient is higher for middle and low frequencies than for the composites 2
and 3. It is more advantageous if the sound wave strikes the composite from the plastic
side than the fibrous side. The highest values of sound absorption coefficient are above 0.9
at 6000–6400 Hz. The results for composite 2, Figure 7, show a clear difference between the
sound absorption of surface 1 and 2. Surface 1, more plastic, presents a better structure for
sound absorption at higher frequencies than surface 2, porous plastic. In low frequencies
the difference is not so big. This sample is interesting because the maximum coefficient
value of the plastic surface receptor is very high at 6400 Hz, between 0.9 and 1. For
composite 3, Figure 8, the values of the sound absorption coefficient are similar, regardless
of which the side of the composite faces the sound wave. This fact results from the similar
structure of both surfaces of the composite. The maxim coefficient is lower than for sample
2’s maxim coefficient. Generally, composites with a different structure for both surfaces
give better sound absorption, and if the plastic surface is directed to the sound, the values
of the sound absorption coefficient are higher.

Another important parameter of the composite is the profiling. Composite 4 was
made on the basis of a blended nonwoven, but located between layers of PLA nonwoven,
which, after compression, gives rigid, smooth plastic surfaces. Then, the modifications
were used to profile the composite 4 plate, as shown in Figure 9. The results below show
the influence of the surface profiling on the sound-absorption properties. Four samples
were analyzed. The schematic view of the samples is shown below. The dependence of the
sound absorption coefficient on the sound frequency for the profiled composite is shown
in the diagrams in Figures 10–13. The composite plates were tested with the left side and
right side facing the sound wave, respectively. From assessing the effects of profiling the
composite plate, it can be seen that the proposed modifications have a beneficial effect on
sound absorption. A two-sided flat plate shows the lowest values of the sound absorption
coefficient in the entire tested frequency range, Figure 10. However, profiling a concave in
the plate and directing it with its front face to the sound wave causes an increase in sound
absorption, Figure 11.
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Figure 9. Profiled composite 4 (a–d).

Figure 10. Sound absorption coefficient of composite 4a.

Figure 11. Sound absorption coefficient of composite 4b.
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Figure 12. Sound absorption coefficient of composite 4c.

Figure 13. Sound absorption coefficient of composite 4d.

Taking into account the published results of previous studies [21], which indicated the
validity of the use of convexity on the back of the composite plate, which was confirmed
in Figure 12, the absorption of the plate with concavity was measured comparatively.
The results showed that convexity on the plate is more advantageous than concavity,
Figures 11 and 12. In the case of a plate with convexity, the flat side facing the sound wave
achieves the greatest sound absorption among the tested profiled plates, and the value
of the absorption coefficient is equal to 1 for sounds with a frequency above 5500 Hz,
Figure 12, Table 4. Among the tested profiled samples, a plate with convexity on one side
has the greatest thickness over the entire area. This favors an increase in sound absorption.
In addition, when such a sample is positioned with the flat side to the sound wave, and
there is a convexity on the other side, an air space is created between the sample and the
wall of the measuring tube in which resonance may occur. Under the conditions of use,
such an orientation of the sample with a convexity in relation to the wall will be most
advantageous. In the case of a concave–convex plate (Figure 13), where it does not matter
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which side it faces the sound wave, the values of the sound absorption coefficient are higher
than for a concave–flat, flat–concave plate (Figure 11), or convex–flat plate (Figure 12), and
lower than for a flat–convex plate (Figure 12).

Table 4. Comparison between the sound absorption values for variants of composite 4.

Sound Frequency Variant of Composite 4

f (Hz) 4a 4b 4c 4d

1000 0.07 0.07 0.10 0.10

2000 0.15 0.17 0.25 0.22

3000 0.27 0.30 0.47 0.44

4000 0.41 0.53 0.75 0.70

5000 0.70 0.80 0.95 0.90

6000 0.90 0.96 1.00 0.96

The homogeneous porous material is not a good and practical low frequency sound
absorber, as it would have to be extremely thick or very far from the back boundary surface.
For example, at 500 Hz, the total wavelength is 0.688 m, so the porous material would need
to be approximately 0.172 m from the back boundary surface to meet the 1/4 wavelength
requirement for significant sound absorption. The lower the sound frequencies, the greater
the material thickness/distance should be. In order to improve the sound absorption at
low frequencies, the material thickness can be compensated for by air space in the rear.
In studied porous composites, periodic inclusions have been employed to significantly
enhance the sound wave manipulation abilities, Figures 2 and 9. The 4c and 4d profiled
composites having the convexities at the rear provide just such an air space at the rear on the
stiff wall side, and therefore exhibit better sound absorption towards lower frequencies than
composites that are flat on both sides or flat–concave. Taking into account the front surface
of the composite, when the back surface is flat, the best sound absorption is provided by
the surface with convexities, then with concavities, and the worst by a flat surface. Sound
absorption, apart from the thickness of the material, is also influenced by the surface area
of interaction with the sound wave, the largest surface area is provided by convexity, then
concavity, and the smallest one by a flat surface. The porosity of the material is also an
important factor, and the convexity promotes increased porosity. A detailed presentation
of the influence of individual factors on the obtained effect of sound absorption requires
model considerations, which, in the case of fiber-based materials, and especially natural
waste fibers with wide variation in thinness and length, and the sophisticated profiling of
the composite plate, is an extremely complex issue [38,45,46]. It is known that resonant
inclusions embedded in the soft matrix are conducive to the effective conversion of long
longitudinal sound waves into short shear waves, which are subsequently absorbed. The
literature reports that in the case of a periodically voided viscoelastic coating made of
soft rubber embedded with a layer of cylindrical voids of infinite length, uncertainty in
the geometric parameters has greater impact on the resonance frequency of the voids and
sound transmission through the coating than the uncertainty in the material properties [47].

3.4. Pre-Pressed Nonwovens and Composites

In order to verify the possibility of obtaining an increase in sound absorption, systems
consisting of pre-pressed nonwovens and composites in various combinations were tested.
Composite 3 (described in Table 2 as “8xLI/PLA”) was joined in a two-layer system
successively with individual pre-pressed nonwovens. Successive material samples were
stacked on top of each other without space between them, and put together into the
measuring tube. The scheme of the arrangement of layers, where a nonwoven is situated
on the side of the sound wave, and the composite on the back, is shown in Figure 14,
and the sound absorption of such a system is shown in Figure 15. The scheme of the
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arrangement of layers, where the composite is situated on the side of the sound wave, and
the pre-pressed nonwoven on the back, is shown in Figure 16, and the sound absorption of
such a system is shown in Figure 17.

Figure 14. Schematic view of the sample’s position inside the tube. From the left: one pre-pressed
nonwoven—one composite. Both layers are together without space between them inside the tube.

Figure 15. Sound absorption of composite 3 with one pre-pressed nonwoven layer in front.

Figure 16. Schematic view of the sample’s position inside the tube. From the left: one composite—one
pre-pressed nonwoven. Both layers are together without space between them inside the tube.



Coatings 2021, 11, 407 15 of 20

Figure 17. Sound absorption of composite 3 with one pre-pressed nonwoven layer behind.

The graphs of the dependence of the sound absorption coefficient on the sound
frequency, Figures 4, 15 and 17, show that the combined systems show greater absorption
than the individual layers separately, which results from the increase in the thickness of
the final absorbing material and depends on the structure and, in consequence, on the
absorption of the component layers. In the “pre-pressed nonwoven + composite” system,
the 1N nonwoven and the 2N nonwoven provide the best effects. In such a system, the
layer on the side of the sound wave is more fibrous, and on the other side, the layer is a
porous composite. In the case of the “composite + pre-pressed nonwoven” system, the
2N nonwoven also provides the best effect. As shown in Figure 4, among the nonwovens
tested, this nonwoven, next to the 3N nonwoven, shows the highest sound absorption
in the sound frequency range up to 4800 Hz. The composite layer forms a better sound-
absorbing system with a more fibrous and compact layer than with a more plastic layer.
The comparison of the sound absorption coefficient for both systems, with the example of
composite 3 and 2N pre-pressed nonwoven, i.e., 3-2N and 2N-3, is shown in Table 5. The
results show that it is more advantageous to position the composite layer from the sound
wave side, and the nonwoven as the back layer. Then, the absorptive surface of the system
is plastic and the back is fibrous, and as shown in the earlier Figures 6 and 7, this structure,
with more plastic surface, promotes sound absorption [48].

Table 5. Comparison between the sound absorption values for composite + pre-pressed nonwoven
(3-2N) and pre-pressed nonwoven + composite (2N-3).

Sound Frequency Variant of Sound-Absorbing System

f (Hz) 3-2N 2N-3

1000 0.17 0.12

2000 0.39 0.32

3000 0.63 0.56

4000 0.81 0.74

5000 0.92 0.74

6000 0.96 0.90
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Composite 3, with a thickness of 5.5 mm, shows a sound absorption very similar to
that presented by Hao et.al. [49] for kenaf/polypropylene nonwoven composites with a
thickness of 6 mm. The values of the sound absorption coefficient of these composites at
high frequencies are high, about 0.9 at 6400 Hz. The addition of a pre-pressed nonwoven,
with a thickness in the range from 0.8 mm to 1.75 mm, to the tested composite has the effect
of increasing the sound absorption in a wide sound frequency range. For both two-layer
systems, the values of the sound absorption coefficient increase with increasing sound
frequency, and begin to stabilize at about 6000 Hz. The results of absorption are very
good (above 0.7) at higher values of the tested frequency range, i.e., from 3750–4230 Hz to
6400 Hz for the “pre-pressed nonwoven + composite” systems, and from 3340–4000 Hz
to 6400 Hz for the “composite + pre-pressed nonwoven” systems. Separate composite
3 reaches a value of sound absorption coefficient of 0.7 at frequencies from 4600 Hz to
6400 Hz. At the highest sound frequencies, the sound absorption coefficient for both kinds
of systems is around 0.9 or even higher. At the lower sound frequency range, the absorption
of the system increases by a value approximate to the absorption of the added layer; the
higher the frequency, the smaller the increase in absorption.

An increase in the sound absorption level can be obtained by combining a fibrous
material, e.g., a pre-pressed nonwoven, with a composite plate acting as a rigid membrane,
which can also extend the range of high absorption. The absorber then consists of two
types of material, and there are probably two mechanisms for damping the sound wave
in different frequency ranges. A composite layering sequence in a multilayer structure
also plays an important role, the most absorptive are the systems where the composite as
a rigid material is on the side of the incident sound wave, and the more porous is on the
back. All proposed layers differing only in pressing conditions are produced on the basis
of the same LI/PLA nonwoven fabric, which simplifies the production process and makes
it more economical.

In order to improve the results for low frequencies, the next tests were made with a
combination of composite and pre-pressed nonwoven layers. The scheme of the arrange-
ment of the layers, where the composite is located on the side of the sound wave and
the individual nonwovens are placed on the back, is shown in Figure 18, and the sound
absorption of such a system is shown in Figure 19. The values of the sound absorption
coefficient increase as the frequency increases, and then stabilize. As more nonwoven
layers are added, the results of absorption increase, but less and less. This is because the
total thickness increases, and the values of the absorption coefficient of the final multilayer
system result from the structure, and consequently from the absorption of the individual
layers. Sound absorption of 0.9 for the system (3-1N-2N-3N-4N-5N) with a total thickness
of only 11.92 mm occurs in the frequency range from 2700 Hz to 6400 Hz, and 0.7 from
1850 Hz to 6400 Hz, which is a very good result. The literature [50] states that, for bilayered
nonwoven composite with the thickness of 12.02 mm, the absorption is 0.92 at a peak at
1500 Hz, and 0.7 in the range of about 1000–3500 Hz. The more layers the system has, the
more its absorption is close to 1.0 and the range of highest absorption is extended towards
lower frequencies. This means that this combination will have a good absorption for almost
all frequencies. Then, this material could be used in a wide variety of applications. Adding
the next layers to the system increases the maximum sound absorption and extends its
frequency range. A nonwoven, more fibrous, and more open structure absorbs better low
frequency sound, and a composite, more plastic, and rigid structure absorbs better high
frequency sound, [51]. Combining such structures into one system extends the range of
high sound absorption.
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Figure 18. Schematic view of the sample’s position inside the tube. From the left: one composite—
pre-pressed nonwovens. All layers are together without space between them inside the tube.

Figure 19. Sound absorption of composite 3 with the pre-pressed nonwoven layers behind.

4. Conclusions

The combination of successive pre-pressed nonwovens with each other causes the
thickness of the resulting sound-absorbing systems to be greater than that of the individual
layers. The contribution of the next added layer with specific sound absorption character-
istics to the increase of a system’s sound absorption coefficient depends on the resulting
system structure and sound frequency.

Thermoplastic composites with different structures of both surfaces give better sound
absorption than composites with the same surfaces. If the more plastic surface of the
composite is directed to the sound, the values of the sound absorption coefficient are higher.

Shaping the composite plate has a positive effect on its sound absorption. In the case
of a one-sided concave, it is better to position the plate with the concave side facing the
sound and the flat side on the back. In the case of a one-sided convexity, it is better to
place the plate with its flat side facing the sound, and the convex side at the back, then the
absorption is the highest among the tested variants of profiled composites. For a composite
plate with opposite profiles, i.e., concavity and convexity, no difference in absorption is
related to the orientation of the plate relative to the sound.
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The addition of a pre-pressed nonwoven to the composite, regardless of whether it
is on the side of the incident sound wave or on the back, increases the sound absorption
coefficient in the entire tested frequency range. However, it is preferable to have a composite
on the sound side and a nonwoven on the back. Increasing the number of differentiated
nonwoven layers in terms of structure means increasing the value of the sound absorption
coefficient and broadening the frequency range of sounds most absorbed. The presented
research is part of the work on sound absorbing composites on the basis of natural materials,
and will be continued towards identifying the optimal composite structure. The proposed
materials containing natural waste fibers will be an environmentally friendly, cheaper, and
more sustainable alternative to traditional sound-absorbing materials. They could be used
in the walls and partitions of vehicles, in buildings, or in door panels.
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7. Tiuca, A.E.; Nemeşa, O.; Vermeşana, H.; Toma, A.C. New Sound Absorbent Composite Materials Based on Sawdust and

Polyurethane Foam. Compos. Part. B 2019, 165, 120–130. [CrossRef]
8. Hassan, T.; Jamshaid, H.; Mishra, R.; Khan, M.Q.; Petru, P.; Novak, J.; Choteborsky, R. Hromasova, M. Acoustic, Mechanical and

Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers 2020, 12, 654. [CrossRef]
9. La Mantia, F.P.; Morreale, M. Green Composites: A Brief Review. Compos. Part A 2011, 42, 579–588. [CrossRef]
10. Kucuk, M.; Korkmaz, Y. The Effect of Physical Parameters on Sound Absorption Properties of Natural Fiber Mixed Nonwoven

Composites. Text. Res. J. 2012, 82, 2043–2053. [CrossRef]
11. Adhika, D.R.; Prasetiyo, I.; Noeriman, A.; Hidayah, N. Widayani Sound Absorption Characteristics of Pineapple Leaf/Epoxy

Composite. Arch. Acoust. 2020, 45, 233–240. [CrossRef]
12. Gliscinska, E.; Michalak, M.; Krucinska, I. Sound Absorption Property of Nonwoven Based Composites. Autex Res. J. 2013, 13,

150–155. [CrossRef]
13. Furstoss, M.; Thenail, D.; Galland, M.A. Surface Impedance Control for Sound Absorption: Direct and Hybrid Passive/Active

Strategies. J. Sound Vib. 1997, 203, 219–236. [CrossRef]
14. Galland, M.A.; Mazeaud, B.; Sellen, N. Hybrid Passive/Active Absorbers for Flow Ducts. Appl. Acoust. 2005, 66, 691–708.

[CrossRef]
15. Arenas, J.P.; Crocker, M.J. Recent Trends in Porous Sound-Absorbing Materials. Sound Vib. 2010, 44, 12–18.
16. Mamtaz, H.; Fouladi, M.H.; Al-Atabi, M.; Namasivayam, S.N. Acoustic Absorption of Natural Fiber Composites. J. Eng. 2016,

42, 5836107. [CrossRef]

http://doi.org/10.5772/65360
http://doi.org/10.1515/aut-2015-0010
http://doi.org/10.1080/03602559808001373
http://doi.org/10.1016/j.compstruct.2011.06.020
http://doi.org/10.3390/ma2030776
http://doi.org/10.1016/j.compositesb.2018.11.103
http://doi.org/10.3390/polym12030654
http://doi.org/10.1016/j.compositesa.2011.01.017
http://doi.org/10.1177/0040517512441987
http://doi.org/10.24425/aoa.2020.133144
http://doi.org/10.2478/v10304-012-0036-2
http://doi.org/10.1006/jsvi.1996.0905
http://doi.org/10.1016/j.apacoust.2004.09.007
http://doi.org/10.1155/2016/5836107


Coatings 2021, 11, 407 19 of 20

17. Tascan, M.; Vaughn, E.A.; Stevens, K.A.; Brown, P.J. Effects of Total Surface Area and Fabric Density on the Acoustical Behavior of
Traditional Thermal-Bonded Highloft Nonwoven Fabrics. J. Text. Inst. 2011, 102, 746–751. [CrossRef]

18. Xiang, H.F.; Wang, D.; Liua, H.C.; Zhao, N.; Xu, J. Investigation on Sound Absorption Properties of Kapok Fibers. Chin. J. Polym.
Sci. 2013, 31, 521–529. [CrossRef]

19. Sreeja, R.; Premlet, B.; Prasanth, R. An Insight into the Composite Materials for Passive Sound Absorption. J. Appl. Sci. 2017, 17,
339–356. [CrossRef]

20. Gliscinska, E.; Michalak, M.; Krucinska, I. The Influence of Surface Asymmetry of Thermoplastic Composites on Their Sound
Absorption. Compos. Theory Pract. 2014, 14, 150–154.

21. Ciaburro, G.; Iannace, G.; Puyana-Romero, V.; Trematerra, A. A Comparison Between Numerical Simulation Models for the
Prediction of Acoustic Behavior of Giant Reeds Shredded. Appl. Sci. 2020, 10, 6881. [CrossRef]

22. Iannace, G.; Ciaburro, G.; Trematerra, A. Modelling Sound Absorption Properties of Broom Fibers Using Artificial Neural
Networks. Appl. Acoust. 2020, 163, 107239. [CrossRef]

23. Yang, W.D.; Li, Y. Sound Absorption Performance of Natural Fibers and Their Composites. Sci. China Tech. Sci. 2012, 55, 2278–2283.
[CrossRef]

24. Yang, T.; Hu, L.; Xiong, X.; Petru, M.; Noman, M.T.; Mishra, R.; Militky, J. Sound Absorption Properties of Natural Fibers: A
Review. Sustainability 2020, 12, 8477. [CrossRef]

25. Mohanty, A.R.; Fatima, S. Noise Control Using Green Materials. Sound Vib. 2015, 49, 13–15.
26. Ersoy, S.; Kucuk, H. Investigation of Industrial Tea-Leaf-Fibre Waste Material for Its Sound Absorption Properties. App. Acoust.

2009, 70, 215–220. [CrossRef]
27. Zulkifli, R.Z.; Nor, M.J.M. Noise Control Using Coconut Coir Fiber Sound Absorber with Porous Layer Backing and Perforated

Panel. Am. J. Appl. Sci. 2010, 7, 260–264. [CrossRef]
28. Krucinska, I.; Gliscinska, E.; Michalak, M.; Ciechanska, D.; Kazimierczak, J.; Bloda, A. Sound-Absorbing Green Composites Based

on Cellulose Ultra-Short/Ultra-Fine Fibers. Text. Res. J. 2015, 85, 646–657. [CrossRef]
29. Lee, Y.E.; Joo, C.W. Sound Absorption Properties of Thermally Bonded Nonwovens on Composing Fibers and Production

Parameters. J. Appl. Polym. Sci. 2004, 92, 2295–2302. [CrossRef]
30. Sharma, S.K.; Shukla, S.R.; Sethy, A.K. Acoustical Behaviour of Natural Fibres-Based Composite Boards as Sound-Absorbing

Materials. J. Indian Acad. Wood Sci. 2020, 17, 66–72. [CrossRef]
31. Iasnicu, I.; Vasile, O.; Iatan, R. Sound Absorption Analysis for Layered Composite Made from Textile Waste and Cork. Sisom

Acoust. 2015, 78, 292–299.
32. Iannace, G.; Ciaburro, G.; Guerriero, L.; Trematerra, A. Use of Cork Sheets for Room Acoustic Correction. J. Green Build. 2020,

15, 45–55. [CrossRef]
33. Lin, J.H.; Liao, Y.C.; Huang, C.C.; Lin, C.C.; Lin, C.M.; Lou, C.W. Manufacturing Process of Sound Absorption Composite Planks.

Adv. Mat. Res. 2020, 97-101, 1801–1804. [CrossRef]
34. Tang, X.; Yan, X. Acoustic Energy Absorption Properties of Fibrous Materials: A review. Compos. 2017, 101, 360–380. [CrossRef]
35. Jiang, S.; Cai, Y.; Zhou, X.; Yan, X. Preparation and Properties of Composite Multilayer Sound Absorption Structures. J. Text. Res.

2012, 33, 20–25.
36. Zulkifli, R.; Nor, M.J.M.; Tahir, M.F.M.; Ismail, A.R.; Nuawi, M.Z. Acoustic Properties of Multi-Layer Coir Fibres Sound Absorption

Panel. J. Appl. Sci. 2008, 8, 3709–3714. [CrossRef]
37. Chen, W.H.; Lee, F.C.; Chiang, D.M. On the Acoustic Absorption of Porous Materials with Different Surface Shapes and Perforated

Plates. J. Sound Vib. 2000, 237, 337–355. [CrossRef]
38. Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. Sound Scattering by a Bubble Metasurface. Phys. Rev. B 2020,

102, 214308. [CrossRef]
39. Azad, H.; Meyer, J.; Siebein, G.; Lokki, T. The Effects of Adding Pyramidal and Convex Diffusers on Room Acoustic Parameters

in a Small Non-Diffuse Room. Acoustics 2019, 1, 618–643. [CrossRef]
40. Martinez-Sala, R.; Rubio, C.; Garcia-Raffi, L.M.; Sanchez-Perez, J.V.; Sanchez-Perez, E.A.; Llinares, J. Control of Noise by Trees

Arranged like Sonic Crystals. J. Sound Vib. 2006, 291, 100–106. [CrossRef]
41. Sharma, G.S.; Eggler, D.; Peters, H.; Kessissoglou, N.; Skvortsov, A.; MacGillivray, I. Acoustic Performance of Periodic Composite

Materials. In Proceedings of the Australian Acoustical Society 2015; Hunter Valley, Australia, 15–18 November 2015. Available online:
http://dspace.nal.gov.au/xmlui/handle/123456789/403 (accessed on 20 January 2021).

42. Gliscinska, E.; Krucinska, I.; Michalak, M.; Puchalski, M.; Kazimierczak, J.; Bloda, A.; Ciechanska, D. Sound Absorption of
Composites with Waste Cellulose Submicrofibres. In Proceedings of the Book of Abstracts 14th AUTEX Word Textile Conference,
Bursa, Turkey, 26–28 May 2014; article on CD (poster presentations, poster 84). ISBN 978-605-63112-4-6.

43. Lee, S.H.; Kim, I.Y.; Song, W.S. Biodegradation of Polylactic Acid (PLA) Fibers Using Different Enzymes. Macromol. Res. 2014, 22,
657–663. [CrossRef]

44. Bax, B.; Mussig, J. Impact and Tensile Properties of PLA/Cordenka and PLA/flax Composites. Compos. Sci. Technol. 2008, 68,
1601–1607. [CrossRef]

45. Cao, L.; Fua, Q.; Sia, Y.; Bin, D.; Yua, J. Porous Materials for Sound Absorption. Compos. Commun. 2018, 10, 25–35. [CrossRef]
46. Qui, H.; Enhui, Y. Effect of Thickness, Density and Cavity Depth on the Sound Absorption Properties of Wool Boards. Autex Res.

J. 2018, 18, 203–208. [CrossRef]

http://doi.org/10.1080/00405000.2010.515731
http://doi.org/10.1007/s10118-013-1241-8
http://doi.org/10.3923/jas.2017.339.356
http://doi.org/10.3390/app10196881
http://doi.org/10.1016/j.apacoust.2020.107239
http://doi.org/10.1007/s11431-012-4943-1
http://doi.org/10.3390/su12208477
http://doi.org/10.1016/j.apacoust.2007.12.005
http://doi.org/10.3844/ajassp.2010.260.264
http://doi.org/10.1177/0040517514553873
http://doi.org/10.1002/app.20143
http://doi.org/10.1007/s13196-020-00255-z
http://doi.org/10.3992/1943-4618.15.2.45
http://doi.org/10.4028/www.scientific.net/AMR.97-101.1801
http://doi.org/10.1016/j.compositesa.2017.07.002
http://doi.org/10.3923/jas.2008.3709.3714
http://doi.org/10.1006/jsvi.2000.3029
http://doi.org/10.1103/PhysRevB.102.214308
http://doi.org/10.3390/acoustics1030037
http://doi.org/10.1016/j.jsv.2005.05.030
http://dspace.nal.gov.au/xmlui/handle/123456789/403
http://doi.org/10.1007/s13233-014-2107-9
http://doi.org/10.1016/j.compscitech.2008.01.004
http://doi.org/10.1016/j.coco.2018.05.001
http://doi.org/10.1515/aut-2017-0020


Coatings 2021, 11, 407 20 of 20

47. Sharma, G.S.; Faverjon, B.; Dureisseix, D.; Skvortsov, A.; MacGillivray, I.; Audoly, C.; Kessissoglou, N. Acoustic Performance of a
Periodically Voided Viscoelastic Medium with Uncertainty in Design Parameters. J. Vib. Acoust. 2020, 142, 61002. [CrossRef]

48. Gliscinska, E.; Sankowski, D.; Krucinska, I.; Gocławski, J.; Michalak, M.; Rowinska, Z.; Sekulska-Nalewajko, J. Optical Coherence
Tomography Image Analysis of Polymer Surface Layers in Sound-Absorbing Fibrous Composite Materials. Polym. Test. 2017, 63,
194–203. [CrossRef]

49. Hao, A.; Zhao, H.; Chen, J.Y. Kenaf/Polypropylene Nonwoven Composites: The Influence of Manufacturing Conditions on
Mechanical, Thermal, and Acoustical Performance. Compos. 2013, 54, 44–51. [CrossRef]

50. Kucuk, M.; Korkmaz, Y. Sound Absorption Properties of Bilayered Nonwoven Composites. Fibers Polym. 2015, 16, 941–948.
[CrossRef]

51. Midha, V.K.; Chavhan, M.V. Nonwoven Sound Absorption Materials. IJTFT 2012, 2, 45–55.

http://doi.org/10.1115/1.4046859
http://doi.org/10.1016/j.polymertesting.2017.08.011
http://doi.org/10.1016/j.compositesb.2013.04.065
http://doi.org/10.1007/s12221-015-0941-9

	Introduction 
	Materials and Methods 
	Results 
	Nonwovens 
	Pre-Pressed Nonwovens 
	Composites 
	Pre-Pressed Nonwovens and Composites 

	Conclusions 
	References

