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Abstract: Carbon-based nanomaterials (CBN) are currently used in many biomedical applications.
The research includes optimization of single grain size and conglomerates of pure detonated nan-
odiamond (DND), modified nanodiamond particles and graphene oxide (GO) in order to compare
their bactericidal activity against food pathogens. Measurement of grain size and zeta potential
was performed using the Dynamic Light Scattering (DLS) method. Surface morphology was eval-
uated using a Scanning Electron Microscope (SEM) and confocal microscope. X-ray diffraction
(XRD) was performed in order to confirm the crystallographic structure of detonation nanodiamond
particles. Bacteriostatic tests were performed by evaluating the inhibition zone of pathogens in
the presence of carbon based nanomaterials. Raman spectroscopy showed differences between the
content of the diamond and graphite phases in diamond nanoparticles. Fluorescence microscopy
and adenosine-5′-triphosphate (ATP) determination methods were used to assess the bactericidal
of bioactive polymers obtained by modification of food wrapping film using various carbon-based
nanomaterials. The results indicate differences in the sizes of individual grains and conglomerates of
carbon nanomaterials within the same carbon allotropes depending on surface modification. The
bactericidal properties depend on the allotropic form of carbon and the type of surface modification.
Depending on the grain size of carbon-based materials, surface modification, the content of the
diamond and graphite phases, surface of carbon-based nanomaterials film formation shows more
or less intense bactericidal properties and differentiated adhesion of bacterial biofilms to food films
modified with carbon nanostructures.

Keywords: DLS method; functionalized carbon-based nanomaterials (CBNs); detonation nanodi-
amond particles (DND); graphene oxide (GO) film; carbon-based nanomaterials film formation;
bactericidal properties; adhesion tests

1. Introduction

Carbon-based nanomaterials are a very differentiated group covering allotropic forms
with a distinct crystallographic structure. Particularly interesting materials are powders
and nanopowders, because they have a developed surface with the possibility of chem-
ical and plasma-chemical functionalization of their surfaces [1–5]. Finally, it is possible
to obtain films and laminates with modified carbon nanostructures that have controlled
surface activity for packaging fat-containing products [2–4,6–8]. Different allotropic forms
of carbon (diamond, graphite, carbine) and various forms of carbon (graphene, nanotubes,
fullerenes) influence the colonization and biological activity of foodborne pathogens on
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chicken embryo development, including angiogenesis. Depending on the allotropic forms
of carbon which are determined by the crystallographic structure based on the hybridiza-
tion of carbon atoms, it is possible to observe the high biological activity of nanodiamonds
in inactivating food-borne pathogens without cytotoxic activity damaging the fluidity of
the cell membrane, and without mutagenic effects on the cell nucleus and genetic material.
The graphene family materials are cytotoxic and destructive to the structure of the cell
membrane, especially graphene oxide (GO) which has a high oxidoreductive potential,
resulting in damage to cell membranes in the process of lipid peroxidation and intensifica-
tion of oxidative stress in bacteria, fungi and other cells. From this point of view, it seems
that the use of diamond nanoparticles added to food packaging is safe and does not carry
the risk of migration of cytotoxic substances into food. This can be compared with the use
of silver nanoparticles in food preservation devices, which proved to be a not very effective
and safe solution due to the presence of metal nanoparticles, which can have toxic effects on
the human body. However, the use of external barrier graphene layers with antimicrobial
properties may be a potential use for graphene in the packaging industry [2,4,5,9–14].

Analysis of the current food and cosmetic markets is focused on identifying food
borne pathogen. Food preservation is the most interesting aspect from the perspective of
possible applications, e.g., carbon-based materials for the production of bioactive products
with nanodiamonds and barriers with graphene family materials in food packaging. Ad-
ditionally intelligent food packaging can be used to indicate whether or not the food is
safe for consumption. The development of active packaging containing carbon nanostruc-
tures for packaging food and cosmetics with antioxidant properties significantly reduces
their rancidity. In addition, carbon-based nanomaterials, and in particular nanodiamonds
are biomarkers and natural biosensors that can create a sensitive and specific system for
detecting food-borne pathogens. Incorporation on the surface DND fluorophore leads to
material with photovoltaic stability, long fluorescence times (10 ns) and a lack of cytotoxic-
ity [3–6,8,15–26].

Several research reports have proved that nanomaterials can be used to protect food
and ultimately extend shelf-life. It is very important to design and study nanotoxicity and
ecotoxicity in the design of active and protective food packaging and also the migration
of bioactive substances to food products. In addition to the impact of extending the shelf-
life, the potential antimicrobial activity of intelligent food packaging has become a basic
condition for modern food packaging [27,28]. The basic element of manufacturing active
food packaging is to add antimicrobial properties by introducing antibacterial agents into
the packaging systems. Possible methods of achieving this include biodegradable polymer
films incorporating antimicrobial agents. All these elements are to ensure the production of
antibacterial active food packaging based on the controlled release of antimicrobial factors,
safe and non-toxic to human health [29]. One of the most important elements is the appli-
cation of nanostructures for “smart food packaging” as nanobiosensors for the detection of
food borne pathogens by silver, gold, magnetic nanoparticles, immunomagnetic liposome
nanoparticles, aptamer conjugated gold nanoparticles, liposome nanoparticles quantum
dots, and carbon nanotubes [30].

Figure 1 shows important applications of nanomaterials, including nanoparticles in
the food sector. Nanoparticles, due to their developed surface, are used in the field of
active, intelligent nano-packaging for food as they are ecological, non-toxic, anti-allergic,
barrier-related, e.g., for heavy metals, so-called: functional food packages which are
biosensor/sensitive to environmental, bacterial and toxic contaminants originating from
compounds of stale food [30].
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lows the possibility of analyzing food-borne pathogens which directly affects progress in 
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blood-brain barrier, as well as induction of the inflammatory process and oxidative stress 
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products may have toxic potential in the human body and the environment [37]. 
Nanostructured materials, such as starch based films modified by silver nanoparticles can 
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create interaction spaces mainly results in very aggressive food borne pathogens, like for 
example L. monocytygenes, P. aeruginosa, and/or S. aureus., L. monocytygenes which form 
with L. plantarum on mixed biofilms which are resistant to disinfectants. Therefore, the 
control of bacterial persistence on biofilms on the food and the design of bioactive food 
packaging is now an overarching goal in the food sector [41]. Many antibacterial agents 
are known for food protection. The antibacterial activity of metal nanostructures is de-
pendent on their large surface area, size, shape and chemical functionalization. The most 
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brane and the induction of oxidative stress in cells resulting from damage and degrada-
tion. Food packaging based on nanocomposites has been shown to inhibit bacterial 

Figure 1. Systematic representation of application of nanoparticles in various areas of food industry. Reprinted with
permission from [30]. Copyright 2018 Elsevier.

Food protection can be monitored by the use of intelligent packaging using indicators
that assess the degree of suitability for consumption and the degree of damage. These
can be chemical, gas sensors, biosensors and thermal indicators, leak indicators, freshness
indicators, pH indicators and radio frequency identification tags [31]. “Food Contact
Materials” (FCMs) are defined as materials that have contact with food. They ensure
thermal stability and protect against bacterial contamination. e.g., nanoparticles added to
agar protect against persistent bacterial infections [32]. Biological and chemical sampling
are emerging topics in nanotechnology for food packaging and the food industry. The use
of microfluidic devices for DNA analysis of pathogens is modern and future-proof and
allows the possibility of analyzing food-borne pathogens which directly affects progress in
the use of active food packaging. [33,34].

Carbon-based nanoparticles are characterized by lower toxicity compared with metal
nanoparticles, quantum dots, silica based Cornell dots, and lipid and polymer based
nanoparticles which have a negative impact on the skin, respiratory tract, digestive sys-
tem, blood-brain barrier, as well as induction of the inflammatory process and oxidative
stress caused by free radicals [35,36]. The migration of nanoparticles from packaging to
food products may have toxic potential in the human body and the environment [37].
Nanostructured materials, such as starch based films modified by silver nanoparticles can
be used in contact with food, because the results of contact tests with the pathogens C.
albicans, E.coli and S. aureus do not reveal microbial transmission [38–40]. The tendency to
create interaction spaces mainly results in very aggressive food borne pathogens, like for
example L. monocytygenes, P. aeruginosa, and/or S. aureus., L. monocytygenes which form
with L. plantarum on mixed biofilms which are resistant to disinfectants. Therefore, the
control of bacterial persistence on biofilms on the food and the design of bioactive food
packaging is now an overarching goal in the food sector [41]. Many antibacterial agents are
known for food protection. The antibacterial activity of metal nanostructures is dependent
on their large surface area, size, shape and chemical functionalization. The most important
mechanism of bacterial toxicity is the damage to the fluidity of the cell membrane and the
induction of oxidative stress in cells resulting from damage and degradation. Food packag-
ing based on nanocomposites has been shown to inhibit bacterial growth on fungi. The
development of engineered nanomaterials (ENM) for food packaging confirms the benefits
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of modifying polymers and other nanomaterials to give them properties of antibacterial
control and to allow for the migration of active, non-toxic substances from packaging to
food [42–48]. Some research points to their antibacterial properties and ability to interfere
in biofilm formation. Moreover, the results showed a stronger antibacterial activity of
negatively charged nanodiamonds particles against Escherichia coli and Bacillus subtilis
compared to positively charged nanodiamonds. The same studies showed, that nanodia-
mond structures lose their antibacterial properties after contact with biomolecules from
nutrition media, most likely due to unspecific reactions with media biomolecules [49,50].
The nanodiamonds have a lot of interesting advantages, for example, hight stability in
corrosion media, chemically inert, optically transparent and biocompatibility. Several pub-
lications proved that the nanodiamonds do not induce significant cytotoxicity in a variety
of animal/human cell types [51,52], respectively in primary culture of endothelial cells [53]
but might be more toxic for microorganisms [49]. At the molecular level, nanodiamond
particles inhibit the gene expression responsible for oxidative stress and carcinogenesis [54]
and they induce apoptosis in human endothelial cells [55]. A positive effect of diamond
nanoparticles in contact with the dental tissue is also observed [56]. The toxicity of carbon-
based nanomaterials, mainly graphene, carbon nanotubes and fullerenes on human and
animal cells, and antibacterial activity are widely commented on in the literature. The
toxicity of carbon-based nanomaterials, mainly graphene and fullerenes on human and
animal cells, and antibacterial activity are widely commented on in the literature [57].
Diamond nanoparticles that do not show cytotoxicity can be used in regenerative medicine
and tissue engineering as nano-scaffolds. Most often it concerns multifunctional bone nano-
scaffolds consisting of biopolymers modified with diamond nanoparticles which have no
cytotoxic effect on osteoblasts and do not disturb with proliferation of these cells [53,58,59].
Nanodiamond nanoparticles compared to carbon black and carbon nanotubes show the
smallest cytotoxic effect on cell lines including the line of tumor cells [60].

The aim of this study was to modify food packaging materials by using selected
carbon-based nanomaterials (CBNs) expecting that the modified packaging materials will
have an antibacterial effect, which should affect the durability and safety of food. Before
starting the research on the effect of modified packaging materials on selected bacterial
strains, it was assumed that it would be important to assess the size of individual grains and
conglomerates of used selected carbon-based nanomaterials, as well as bactericidal activity
against selected pathogens. It was planned to use pure detonated nanodiamond (DND),
and various modified nanodiamond materials. It was expected that the use of variously
modified materials based on nanodiamonds would allow understanding and systematize
the relationship between their chemical structure and antibacterial activity. Additionally,
in the study it was also planned to use graphene oxide (GO) in order to compare materials
of different structures. Measurement of grain size and zeta potential was performed using
the Dynamic Light Scattering method. Surface morphology was evaluated using Scanning
Electron Microscope (SEM), while the share of D and G content in the applied carbon
nanomaterials was determined by Raman spectroscopy, with the expectation that it would
be possible to determine the impact of the ID/IG ratio on the antibacterial activity of
nanomaterials. Modified by using various carbon-based nanomaterials food packaging
films have been tested for their colonization by pathogens, which can be referred to as
an antibacterial effect. It was expected that the conducted research would reveal rules
enabling the design of new, nanoparticle-modified packaging materials for various food
products, protecting food against both Gram-positive and Gram-negative bacteria.

2. Materials and Methods
2.1. Carbon-Based Nanomaterials

In this work the following materials were used:

• graphene oxide (GO);
• amorphous carbon powder formed using Radio Frequency Plasma Activated Chemical

Vapor Deposition Method (RF);
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• rhodamine modified detonated nanodiamond (MDCHF);
• plasma-chemically modified detonated nanodiamond (MDP1);
• chemically modified detonated nanodiamond particles with hydroxyl functional

groups (MDCHPOH);
• non-modified pure detonated nanodiamond particles (DND).

Pure detonation nanodiamond particles (DND) were manufactured by the Danilenko
method and a single grain size was estimated at about 2–4 nm [1]. The single grain
size specification of the individual particles provided by the Adamas Nanotechnologies
Company range from 2 to 4 nm. The commercial graphene oxide (GO) tested was in the
form of a 1% water suspension, FL-GO, from the NANOMATERIALS Leszek Stobiński
Company (Warsaw, Poland), in which graphene flakes form a film.

Preparation of Rhodamine Modified Detonated Nanodiamond (MDCHF)

The starting material was pure detonated nanodiamond (DND) manufactured by the
Danilenko method. In the first stage DND was subjected to modification aimed at intro-
ducing hydroxyl groups on the surface of nanomaterials. The standard Fenton reaction
procedure for modification of DND particles was used for the preliminary functional-
ization [61]. In the next step, the hydroxyl groups were esterified with Rhodamine B
(Merck, Warsaw, Poland). Rhodamine B was activated by using 4-toluenosulphonate 4-(4,6-
dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholine (DMT/NMM/TosO−) [62]. The choice
of DMT/NMM/TosO− as a coupling reagent resulted from both its efficiency as a condens-
ing reagent and to ease the removal of side products, thereby ensuring that there were no
deposits on the functionalized nanomaterials [63,64]. Rhodamine B (0.958 g, 2 mmol) was
dissolved in a mixture of dimethylformamide (DMF) and water (9:1) (10 mL). After cooling
the solution to 0 ◦C, DMT/NMM/TosO− (0.826 g, 2 mmol) and N-methylmorpholine
(NMM) (110 µL, 1 mmol) were added while stirring vigorously. Stirring was continued
for 1 h until the reagent was consumed. After this time, nanodiamond powder with hy-
droxyl groups on the surface and NMM (1100 µL, 1 mmol) was added to the solution of
Rhodamine B triazine ester. The suspension was stirred for 12 h at room temperature. The
precipitate was filtered off under reduced pressure and washed with DMF (10 mL), water:
DMF (1:1) (10 mL), and DMF (10 mL). Washing was continued until no reagents were found
in the filtrate (TLC control). The residue was suspended in water (10 mL) and lyophilized.

2.2. SEM Analysis

Each sample was placed successively in the chamber on the stage, by means of which
it was possible to set the appropriate position and angle of inclination. The chamber was
deaerated for low vacuum (LV) testing. A scanning electron microscope (SEM), JSM-5500
LV, from Jeol Ltd. (Peabody, MA, USA) was used for this purpose.

2.3. XRD Analysis

XRD analysis was performed using an X’Pert Panalytical powder diffractometer
(Malvern Panalytical, Malvern, UK). The measurement was carried out using a copper
anode (CuKα radiation beam, λ = 1.5406 Å). The samples were scanned in Bragg-Brentano
geometry in the 2θ angle range 10–100◦ using a continuous rotation of the sample with a
constant period of T = 8 s.

2.4. Confocal Microscope Analysis

Assessment of surface morphology on the investigated samples was performed on
a SENSOFAR S neox confocal microscope). It is a microscope that allows non-contact
scanning of surfaces using confocal and interferometric methods. Confocal microscopy
was performed on the S neox high-performance 3D optical profiler (Sensofar metrology,
Barcelona, Spain) with EPI 20X v35 objective that allows non-contact optical 3D profil-
ing. The neox uses a high-resolution charge-coupled sensor (0.69 µm/pixel) of up to
1360 × 1024 pixels (observed area 850.08 µm × 709.32 µm). The sample was affixed in
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such a way as to avoid the slightest movement during sensing (due to vibration, air flow,
etc.). Confocal microscopy was also performed on the S neox high-performance 3D optical
profiler (Sensofar metrology, Barcelona, Spain) with EPI 50X v35 objective that allows
non-contact optical 3D profiling. The neox uses a high-resolution charge-coupled sensor
(0.28 µm/pixel) of up to 1360 × 1024 pixels (observed area 340.03 µm × 283.73 µm). This
sample was also affixed in such a way as to avoid the slightest movement during sensing
(due to vibration, air flow, etc.).

2.5. Dynamic Light Scattering (DLS) Analysis

The Litesizer 500 Anton Paar is a device that allows the determination of particle size,
zeta potential and molecular weight, by using dynamic light scattering. In our research, the
parameters were set as follows: temperature 25 ◦C; solvent for powders-water (refractive
index 1.3), refractive index for diamond: 2.42 and grapheme: 1.3; one measurement time:
10 s; the optical system was set to automatic mode; the measurements were carried out
in disposable measuring cuvettes. The sample should be used following filtration or
centrifugation to remove dust and artifacts from the solution. All the data to be obtained
during the test can be determined by two curves, one from the trace of particle intensity
(number distribution) and the other from the volume distribution. DLS is a technique that
is used to measure the size of a sample.

2.6. Statistical Analysis

Kalliope™ is the simple analytical software used in Anton Paar’s Litesizer™ particle
analysers. Before proceeding with the particle analysis (DLS optimization), the correct
solvent (water) for our purposes was selected and then the “start” button was pushed. The
system automatically changes the gain, determines the optimal focal position and the best
DLS detection angle. Experimentation, analysis and report generation takes place within
seconds. With the help of MATLAB, the necessary calculations were able to be made and
the graphs were produced.

2.7. Raman Spectroscopy

Raman studies were conducted on the Renishaw device in a Via Raman spectrometer.
The spectra were analyzed in the Raman shift range 900 to 2000 cm−1 with an excitation
wavelength of 532 nm. Each spectrum was deconvoluted into two peaks (D and G) by
using spectral analysis software (Peak Fit v4.11) to calculate the intensity ratio ID/IG.

2.8. Antibacterial Test

Tests were performed on standard strains of four bacteria: Escherichia coli ATCC 25922,
Pseudomonas aeruginosa NCTC 12903/ATCC 27853, Staphylococcus aureus ATCC® 25923,
Streptococcus mutans ATCC 35668. Assessment of antibacterial activity was made using the
direct method based on the criteria contained in the description of SN 195920 [65]. The
antimicrobial effect of carbon-based nanomaterials was assessed in accordance with the
criteria contained in the description of the SN 195920–ASTM standard E2922 [53]. The
surface of the medium was inoculated with the suspension of test microorganisms with a
concentration of 106 CFU/mL (0.5 Mc Farland densitometer, DN 1B MF, BIOSAN, Riga,
Latvia) and after 20 min the nanomaterials were placed in the incubator and incubated
at 37 ◦C for 24 h. After incubation, the growth inhibition zones of the test subjects were
evaluated for microorganisms. The criterion for assessing bactericidal properties is the
presence and the size of the zone inhibiting the growth of the tested microorganisms.
Research was carried out in triplicate for each sample tested and each test microorganism.

2.9. Preparation of Food Films Modified with Carbon-Based Nanomaterials

Different types of food laminates (monoplex, duplex, triplex, quadroplex were used for
modification with carbon-based nanomaterials. Single-layer (monoplex) laminate for pack-
ing ice cream, two-layer (duplex) laminate for packing ketchup, three-layer (triplex) lami-
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nate for packing coffee, four-layer (quadroplex) laminate for packing mustard. Used pack-
aging films are made of: polyethylene terephthalate (PET)/aluminium (ALU)/polyethylene
(PE) (PET/ALU/PE) in the case of coffee packaging; PET/ALU/MET PET/PE in the
case of Ketchup packaging, where MET PET is metalized polyethylene terephthalate;
PET/ALU/PE in the case of mustard packaging; oriented polypropylene (OPP) in the case
of ice cream packaging. Laminates differ in the number of layers-polymers.

Carbon-based nanomaterials powders were applied in two ways (Figure 2). Samples
of food packaging film with dimensions of 10 mm × 10 mm were treated with diamond
nanopowders aerosol (a suspension consisting of nanopowders mixed with water) or an
1% aqueous suspension of graphene oxide. The concentration of diamond nanopowders
aerosol was 1 mg/1 mL deionised water. The application of the diamond nanopowders
aerosol was performed by means of a hand pump in the form of double application on
each film. Graphene oxide was applied by hand with a wooden spatula in the form of
biofilm. The application was carried out immediately after the solution was mixed in the
ultrasonic device. The diamond nanoparticles suspension was sprayed on food films in
a fog. The films with applied layers of diamond nanopowders or graphene oxide were
then left to dry for 30 min at room temperature. There was obtained to potentially equal
amounts of sprayed or applied product on the material, but this was not the primary role
as the main phenomenon was how carbon powders interact with pathogens.
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Figure 2. Schematic representation of the carbon based nanomaterials film formation.

2.10. Adhesion Tests—Fluorescence Microscopy

Microbial adhesion to polymer surfaces was studied using a fluorescence microscope
equipped with a special MOTIC light kit consisting of a fluorescent lens used for epifluo-
rescence and an M2 digital camera. The stained cells shown in the photos were counted
using a special microscope program, which was also used to process and store the photos.
After the incubation period, all cells and culture media that had not been adhered to films
were removed from the polymers by washing them with sterile distilled water. The film
was then coated with 0.5 cm3 bisbenzidine solution and incubated for 120 s. Later, the
samples were washed again with distilled water (dye removal), 0.3 cm3 of propidine iodide
solution was applied, incubated (120 s), washed again. At the end the sample was dried
with a gentle air stream, then the fluorescence of stained cells was observed at 100-fold
magnification, with respect to cell viability–red (dead cells, stained with propidine iodide).
Coloured bacterial cells were counted in 10 fields of view of the microscope. The viability
of the bacteria was determined by using the cell culture method and ATP method, and the
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sum of living and dead cells that were subjected to adhesion was taken into account in
the calculations. To calculate the number of cells per 1 mm2 of polymer surface, the image
surface area was determined using a computer coupled with a fluorescence microscope
(Figure 3). The adhesion measurements for different film types were performed three times
using fluorescence microscopy. Four strains of bacteria were used for adhesion studies:
Escherichia coli ATCC 25922, Pseudomonas aeruginosa NCTC 12903/ATCC 27853, Staphylococ-
cus aureus ATCC® 25923, Streptococcus mutans ATCC 35668. The studies were performed on
standard strains: Escherichia coli ATCC 25922, Pseudomonas aeruginosa NCTC 12903/ATCC
27853, Staphylococcus aureus ATCC® 25923, Streptococcus mutans ATCC 35668 [53].
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Figure 3. Fluorescence microscope equipped with a special MOTIC light kit and an M2 digital camera
used for research.

The tests of bacterial adhesion to the film were carried out on different types of film
(single-layer (monoplex) laminate for packing ice cream, two-layer (duplex) laminate for
packing ketchup, three-layer (triplex) laminate for packing coffee, four-layer (quadroplex)
laminate for packing mustard) and different films modified with six differ carbon-based
nanomaterials (finally 24 new films were obtained via modification with carbon-based
nanomaterials).

3. Results and Discussion

The research began to characterize the physico-chemical properties of selected carbon
nanomaterials that were planned to be used for the modification of food packaging materi-
als. One of the analysis methods of surface morphology carbon-based nanomaterials used
was scanning electron microscopy (SEM). Thus, it was assumed that it is not essential to
accurately determine the size of conglomerates and micro- and nano-structures, although
it would be very helpful in optimizing the parameters of nanopowders and selecting them
for further research. The smallest conglomerate size was observed for this nanomaterial.

SEM images of the tested carbon-based nanomaterials (CBNs) are presented in Figure 4.
Figure 4a shows the morphology of graphene flakes in the form of a film, Figure 4b—the
amorphous form of low—pressure diamond powder, Figure 4c,e—the morphologies of
detonation nanodiamond particles chemically modified by hydroxyl groups (e) and rho-
damine (c). Interestingly, in the case of detonated nanodiamonds chemically modified by
the Fenton method (presence of hydroxyl groups on the surface (Figure 4e) and rhodamine
B attached to hydroxyl groups on the surface of the nanodiamond (Figure 4c), it was
found that both of these nanomaterials have very similar nanocrystalline assemblies. It
was also found that both of these materials exhibit fluorescent properties similar to the
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autofluorescence of diamond. While the observed fluorescence of the modified rhodamine
B material is rather obvious, in the case of nanodiamond particles with hydroxyl groups
on the surface, this property could be considered an important feature that ought to be
used for research with fluorescence techniques. A similar form but without visible autoflu-
orescence was observed for the unmodified detonated nanodiamond particle (Figure 4f).
This observation may indicate that the important to obtaining the fluorescent properties
of detonated nanodiamond is the introduction of the reactive groups or bonds on the
its surface.
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Figure 4. SEM images of the surface morphology Carbon-based Nanomaterials (CBNs): (a) graphene oxide (GO) film;
(b) amorphous carbon powder formed using Radio Frequency Plasma Activated Chemical Vapor Deposition Method);
(c) fluorescent nanodiamond (MDCHF), (d) plasma–chemically modified detonated nanodiamond particles (MDP1);
(e) chemically modified detonated nanodiamond particles with hydroxyl functional groups (MDCHPOH); (f) pure detonated
nanodiamond particles (DND).

The crystallographic structure of Carbon-based Nanomaterials (CBNs) is best de-
scribed based on on XRD diffraction and High Resolution Transmission Electron Mi-
croscopy (HR TEM). The analysis of the atomic structure of detonation diamond crystals
proved the nanoparticles form perfect single crystals. Some of the single crystals contain
crystallographic defects [53,66–68].

Figure 5 shows the XRD analysis of examined detonation nanodiamond particles
(DND) with the presence of the crystalline lattice parameters described in the above-
cited publications.
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In order to study the surface morphology of examined carbon nanomaterials in more
detail, confocal microscopy studies were performed (Figure 6).

The most ordered structure was observed for GO film, while the fluorescent nanodia-
mond powder (MDCHF) had the least ordered one. The remaining powders show similar
surface characteristics.

The dynamic light scattering (DLS) method was used to evaluate the size of tested
nanoparticles suspended in a liquid by using a laser beam. Using the DLS method the
distribution of the single grain size nanoparticles depending on the method of manufac-
turing, surface modification and type of allotropic forms were obtained (Figure 7). The
individual grain size of graphene oxide (GO) was 624.55 nm (Figure 7a). The observed
large size of the grains may be due to the fact that GO emulsion was treated as a graphene
film, which made the separation of individual grains difficult. Figure 7b shows the results
for amorphous carbon powder (RF) formed using the Radio Frequency Plasma Activated
Chemical Vapor Deposition Method (RF/PACVD) method. For these particles, quite large
grain sizes (about 153.44 nm) were observed. The size of these grains results from the
formation of conglomerates. Despite the efforts made, it was difficult to obtain single grains
of RF material. For rhodamine modified detonated nanodiamond (MDCHF)—a fluorescent
nanodiamond, the largest grain size (163.10 nm) was found (Figure 7c). It appears that the
measurement is being affected by the rhodamine B molecules covalently bound to diamond
nanoparticles. The presence of a tertiary amine group and/or a positively charged iminium
salt may cause grain repulsion because of the presence of positive charges on the nanoma-
terial surface. In the case of plasma-chemically modified detonated nanodiamond particles
(MDP1) (Figure 7d) the grain size and individual grains were approximately 91.41 nm in
size. The formation of a cluster of single, very small grains was found. Additionally, minor
differences in the spherical shape of the molecules were observed. For chemically modified
with hydroxyl groups (MDCHPOH) under Fenton reaction detonated nanodiamond parti-
cles the smallest grain sizes (about 4.20 nm) were observed (Figure 7e). Modification of
surface by the Fenton method purifies the surface of the nanodiamonds from undesirable
deposits, which contributes to reducing the grain size. It seems, however, that the main
reason for the observed small size of the grains is the presence of hydroxyl groups on
the surface of the nanomaterial, which can form a network of hydrogen bonds between
the grains and/or in the aqueous medium create grain structures surrounded by water
molecules with the participation of hydrogen bonds. In the case of non-modified detonated
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nanodiamond particles (DND) very large conglomerates at 2.6 microns (2658.73 nm) were
found (Figure 7f). The single grain size specification of the individual particles, provided by
Adamas Nanotechnologies Company, is in the range from 2 to 4 nm. So, these commercial
detonation nanodiamond (DND) particles are able to form conglomerates from several
hundred nm to a few µm in size with a highly developed reactive surface.
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Figure 6. Confocal microscope images of Carbon-based Nanomaterials: (a) Graphene Oxide (GO) emulsion; (b) amorphous
carbon powder formed using Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF); (c) fluorescent
nanodiamond (MDCHF), (d) plasma–chemically modified detonated nanodiamond particles (MDP1); (e) chemically
modified detonated nanodiamond particles with hydroxyl functional groups (MDCHPOH); (f) pure detonated nanodiamond
particles (DND).
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Figure 7. CBNs particle size based on DLS analysis (distribution function depending on number or volume weight):
(a) Graphene Oxide (GO) film; (b) amorphous carbon powder formed using Radio Frequency Plasma Activated Chemical
Vapor Deposition Method (RF); (c) fluorescent nanodiamond (MDCHF), (d) plasma–chemically modified detonated
nanodiamond particles (MDP1); (e) chemically modified detonated nanodiamond particles with hydroxyl functional groups
(MDCHPOH); (f) pure detonated nanodiamond particles (DND).

The smallest grain size was found for particles of detonated nanodiamond chem-
ically modified with hydroxyl groups on the surface (MDCHPOH) and the plasma-
chemically modified detonation nanodiamond particles (MDP1) (Figures 7d and 8), while
the largest single grain size had unmodified detonation nanodiamond particles (DND)
(Figures 7f and 8). This finding was surprising because it was claimed that this commercial
powder had a single grain size in the range 2 nm to 4 nm. The observed differences may
result from disregarding the spontaneous ability of DND to form conglomerates. It seems
that the application of the DLS method gave the opportunity to find the real size of agglom-
erates of 3D nanodiamond particles. Chemical modification, i.e., surface hydroxylation
and saturation of free bonds on the diamond surface significantly affects the breakdown
of conglomerates and the possibility of obtaining a single grain size in the 4 nm range.
Confirmation of this hypothesis was also obtaining a single grain below 100 nm for the
plasma-chemical modified material (MDP1). The functionalization of the nanodiamond
surface, saturation of free reactive bonds and the exposure of active carbonyl groups [3]
during plasma-chemical modification means that when considering a single nanodiamond
grain, it is necessary to modify its surface and disturb the formation of conglomerates. The
attachment of fluorescent labels by a strong covalent bond with rodamine B (MDCHF)
causes the modified material to have a tendency to form conglomerates, hence the size of
a single grain above 100 nm [3] (Figure 8). A notable point of interest was the result of
amorphous carbon powder formed using the Radio Frequency Plasma Activated Chemi-
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cal Vapor Deposition Method (RF). It is known from the literature [69] that this powder
contains much less diamond phase than detonated nanodiamond particles, leading to an
amorphous structure containing a significant amount of graphite phase, which determines
its hydrophobicity and related morphology.
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Figure 8. The comparison of grain sizes of tested carbon-based nanomaterials.

The size of the graphene oxide (GO) flakes was the most difficult to interpret, since
the flakes were a suspension in water and formed a film. The size of a single grain was
estimated to be slightly above 0.5 microns.

For designation zeta potential using DLS method, the parameters to be monitored were
set prior to the start of a series of tests: measurement cell, omega cuvette Z, approximation,
adjustment mode, automatic, Debye factor: 1.5, equilibration time: 0 h 01 m 00 s, target
temperature: 20.0 ◦C or 25.0 ◦C, voltage: 200.0 V, run mode automatic, number of runs:
100 ÷ 1000; solvent name: water, solvent viscosity: 0.0010019 Pas, solvent refractive
index: 1.3307, solvent Relative permittivity: 80.18 r. The zeta potential results of all
the carbon-based nanomaterials tested are shown in Figure 9a–f. The Zeta potential of
graphene oxide (GO) emulsion in water was –22.97 mV. For the amorphous carbon powder
formed using Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF)
suspended in water, a mean zeta potential of –34.97 mV was found. In the case of fluorescent
nanodiamond (MDCHF), the zeta potential of powder suspended in water there was a
mean zeta potential of −16.83 mV. In Figure 9d, the zeta potential of plasma–chemically
modified detonated nanodiamond particles (MDP1) is shown. For the suspension of
powder in water gained mean zeta potential on –0.1 mV tier was found. The zeta potential
of chemically modified detonated nanodiamond particles with hydroxyl functional groups
(MDCHPOH) gained a mean zeta potential of 46.30 mV. The zeta potential diamond
powders produced by detonation method (DND) as a water suspension gained a mean
zeta potential of –6.47 mV.

Examination of the electrokinetic potential allowed the determination of the sign
and value of the electric potential on the border of the adsorptive and diffusion phase
(Figure 10). It is an indicator of the type of environment prevailing around the tested
carbon powders. Positive potentials, maximum value 46.3 mV, for diamond powders
modified by hydroxyl groups (MDCHPOH), due to attractive electrostatic force may form
friendly environment to create stronger ion binds and increase adhesion Gram-negative
bacteria to powders surfaces, similarly negative potentials, minimum value of −34.95 mV
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for amorphous carbon powders obtained by Radio Frequency Plasma Activated Chemical
Vapor Deposition Method may create friendly environment to create stronger ion binds
and increase adhesion for Gram positive bacteria to powders surfaces [70–72].
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Figure 9. Zeta potential of Carbon-based Nanomaterials: (a) Graphene Oxide (GO) emulsion; (b) amorphous carbon powder
formed using Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF); (c) fluorescent nanodiamond
(MDCHF), (d) plasma–chemically modified detonated nanodiamond particles (MDP1); (e) chemically modified detonated
nanodiamond particles with hydroxyl functional groups (MDCHPOH); (f) pure detonated nanodiamond particles (DND).
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Figure 10. A comparison of tested carbon powders in relation to zeta potential.

Also noteworthy is electrokinetic potential near “0” value, −0.11 mV for plasma-
chemical modified diamond powder (MDP1), which may induce a practically neutral envi-
ronment.

In order to additionally check the content of the diamond phase in the tested carbon-
based nanomaterials, their structure was checked by Raman spectroscopy. Figure 11 shows
the results of the examined carbon nanostructures under Raman spectroscopy. The greatest
content of the diamond phase is shown by the following powders: fluorescent detonation
nanodiamond modified by rhodamine (MDCHF) ID/IG—2.39 and plasma-chemically
modified (MDP1) ID/IG—2.24.

The following powders have an intermediate content of the diamond phase: pure
detonation method (DND)-ID/IG–0.93 and detonation nanodiamond particles modified
by chemical method with hydroxyl groups (MDCHPOH)–ID/IG–0.63. The amorphous
powder shows the lowest content of diamond phase carbon powder manufactured by the
RF PACVD method (RF)-ID/IG–0.55. The graphene oxide film has a high ID/IG ratio,
which is not due to the high content of the diamond phase, but to lattice defects.

In the next stage of the research, the antibacterial activity of all the tested carbon-
based nanomaterials was checked. Inhibition zone assay was used in the studies. For
microbiological tests 4 bacterial strains were used: Escherichia coli, Streptococcus mutans,
Pseudomonas aeruginosa, and Staphylococcus aureus. The inhibition zones were formed by the
modified disk diffusion method. The zones of bacterial growth inhibition were visible in the
case of direct contact: pure detonated nanodiamond particles (DND) with Escherichia coli
(Figure 12a), a DND with Streptococcus mutans (Figure 12b), chemically modified detonated
nanodiamond particles with hydroxyl functional groups (MDCHPOH) with Pseudomonas
aeruginosa (Figure 12c), amorphous carbon powder formed using Radio Frequency Plasma
Activated Chemical Vapor Deposition Method (RF) with Staphylococcus aureus (Figure 12d),
a fluorescent nanodiamond (MDCHF) with Escherichia coli (Figure 12e), Graphene Oxide
(GO) film with Pseudomonas aeruginosa (Figure 12f) and Graphene Oxide (GO) film with
Streptococcus mutans (Figure 12g).
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spectrum of detonation nanodiamond particles modified by chemical method with hydroxyl groups (MDCHPOH)–ID/IG–
0.63; (f) Raman spectrum of detonation nanodiamond particles manufactured by detonation method (DND)-ID/IG–0.93.
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here the obtained result is consistent with the literature data [12–14,42]. 
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Figure 12. Results of antibacterial studies based on the inhibition zone method for: (a) pure detonated nanodiamond
particles (DND) with Escherichia coli; (b) DND with Streptococcus mutans; (c) chemically modified detonated nanodiamond
particles with hydroxyl functional groups (MDCHPOH) with Pseudomonas aeruginosa; (d) amorphous carbon powder formed
using Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF) with Staphylococcus aureus; (e) fluorescent
nanodiamond (MDCHF) with Escherichia coli; (f) Graphene Oxide (GO) film with Pseudomonas aeruginosa; (g) GO film with
Streptococcus mutans.

The results of microbiological tests do not clearly indicate the relationship between
the surface of detonated nanodiamond particles and their bactericidal activity. The large
conglomerates of unmodified detonating nanodiamond particles (DND), most likely in
the cytotoxic mechanism, had a non-significant bactericidal effect (Figure 11a,b). Other
powders, except for the plasma-chemically modified powder (MDPOH) without bacte-
ricidal properties, had selective and weak bactericidal activity (Figure 11c–e). This is
consistent with the literature and our own research, in which nanodiamonds did not show
any significant bactericidal activity [2–4,6,11,18–21].

Graphene oxide had antibacterial activity in relation to Pseudomonas aeruginosa and
Streptococcus mutans, which determines the visible inhibition zone (Figure 12f,g). Also, here
the obtained result is consistent with the literature data [12–14,42].

In the last stage of the research, the influence of packaging materials modified with
all tested carbon-based nanomaterials on food was examined. Then the bacterial strains
(Escherichia coli ATCC 25922, Pseudomonas aeruginosa NCTC 12903/ATCC 27853, Streptococ-
cus mutans ATCC 35668, Staphylococcus aureus ATCC25923) were applied. Staphylococcus
aureus, Streptocococcus mutant as Gram-positive bacteria should multiply intensively in an
environment formed by materials with negative electrokinetic potentials (almost all except
MDCHPOH). MDCHPOH with a high positive potential should allow Gram-negative
bacteria (Pseudomonas aeruginosa, Escherichia coli) to propagate intensively. Plasma-chemical
modified diamond powder (MDP1) should not have a big influence on antibacterial behav-
ior. The results of adhesion of bacteria for food films coated with powders of carbon-based
nanomaterials are presented in Table 1. No data applies to results that are statistically
non-existent and do not affect the final results of the study.

To analyze the images from the fluorescence microscope, bacteria were colored:
yellow—live, red—dead. In the research various carbon-based nanomaterial types of
films for food were utilised (I—mustard, II—ice cream, III—ketchup, IV—coffee). For
Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, Escherichia coli both in-
crease and decrease of bacterial adhesion to food laminates were observed (Figures 13–16).
Research on the adhesion of Staphylococcus aureus to packaging film for food modified with
carbon-based nanomaterials allowed for the selection of materials with a high degree of
adhesion, as well as those for which adhesion was low. In the case of packaging films
modified with graphene oxide (GO), an increase in bacterial adhesion was observed on
modified food mustard films (I) and a decrease in bacterial adhesion on modified food
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ketchup films (III) (Figure 13a). Application of an amorphous carbon powder formed using
Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF) for the modi-
fication of the food film enabled the observation that an increase in bacterial adhesion was
found on modified films for ice cream packaging (II) and a decrease in bacterial adhesion
on all modified food ketchup films (III) (Figure 13b). Fluorescent detonation nanodiamond
modified by rhodamine (MDCHF) coated laminates were causing an increase in bacterial
adhesion on modified food ice cream films (II) and a decrease in bacterial adhesion on
modified food ketchup films (III) (Figure 13c).

Table 1. The adhesion of bacteria for food films coated with carbon powders.

Bacteria Food Packaging GO RF MDCHF MDP1 MDCHPOH DND

S.
au

re
us

mustard nd nd − nd + nd
ice crem nd nd nd −− ++ nd
ketchup nd nd − + nd nd
coffee − nd nd nd + nd

S.
m

ut
an

ts mustard nd nd nd nd + nd
ice crem − nd nd + nd nd
ketchup − nd + nd nd nd
coffee −− nd ++ nd nd nd

P.
ae

ru
gi

no
sa mustard ++ nd nd − nd nd

ice crem nd − nd nd nd nd
ketchup − nd nd nd + nd
coffee −− nd nd + nd nd

E.
co

li

mustard nd + nd −− nd nd
ice crem nd − nd nd ++ nd
ketchup nd + nd nd nd nd
coffee nd − nd nd + nd

+ means that the greatest increase in adhesion was observed; ++ means the maximum increase in adhesion
compared to all powders and all types of food films; −means that a significant decrease in adhesion was noted;
−−maximum decrease in adhesion compared to all powders and all types of food films; nd means no data.

Plasma–chemically modified detonated nanodiamond particles (MDP1) coated lami-
nates resulted in an increase in bacterial adhesion on ketchup films (III) and a decrease in
bacterial adhesion on ice cream films (II) (Figure 13d). In the case of chemically modified
detonated nanodiamond particles with hydroxyl functional groups (MDCHPOH) coated
laminates, an increase in bacterial adhesion was observed on ice cream films (II) and a
decrease in bacterial adhesion on ketchup films (III) (Figure 13e). Nanodiamond particles
manufactured by the detonation method (DND) coated laminates resulted to an increase
in bacterial adhesion on coffee films (IV) and a decrease in bacterial adhesion on mustard
films (I) (Figure 13e). In the case of the remaining bacteria, identical tests of bacterial
adhesion to food films modified with nanomaterials were performed. Figure 14 shows the
results of Streptococcus mutans adhesion to laminates for food films: I—mustard, II—ice
cream, III—ketchup, IV—coffee.

Also, in the case of research on the adhesion of Streptococcus mutans to packaging film
for food modified with carbon-based nanomaterials allowed for the selection of materials
with a high degree of adhesion, as well as those for which adhesion was low. An increase
of bacterial adhesion to graphene oxide (GO) coated laminates for ketchup films (III) and a
decrease in bacterial adhesion on graphene oxide (GO) modified food coffee films (IV) was
found (Figure 14a).

Application of an amorphous carbon powder formed using Radio Frequency Plasma
Activated Chemical Vapor Deposition Method (RF) for the modification of the food film
allowed the observation that an increase in bacterial adhesion was found on modified food
ketchup films (III) and a decrease in bacterial adhesion on all modified food coffee films
(IV) (Figure 14b). When fluorescent detonation nanodiamond modified by rhodamine
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(MDCHF) and plasma–chemically modified detonated nanodiamond particles (MDP1)
were used for the modification of food films, similar results were observed (Figure 14c,d).
In both cases, an increase in bacterial adhesion was observed on modified food coffee films
(IV) and a decrease in bacterial adhesion on all modified food mustard films (I).

The application of nanodiamond modified chemically with hydroxyl functional groups
(MDCHPOH) for film the laminates led to an increase in bacterial adhesion on modified
food ketchup films (III) and a decrease in bacterial adhesion on modified food ice cream
films (II) (Figure 14e). In the case of nanodiamond particles manufactured by detonation
method (DND) coated laminates, an increase in bacterial adhesion was observed on modi-
fied food coffee films (IV) and a decrease in bacterial adhesion on modified food mustard
films (I) (Figure 14f).
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Figure 13. Images of Staphylococcus aureus adhesion to laminates for food films I—mustard, II—ice cream, III—ketchup,
IV—coffee, with the lowest and highest adhesion to layers formed by: (a) Graphene Oxide (GO) film; (b) amorphous
carbon powder formed using Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF); (c) fluorescent
nanodiamond (MDCHF); (d) plasma–chemically modified detonated nanodiamond particles (MDP1); (e) chemically
modified detonated nanodiamond particles with hydroxyl functional groups (MDCHPOH); (f) pure detonated nanodiamond
particles (DND).
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Figure 14. Images of Streptococcus mutans adhesion to laminates for food films I—mustard, II—ice cream, III—ketchup,
IV—coffee, with the lowest and highest adhesion to layers formed by: (a) Graphene Oxide (GO) film; (b) amorphous
carbon powder formed using Radio Frequency Plasma Activated Chemical Vapor Deposition Method (RF); (c) fluorescent
nanodiamond (MDCHF); (d) plasma–chemically modified detonated nanodiamond particles (MDP1); (e) chemically
modified detonated nanodiamond particles with hydroxyl functional groups (MDCHPOH); (f) pure detonated nanodiamond
particles (DND).

The characteristics of the adhesion capacity of Pseudomonas aeruginosa to food pack-
aging films (Figure 15) modified with carbon nanomaterials is as follows: (a) graphene
oxide (GO) coated laminates: an increase in bacterial adhesion was observed on modified
mustard films (I) and a decrease in bacterial adhesion on modified coffee films (IV); (b) an
amorphous carbon powder formed using Radio Frequency Plasma Activated Chemical
Vapor Deposition Method (RF) coated laminates: an increase in bacterial adhesion was
observed on modified coffee films (IV) and a decrease in bacterial adhesion on modi-
fied mustard films (I); (c) fluorescent detonation nanodiamond modified by rhodamine
(MDCHF) coated laminates: an increase in bacterial adhesion was observed on modified
mustard films (I) and a decrease in bacterial adhesion on modified ketchup films (III);
(d) plasma–chemically modified detonated nanodiamond particles (MDP1) coated lami-
nates: an increase in bacterial adhesion was observed on modified coffee films (IV) and a
decrease in bacterial adhesion on modified mustard films (I); (e) nanodiamond modified
chemically with hydroxyl functional groups (MDCHPOH) coated laminates: an increase in
bacterial adhesion was observed on modified ketchup films (III) and a decrease in bacterial
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adhesion on modified ice cream films (II); (f) nanodiamond particles manufactured by det-
onation method (DND) coated laminates: an increase in bacterial adhesion was observed
on modified ice cream films (II) and a decrease in bacterial adhesion on modified coffee
films (IV).
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particles (DND).

The characteristics of the adhesion capacity of Escherichia coli to food packaging films
(Figure 16) modified with carbon nanomaterials is as follows: (a) graphene oxide (GO)
coated laminates: an increase in bacterial adhesion was observed on modified mustard
films (I) and a decrease in bacterial adhesion on modified coffee films (IV); (b) an amor-
phous carbon powder formed using Radio Frequency Plasma Activated Chemical Vapor
Deposition Method (RF) coated laminates: an increase in bacterial adhesion was observed
on modified ketchup films (III) and a decrease in bacterial adhesion on modified coffee films
(IV); (c) fluorescent detonation nanodiamond modified by rhodamine (MDCHF) coated
laminates: an increase in bacterial adhesion was observed on modified ice cream films (II)
and a decrease in bacterial adhesion on modified mustard films (I); (d) plasma–chemically
modified detonated nanodiamond particles (MDP1) coated laminates: an increase in bac-
terial adhesion was observed on modified ice cream films (II) and a decrease in bacterial
adhesion on modified mustard films (I); (e) nanodiamond modified chemically with hy-
droxyl functional groups (MDCHPOH) coated laminates: an increase in bacterial adhesion



Coatings 2021, 11, 161 23 of 30

was observed on modified ice cream films (II) and a decrease in bacterial adhesion on mod-
ified ketchup films (III); (f) nanodiamond particles manufactured by detonation method
(DND) coated laminates: an increase in bacterial adhesion was observed on modified ice
cream films (II) and a decrease in bacterial adhesion on modified mustard films (I).

The evaluation of adhesion showed statistically significant differences in the effect of
reducing adhesion and bacterial viability. Based on the study of bacterial adhesion to food
packaging modified with nanomaterials, it was possible to determine the percentage of
live bacteria in the adhesive layer (Figure 17). Living cells were manually counted under
the microscope for all cells. Films without pathogens were used as controls.
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The bacteria interacted with carbon powders (GO, RF, MDCHF, MDP1, MDCHPOH, DND) on various types of film (I—
mustard, II—ice cream, III—ketchup, IV—coffee). 

4. Conclusions 
The carbon-based nanomaterials (CBN has many applications in medicine, cosmetol-

ogy and the food industry. Using a scanning electron microscope and confocal microscope 
the topography of carbon was studied. The results of Raman spectroscopy confirm that 
the nanodiamond particles with surface modification show the highest content of the di-
amond phase, although the pure detonation powder has a higher ID/IG ratio compared 

Figure 17. Assessment of the percentage of live bacteria in the adhesive layer. The analysis was carried out in terms of
the type of bacteria (Staphylococcus aureus (a), Streptococcus mutans (b), Pseudomonas aeruginosa (c), Escherichia coli
(d)). The bacteria interacted with carbon powders (GO, RF, MDCHF, MDP1, MDCHPOH, DND) on various types of film
(I—mustard, II—ice cream, III—ketchup, IV—coffee).

Based on the data presented in Figure 16, it can be stated that the adhesion of Staphy-
lococcus aureus to food packaging films modified with nanomaterials was the lowest in
the case of films modified with graphene oxide. Only in the case of mustard film, the
percentage of living pathogen was around 25%. The pool of materials preventing the
adhesion of Staphylococcus aureus also includes films modified by amorphous carbon
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powder formed using Radio Frequency Plasma Activated Chemical Vapor Deposition
Method (RF). Similar results were seen in studies of the adhesion of Streptococcus mutans to
four different food packaging materials (Figure 17b). In the case of films modified with
graphene oxide, the content of live pathogens was the lowest among all tested materials.
The most abundant amount of live Streptococcus mutans in the adhesive layer was found
for packaging films modified with nanodiamonds containing rhodamine B residues on
the surface (MDCHF). A different image of adhesion to food packaging films modified
with nanomaterials was found for Pseudomonas aeruginosa (Figure 17c). In the pool of
packaging materials modified with graphene oxide, low adhesion ability and low content
of live pathogens were observed only for film III (ketchup) and film IV (coffee). Interest-
ingly, in the case of all nanodiamond-based nanomaterials, a moderately low adhesion
capacity of this pathogen and a relatively low number of identified viable bacterial cells
were observed. In the test of adhesion of Escherichia coli to food packaging materials mod-
ified with nanomaterials (Figure 17d), satisfactory properties of film for food packaging
modified with pure (unmodified) detonation nanodiamond particles as well as modified
derivatives of nanodiamond particles were found. Interestingly, also in the case of this
pathogen, the advantages of packaging materials modified with graphene oxide were
not observed. However, when trying to generalize the results presented in Figure 17, it
can be concluded that food films with incorporated nanodiamonds do not exhibit strong
bactericidal or anti-adhesive properties onto polymer food films.

4. Conclusions

The carbon-based nanomaterials (CBN has many applications in medicine, cosmetol-
ogy and the food industry. Using a scanning electron microscope and confocal microscope
the topography of carbon was studied. The results of Raman spectroscopy confirm that
the nanodiamond particles with surface modification show the highest content of the
diamond phase, although the pure detonation powder has a higher ID/IG ratio compared
to powder modified with hydroxyl groups. Single grain sizes of the powders tested by
DLS method showed that the plasma-chemically modified powder has the highest activity
of the reaction surface correlated with one of the smallest sizes of a single grain and with
a very high content of diamond phase in Raman spectroscopy. The plasma-chemically
modified powder shows the smallest size of conglomerates (in the SEM image) which
correlates with one of the smallest sizes of a single grain and one of the largest content of
diamond phase in Raman spectroscopy.

Our research shows, that electrokinetic potential is not the main indicator of bindings
between surface and bacteria. In the case of Pseudomonas aeruginosa, positive effects in almost
the whole spectrum of samples were obtained. Regardless of the type of bacteria, noticeable
as well are the effects of creating carbon-based nanomaterials film formation on monolayer
food films, 18 from 24 samples revealed a decrease in bacterial adhesion. Modified duplex
and quadroplex food films allow bacteria to propagate more freely. The best antiadhe-
sion properties were obtained on RF and GO film formation (10 samples with decreased
properties, 4 with increased properties, and 2 with no influence on bacterial adhesion).

After testing the samples and comparing them with the control group, the greatest
decrease in adhesion was observed on modified graphene oxide (GO) coffee film (less
live bacteria in the field of vision for Pseudomonas aeruginosa and Streptococcus mutans), on
modified plasma-chemically (MDP1) ice cream film for Staphylococcus aureus and on modi-
fied plasma-chemically (MDP1) mustard film for Escherichia coli. The greatest increase in
adhesion (live bacteria in the field of vision) after testing the samples and comparing them
with the control group and other carbon nanostructures was observed in: the ice cream
film chemically modified with hydroxyl functional groups (MDCHPOH) for Staphylococcus
aureus; the coffee film modified by fluorescent nanodiamond(MDCHF) for Streptococcus
mutans; the mustard film modified by graphene oxide film (GO) for Pseudomonas aeruginosa
and the ice cream chemically modified (MDCHPOH) with hydroxyl functional groups for
Escherichia coli. The obtained results indicate a differentiation of bactericidal properties
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depending on the type of modification of nanodiamond particles and allotropic form of
carbon. After the adhesion tests we can confirm our thesis that food films modified with
carbon nanomaterials can affect the viability of bacteria. In addition, they initially exhibit
bactericidal properties on the surfaces of commercial films used in the food industry.
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