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Abstract: Coatings to be used for cultural heritage protection face peculiar challenges. In the last few
decades, several projects addressed the issue of new treatments in the field of copper alloy artworks.
Nonetheless, no one has yet been recognised as a more acceptable solution with respect to traditional
choices, with their known limits. The lack of standard methods to test new coatings that can be
effectively applied to artworks make it more difficult to compare different studies and open the way
to practical use in restoration. Over the years, several issues have gradually been better focused,
even though they are not yet widely considered in new coatings efficacy evaluation for application
on copper alloy artifacts. They are mainly linked to the quite complex surface of this category
of heritage objects and the role it plays on coating effectiveness. An overview of the variety of
relevant surface properties is provided (presence of corrosion products and old protective treatments,
cleaning methods, surface unevenness, just to name a few) with a special focus on the role of coating
performance. Some methodological choices are discussed for the selection of mock-ups, testing
techniques and weathering procedures, with peculiar attention to comparison with real artworks.

Keywords: metal conservation; coatings efficacy evaluation; atmospheric corrosion; heritage science

1. Introduction

Metal objects represents a very broad category in heritage conservation. It is something
easy to realise just by having a look at the corrosion identification booklet published by
Parks Canada [1] to “provide descriptions and helpful tips, accompanied by photographs,
to anyone in charge of metal collections”. Selwyn [2] provided a deeper discussion about
the known chemical and physical characteristics of “metals and alloys of interest for conser-
vation professionals, along with the different form of corrosion problems indoors, outdoors,
and in archaeological settings”. In her book, one can find an extensive discussion of metals
and alloys of interest for cultural heritage (Table 1), main information on construction
steps (Table 2)—which may influence the conservation—and on corrosion basic principles.
Specific bibliographic references are provided there for each item.

As a rule, the inherent instability of metallic heritage offers similar preservation
challenges to those faced in civil engineering, automotive and construction industries [3].
The main source of this instability is the energy required to extract metals from their
ores (smelting), which leaves metals in a high energy state with the tendency to return
to the lower energy mineral state [2]. The actual behaviour of every metallic item is the
result of complex interactions between the chemical–physical properties of the object
and the particular environment around it [4]. These interactions may reach a static or
dynamical equilibrium over time. It is thus essential to consider the specific environments
all along the lifetime of a metallic heritage object in order to develop treatments and identify
realistic conservation goals [4]. Through a deeper understanding of the complex chemical,
thermodynamic and kinematic factors, several choices to mitigate the adverse effects of
corrosion can be developed by modifying the environment or the surface finishing of
the object, as addressed by Corrosion Science [5]. Corrosion is one of the major issues
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for metal heritage objects conservation, and methodologies and principles of corrosion
science have been slowly entering conservation practice from the second half of the 20th
century [3,6–10].

Table 1. Most used metals in heritage objects, with common minerals from which they are extracted, historical data and
typical appearance (adapted from Tables 1.1, 1.2 and 1.5 in Ref. [2]).

Metal Mineral Formula Approximate Date of First Widespread Use Typical Colours of
Corrosion Products

aluminium gibbsite Al(OH)3 1800–1900 A.D. (Europe/USA) colourless or white

copper chalcocite Cu2S ~7000 B.C. (Near East) for native copper
~5000 B.C. (Near East) for smelted copper

Cu(I): red, black, colourless
Cu(II): green, blue

gold (native) Au 5000–4000 B.C. (Balkans) –

iron hematite Fe2O3 1000–0 B.C. (Near East) Fe(I,III): black
Fe(III): red, yellow, orange

lead galena PbS 6000–5000 B.C. (Near East/Balkans) white, red yellow

nickel pentlandite (Ni,Fe)9S8
2000–1000 B.C. (Near East) for copper/

nickel alloys green

silver argentite Ag2S 4000–3000 B.C. (Balkans/Near East) black, white

tin cassiterite SnO2 4000–3000 B.C. (Near East) black, white

zinc smithsonite ZnCO3
100–200 A.D. (Rome) for copper/zinc alloys

900–1000 A.D. (India) for zinc metal colourless or white

Table 2. Basic stages of metal objects construction techniques (adapted from Table 1.4 in Ref. [2]).

Construction Step Description

Forming and Shaping
production by pouring liquid metals into moulds (casting) and by

mechanical deformation (forging, rolling; working such as
milling, turning, spinning, grinding, stamping, cutting, drilling

Assembling fitting components by welding, soldering, brazing, rivetting,
bolting, crinping, gluing

Finishing
Completing surface appearance by plating, burnishing, polishing,
etching, sand-blasting, painting, lacquering, engraving, chasing,

embossing, enameling, patinating

Although the basic laws underlying corrosion processes in the field of cultural heritage
are the same as in industry, the criteria and priorities behind operational choices to mitigate
the adverse effects of corrosion are deeply different [4,5,7,11–13]. The vast possibilities
of interaction between distinct metals and types of environment give rise to unlimited
combinations of corrosion forms, making it useless for conservation purposes to gather
occurrences following traditional corrosion classifications. Since the exchange with its
surroundings is so intensive, metallic heritage can be better understood and conserved
when its context is considered. Accordingly, broad categories of heritage metal objects can
be identified depending on the environment where they have been (or still are) [14]:

• Archaeological metals are characterised mainly by long burial in soil [15], water-
logged [12,15,16] or underwater [17]; they bear information on very long-term cor-
rosion of metals [18,19]; the equilibrium state reached during burial may be broken
when excavated, giving rise to new corrosion process if not properly treated [20].

• A large variety of historic objects (such as scientific instruments, fine arts, historic
pieces, ethnographic specimens, etc.) is conserved indoors (museums, monumental
buildings, collections); the main preservation strategy in this environment is preven-
tive conservation [4,21], such as humidity control; critical parameter to consider are
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dangers from “off-gassing” materials used to build display cases and rooms, as well
as air pollution introduced by visitors [21].

• Outdoors monumental and architectural items (sculptures, roofs and decorative ob-
jects, functional artifacts and industrial heritage) are mainly subject to weather condi-
tions, pollution and climate change [4,6,14,22–27].

In order to apply correctly the principles of Corrosion Science to the conservation of
metal heritage objects, each specific metal or alloy, construction technique, and particular
corrosion problem encountered in a museum, outdoor, or archaeological setting should
be carefully considered [2–4,15,18,22]. The specific characteristics of heritage objects are
the manifold result of a complex and often not completely known history. This can lead
to inappropriate treatments when coatings checked for a specific context are adopted in
another one without taking into account all the relevant features [28]. For this reason, the
topic of protective treatments for metallic cultural heritage can be wide and complex and
oversimplified research data may be useless for the conservation of metal heritage objects
purposes. Accordingly, from now on the discussion will be restricted to outdoors artifacts.
Within this category, the distinctive features relative to bronze sculptures will be considered
in order to enlighten the specific characteristics required for conservation treatments [29].

Environmental changes produced by the industrial era raised problems in many fields.
Increased pollution and acid rain effects on materials were widely recognised [30] and
many research efforts addressed this topic, which is the field of Atmospheric Corrosion [31].
Outdoor copper and copper alloy statues started suffering from a sharp decrease in sur-
face stability and localised corrosion endangering their artistic and aesthetic content [22].
This triggered a growing interaction between conservator-restorers and the scientific com-
munity [6–10,25,32]. Over the last decades, this allowed a number of improvements: A
growing understanding of the electrochemical processes typical of outdoor bronze mon-
uments [33–39]; the dissemination of the “Theory of Restoration” by Brandi as a tool to
lead choices on new conservation practices [7,11,40,41]; more awareness about possible
strategies to deal with the changing equilibria and available resources [3,42].

The present understanding of copper and copper alloys atmospheric corrosion ([31],
chapters 8, 13, 14; appendix E, K), can be roughly described as the formation of a passivating
cuprite layer in clean humid air which evolves into a more complex surface layer (patina)
according to the main pollutants present in the surrounding atmosphere [3,25,34]. Green
basic copper hydroxysulfates (mainly brochantite) form in SO2 rich atmosphere, while
basic hydroxychlorides (atacamite, clinoatacamite) dominate marine environments [43].
Alloying elements play a key role in the corrosion mechanism, which differs from pure
copper [34,39,44,45]. A decuprification process was identified [37,44,45], along with cyclic
corrosion similar to the “bronze disease” traditionally associated with archaeological
copper alloys [2,35,45,46]. The growth of this surface layer on outdoor bronze sculptures
and architectonic elements exposed to different weather and pollution conditions is the
result of a specific timeline. Several factors determine its local composition and texture,
such as the solubility of corrosion products, sheltered and unsheltered exposure, the
changing weather (relative humidity, temperature, light and Ultra Violet (UV) radiation,
time of wetness), the composition and concentration of air pollutants (Figure 1).

On a single monument, different conditions are often present, and the evolution of the
overall result can be detrimental for aesthetic reasons if not for the material loss [42,45]. This
leads to the necessity of restoration. The first step consists of cleaning [47–49]. The cleaning
methodologies adopted should selectively remove only water-soluble compounds [47],
atmospheric particulate deposits, hydrocarbon compounds coming from environmental
pollution and other organic compounds from past treatments [50] or failed coatings [51].
At the same time, it should preserve the part of the patina valuable for aesthetic, historical
and conservation reasons [48,52]. Afterward, the common practice consists in the use of
treatments to prevent or reduce detrimental corrosion, which for outdoor bronze consist
in the application of coatings that avoid the contact of the metal/patina layer with the
actively corroding agents in the atmosphere (water, corroding ions) and/or other treatments
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(inhibitors) to reduce the electrochemical reaction rates [4,5]. Sooner or later, cleaning and
application of a protective treatment should be repeated, according to environmental
conditions, maintenance programs, etc. (Figure 2).
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Since the end of the 20th Century, several projects have addressed the need for
new/more effective protective treatments to be applied on metallic heritage objects.

The EU-FP3-funded project “New Conservation Methods for Outdoor Bronze Sculp-
tures” [53] considered a new class of sol–gel derived coatings-organic inorganic copolymers,
called ormocers (ORganically MOdified CERamics); addressed requirements were the use
in outdoor bronze conservation with good protection against corrosion, and at the same
time the right compromise between stability and reversibility of the cured coating [54].
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After the public engagement following the refurbishment of the Statue of Liberty [55],
some sponsors supported the research “Coating strategies for the protection of outdoor
bronze art and ornamentation” [56], where the performance of 29 coatings on different
copper alloy substrates was addressed and the importance of considering a coating system
as a whole, and not only by its part, was pointed out.

In the mainframe of EU-FP6-funded project “EU-ARTECH”, traditional treatments
performances (Incralac, waxes, Benzotriazole) were compared to innovative treatments
ones on coupons with natural and artificial patina [56]; different commercial organo-silanes
were tested, the use of limewater was considered to adjust pH toward alkalinity to inhibit
bronze disease, and the possible use of fungi to transform unstable corrosion patinas to
insoluble copper oxalate was investigated [40]; on copper lamina with natural green patina
(mainly brochantite) the Dynasylan F8263 and SIVOClear showed a protective behaviour
comparable to Incralac but without perceivable chromatic alterations [57,58]. Biopatina
was further investigated in other projects [40,59].

Other EU-funded projects addressed the development of new and more effective
protective treatments for outdoor bronze artworks [60,61]. Several efforts were performed
to deepen the understanding of the forms and properties of outdoor bronze surface lay-
ers [36,39,44,48,62]. Increasing attention was paid to the characterisation and comparison of
surface layers and treatments on artworks [63–67]. The literature in this field is very exten-
sive but out of the scope of the present work which is intended to focus on the methodology
to be adopted to effectively improve the practice of treatments that conservator-restores
can and will apply.

Until now, the transfer of innovative treatments in the practice of restoration of
outdoor bronzes was quite poor, despite the considerable amount of laboratory studies
in this field since the 1990s. Several methodological problems will be addressed in the
following sections to highlight some of the key issues that should be carefully considered
to effectively test treatments to improve conservation–restoration practice on a sound
scientific base.

2. Treatments in Use

It is commonly recognised that the most widely adopted protective treatments on
outdoor bronzes are waxes, Incralac and benzotriazole (BTA) [40,68,69].

Incralac was developed in the 1960s as a transparent coating system for polished
outdoor copper alloys and minor formulation changes were introduced over the years
mostly to comply with environmental regulations [70]. “The coating was trademarked
under the name Incralac, but it was never patented and manufacturers have been free to
modify the formulation at will” [71]. The performance dependence on chemical patinas,
solvent carriers, and additives was also highlighted [56,71]. This caused some difficulties
in comparing the several studies devoted to Incralac performance in conservation over the
years, as the exact formulation adopted was not always clear and different methodologies,
substrates and applications were adopted [70].

A different blend of natural, microcrystalline and polyethylene waxes have been
applied on outdoor bronzes [72], according to local use and availability, such as Renaissance
wax and Butcher’s Boston Polish Amber Paste Wax (microcrystalline and carnauba blended
wax) [73], Soter, R21, TeCe Wachs 3534F [63], Paraffin Ozokerite 1899, Microcrystalline wax
1847, Synthetic wax MP-22 [74]. Microcrystalline waxes are by far the most widely accepted
solution among conservation professionals. Questions were raised about short lifetime, and
reversibility problems [54,56,75] which may strongly depend on the underlying surface
and application method [73,74]. Application at room temperature or after heating the
surface [74,76], concentration and solvent [76] affect treatment properties such us final
thickness, penetration in the patina layer, mechanical properties and corrosion resistance
on the same substrate.

BTA is the more widely applied inhibitor for copper alloy heritage objects. It has
been used since its appearance on the market, for several decades now [59]. Despite the
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huge literature on this topic, some questions still do not have a clear answer [5,70,77]. Its
effectiveness on corroded outdoor bronze has been questioned [5,59,78] and issues have
been raised on toxicity [5,59].

The “double layer” system, with Incralac and a wax topcoat, was suggested by
Marabelli [8], and is since widely adopted [56,62,66].

Several studies have addressed the performance of waxes, Paraloid, Incralac and
BTA [28,56–59,63,64,66,67,70–74,76,77,79–82]. The comparison of results among different
studies is not straightforward, because each one made different choices on testing meth-
ods and analytical and characterisation techniques, coupon alloy and surface properties
and application methods; different details on coupon surface properties and application
methods are often reported; just a few papers also consider field and weathering stud-
ies to some extent [58,63,64,66,67,76,81,82], which are needed to assess coating lifetime.
Nonetheless, they highlight issues that deserve greater awareness and attention in the
study of these treatments in conservation: they perform differently on clean surfaces and
patinated/corroded ones [63,77]; application methods should be considered with greater
attention [71,74,76]; the behaviour upon weathering (appearance, barrier properties, degra-
dation) should be better characterised in the specific service conditions [77], along with the
easy removal over time [40].

The questionable behaviour of the above-mentioned treatments increased the search
for new sustainable and harmless inhibitors and coatings with a better service life to be
used on outdoor copper alloys artworks.

3. The Ideal Treatment from a Conservation Perspective

From a modern viewpoint, it is nowadays necessary to use eco-friendly and healthy
treatments [59,61,83,84].

Treatments to be applied on heritage objects should comply with specific requirements,
which go beyond the ones usually considered in other fields of application of metallic
objects [56,61].

Among the common recognised goals, treatment should, first of all, stabilise the object
(i.e., stop—or significantly slow down—its modification with time) without modifying its
visual appearance [5,40,61,85], so only transparent coatings are considered. As some of
past treatments applied on artworks show up to be detrimental for their conservation [86],
or caused the disfiguration or discolouration of the outer corrosion layers [85], growing
attention was paid to the application of new treatments not tested enough and to the
principle of minimum invasiveness.

Another requirement concerns the application method: it should be (easily) feasible
on the often quite complex surface of outdoor bronze monuments under typical restoration
workshop conditions [61,82]. The application/curing temperature has also been suggested
to be important for the treatment of large metal sculptures [54,87] where ambient tempera-
ture should be the easiest if not the only choice. Application friendly formulations may
enhance the quality of the applied film [48]. As inadequate applications can be one of the
major sources of failure [70], a detailed easy-to-use application protocol in a restoration
workshop may enhance the final effectiveness of the treatment in service.

One of the most discussed requirements is reversibility, i.e., the possibility to be
removed easily enough—with safe and healthy methods—leaving the surface it was pro-
tecting undamaged [5,54,82]. It is quite important on weathered coatings, as no treatment
is supposed to last forever in the continuously changing outdoor conditions. Protective
performance (i.e., being tenacious and resistant to adverse environmental conditions),
long-term durability (i.e., the possibility for a heritage object to be preserved longer and
longer), healthy-cheap and easy maintenance (reversibility and re-applicability) are all
widely desired qualities [5,61,82].

Unfortunately, to date, no such treatment exists. Practical restoration activity takes
advantage of the growing knowledge both from experience and scientific research. At the
same time research activity is moving toward a deeper understanding of conservation needs
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in order to properly tailor better treatment solutions. A well-defined balance among the
different requirements toward improved solutions would require more detailed knowledge
of decay and corrosion routes and rates [3].

4. Critical Issues on Testing New Coatings

Standard methods applied in Material Science labs to develop innovative treatments
were defined for quite different applications with respect to heritage conservation. To
increase the effectiveness of analytical investigations aimed to improve specific outdoor
bronze artworks conservation some issues should be considered.

4.1. Lack of Reference Standards

Faltermeier addressed the need for a more standardised approach in the testing of
inhibitors to treat bronze disease in archaeological copper alloy artifacts. He pointed
out how that would improve the reproducibility of results allowing comparison between
experimental works [85].

CEN (European Committee for Standardisation) is responsible for planning, devel-
opment and adoption of European standards. In 2002 the Technical Commission “346
Conservation of Cultural Heritage” (CEN/TC346) was approved with the aim of working
on standardisation “in the field of definitions and terminology, methods of testing and anal-
ysis, to support the characterisation of materials and deterioration processes of movable
and immovable heritage, and the products and technologies used for the planning and exe-
cution of their conservation, restoration, repair and maintenance”. In 2012, a new Business
Plan was set up establishing the definition of standards on a need-based approach [88].
Since 2009, the CEN/TC 346-Conservation of Cultural Heritage published 38 standards.
None addresses the specific requirements of testing treatments on metal heritage. Other
available standards in coatings evaluation do not reflect the real problems that have to
be addressed in this field [89,90]. There are no standardised and shared guidelines that
support the assessment of the protectiveness and corrosion behaviour of metallic artworks
surface layers [48]. This limits how effectively the design, application and success of con-
servation treatments can be assessed [3]. The large variety of alloy compositions, surface
finishing (i.e., roughness), and patination make it difficult to compare results from different
laboratories/projects.

Comparative studies with a selected methodology in a single laboratory allow us to
highlight some interesting features: As an example, they made it possible to prove the key
role of the different patinas on the performance of the same protective treatment [63,80]
and highlighted the critical role of application method on waxes performance [73,74]. A
common effort would be advisable to better define effective methodologies to deal with
the complexity (Table 3) represented by outdoor bronze conservation, and compare results
from different studies.

Table 3. Schematic description of the complex system bronze/coating/environment and key features for coatings perfor-
mance characterisation.

Level Properties Characteristic Features

Substrate

Alloy elemental composition
metallurgy

principal alloying element
casting, rolling, structure

Initial surface finish polishing, blasting
foundry patina

surface roughness
colour, composition

Surface layer (patina)

origin
composition
stratigraphy

texture
appearance

electrochemical properties

natural weathering/accelerated weathering/artificial
principal inorganic and organic compounds

layers, thickness
porosity, morphology, surface roughness

colour, gloss
corrosion rate
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Table 3. Cont.

Level Properties Characteristic Features

Treatment

composition
application method

texture
appearance

electrochemical properties

layers, intrinsic features
drying time, adhesion, thickness

porosity, morphology, surface roughness
colour, gloss

corrosion rate, inhibition efficacy

weathering stability

UV and light stability
stability against condensed moisture

water repellent effect
coating quality

removability/retreatability

Exposure condition rural/marine–rural/
industrial/marine–industrial

atmospheric pollutants
meteorology

precipitation quality
wet and dry deposition

4.2. Testing Surfaces

As already described, the surface layer developed as a result of intentional treatments
and/or interaction with the environment on outdoor bronze statues should be considered
carefully from an aesthetic, historical and conservation point of view. This makes a key
difference with industrial application on clean metal/alloy: in most heritage applications,
the protective treatments should be applied over pre-existing corrosion products [5,56,91].
Several papers have emphasised the role of surface finishing on the effectiveness of waxes
and acrylic coatings used in restoration [63,77,79]. Therefore, new conservation treat-
ments should be tested with a careful definition of environmental context and surface
properties [58].

Coupons are needed for extensive analytical studies on new protective treatments, due
to the wide homogeneous surface required to compare many different parameters [54,62].
However, making coupons that “look like” the surface structure of outdoor bronze statues—
which is the result of past technologies and of complex interactions with the changing
environments for many years—may be quite difficult and time-consuming. Often the
typical 2–4 years’ time scale of project founding forces to make simplified choices.

Simple polished copper coupons were gradually abandoned, with the growing aware-
ness of the role of alloying elements in the bronze corrosion with respect to pure cop-
per [36,62,92]. Several alloys have been used, such as: 88% Cu, 6% Sn, 6% Zn [77]; 88.3%
Cu, 5.7% Sn, 1.6% Pb, 3.9% Zn + traces [93]; 91.9% Cu, 2.4% Sn, 1.0% Pb, 2.9% Zn, 0.8%
Sb [92]; 88.8% Cu, 2.4% Zn, 4.4% Sn, 3.9% Pb [94]. Sand casting of coupons has been
reported [67,77].

Nonetheless, old copper roof tiles from historical buildings are a quick option to
test on the natural brochantite patina typical of continental European copper roofs. Thus
several laboratories [40,54,56–58,95] have tested treatments on coupons from available tiles
(Figure 3a).

Another widely adopted solution to obtain patinated coupons consists of the artificial
patination practiced in an artistic foundry. NH4Cl (chloride patina) [93,96] and the more
widely adopted K2S black patina (Figure 3b) [67,73,77,93,97] were used in different labora-
tories, with a large spread of surface finishing prior to the artificial patination. The possible
role of surface roughness has been suggested [67].

An accelerated ageing technique to obtain pre-corroded surfaces by alternating 12 h
artificial rain dropping to 12 h dry until a total Time of Wetness (ToW) of 37 days has been
designed in detail. The surface layer of bronze coupon pre-corroded by this “dropping
method” is representative of the runoff condition on unsheltered outdoor bronzes with
corrosion processes involving decuprification [37,98].
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(e) Exposure rack with copper alloys coupons weathering at GEMS.

Several sets of bronze coupons were naturally aged at a marine Exposure site in
Genoa (Figure 3d,e) [99]. A corrosion layer mainly composed of cuprite, atacamite, parat-
acamite with traces of nantokite and brochantite in some instances was obtained after
12–18 months [62,100]. The detailed composition, thickness, etc. of each set depends on
the weather condition during the specific exposure. To enhance the formation of chloride
compounds, a group of coupons (Figure 3c) was sprayed twice a week with a 5% NaCl
solution for the first 124 days of exposure [90].

The sample size is also an issue to consider [63,85]. While smaller samples may be
appropriate when addressing patina growth mechanisms [101], a minimum surface area is
required to properly address protective treatment behaviour. Standard panel size adopted
in the coating industry was considered too large and 20 mm × 50 mm was suggested as
appropriate to enable the treatment of greater numbers of coupons in one experiment,
helping the assessment of the reproducibility of experimental results [85]. For the set of
coupons exposed to natural weathering in Genoa 60 mm × 60 mm was preferred, with
smaller coupons (30 mm × 30 mm) used to characterise the patina growth upon weathering.

4.3. Application Methods

The different application methods might produce differences in the treatment proper-
ties [5,59,69,74]. Application by brush is widely adopted in conservation workshop [93],
along with spraying application [97]. These two methods are then suggested in order to
fulfil the requirement of ease of coating application in real practice [61]. Other methods
adopted in the coating industry to better control film properties on flat samples may be
difficult to compare to outdoor bronze conservation practice.

4.4. Ageing Techniques

Natural exposures offer an overall test on treatment effectiveness to cope with the dif-
ferent parameters such as temperature, wet/dry cycles, UV and visible light that influence
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copper alloys corrosion [35,38,94]. The time required may be one of the reasons for the
scarce literature information that can be found about the natural weathering of coatings on
bronze [94]. Nonetheless, they can be fundamental to properly characterise how long they
last and properly rank the comparison of different treatments [63,67].

Artificial tests are quicker and necessarily consider only a limited number of variables.
Climatic chamber exposure with temperature/UV cycles [97] and the dropping method [61]
were reported.

4.5. Analytical Techniques

Getting data on the specific corrosion of heritage metals is a great challenge [3].
This is especially true for outdoor bronze monuments, which have large and uneven
surfaces. The availability of portable, in situ Non-destructive Techniques greatly help a
wider characterisation of artworks and allow a straightforward comparison of results on
coupons and on heritage metals [67,90]. As corroded bronze surfaces may have quite an
uneven appearance, the use of frames (Figure 4) to re-position the measurement area of the
instruments in a precise manner is strongly advised for monitoring purposes.
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Over the years more and more analytical techniques have been used to characterise
heritage objects surfaces [102], with the increasing availability of portable Non-destructive
Techniques (NdT) [103–105].

In order to characterise the different properties of patinas and conservation treatments
on outdoor bronze monuments, a multi-analytical approach is required [51–67]. Visual ap-
pearance, chemical composition, corrosion rate and surface texture are among the relevant
parameters to consider. Colour measurements are quite useful to monitor the aesthetic ap-
pearance and quantify colour differences [48,51,61]. Portable digital microscopes have been
used for in situ documentation of surface morphology [48,67]. Electrochemical techniques
are quite effective to characterise barrier properties of organic coatings [104] and their use
was growingly adopted in the last decades [66,72,106]. The development of a special setup
for NdT testing in situ on outdoor bronzes has also highlighted the role in addressing
patina properties. Fourier-transform infrared spectroscopy (FTIR) in reflectance mode has
proved to be useful to analyse both coatings and patina chemical composition both on
coupons and in field measurements [51,67,93]. Portable near-mid-infrared (NIR-MIR) total
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reflection analysis was recently investigated [105]. Among others, portable surface rough-
ness measurements [67], Raman and X-Ray Fluorescence Spectroscopy (XRF) [103] are also
valuable techniques to collect the different information required to better understand the
effectiveness of protective treatments on the complex outdoor bronze surfaces and plan
better conservation practices.

5. Final Comments

The need for “a dialogue among conservators, curators, environmental scientists, and
corrosion engineers” to solve the puzzle of preserving bronze sculpture in an outdoor
environment was recognized long ago [7]. Over the years, a deeper understanding of
the quite complex corrosion of outdoor bronze surfaces in the changing environment has
emerged, along with a better understanding of the values of the different kinds of surface
products which also moved the perspectives of restoration–conservation choices [22,29,91].
A wider awareness of present knowledge and on the challenges that have to be addressed
may help to employ the few resources available more effectively.

Analytical developments and portable NdTs [102,103] can greatly improve our under-
standing of the corrosion mechanism of outdoor bronze artworks and outline a deeper case
by case comprehension to better define conservation procedures. Notably, a comparison of
measurements on coupons and on heritage surfaces can help highlight the principal factors
to be considered when preparing mock-ups for treatment development and testing. The
choice of representative coupons for treatment testing deserves some more effort toward the
best balance between time and representative surface structure. Other challenges remain to
be tackled. Cooperation among the different people involved in these activities [3,11] may
help to improve experimental design and a common effort would be desirable in drafting
guidelines toward more comparable results. Greater attention to ageing protocols would
be also advisable in this field. Platforms for sharing data [103] would help to improve
follow-up to past projects. All this may help to really develop more effective conservation
methodologies for society.
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