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Abstract: Artificial intelligence applications based on soft computing and machine learning algo-
rithms have recently become the focus of researchers’ attention due to their robustness, precise
modeling, simulation, and efficient assessment. The presented work aims to provide an innovative
application of Levenberg Marquardt Technique with Artificial Back Propagated Neural Networks
(LMT-ABPNN) to examine the entropy generation in Marangoni convection Magnetohydrodynamic
Second Grade Fluidic flow model (MHD-SGFM) with Joule heating and dissipation impact. The
PDEs describing MHD-SGFM are reduced into ODEs by appropriate transformation. The dataset
is determined through Homotopy Analysis Method by the variation of physical parameters for all
scenarios of proposed LMT-ABPNN. The reference data samples for training/validation/testing
processes are utilized as targets to determine the approximated solution of proposed LMT-ABPNN.
The performance of LMT-ABPNN is validated by MSE based fitness, error histogram scrutiny, and re-
gression analysis. Furthermore, the influence of pertinent parameters on temperature, concentration,
velocity, entropy generation, and Bejan number is also deliberated. The study reveals that the larger β

and Ma, the higher f ′(η) while M has the reverse influence on f ′(η). For higher values of β, M, Ma,
and Ec, θ(η) boosts. The concentration φ(η) drops as Ma and Sc grow. An augmentation is noticed
for NG for higher estimations of β, M, and Br. Larger β, M and Br decays the Bejan number.

Keywords: Levenberg Marquardt technique with artificial back propagated neural networks; homo-
topy analysis method; magnetohydrodynamic; second grade fluid; entropy optimization
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1. Introduction

The Marangoni boundary layer is a liquid-gas or liquid-liquid interface that leads to
a dissipative layer on the fluid’s surface. Many practical and industrial activities, such
as aerospace engineering, chemical engineering, crystal formation, silicon melts, and
liquid films, are driven either by the surface temperature gradient or surface concentration
gradient. The thermal Marangoni effect and the solute Marangoni effect are the two
types. Pearson [1] invented the former, while Scriven and Sternling [2] introduced the
latter. When a liquid is heated from below, its surface temperature changes, according
to Pearson’s definition. This difference in surface temperature creates surface traction,
which aids fluid flow in maintaining the temperature variation. As a result, a thermal
Marangoni mechanism is created. The concentration of nanoparticles plays a role in
the solute Marangoni effect by causing a surface concentration change, which leads to
surface traction, which aids fluid motion. As a result, a solute Marangoni mechanism
is created. This phenomenon has been demonstrated in numerous studies. Qayyum [3]
attended the mechanism of Marangoni convection (MC) effect on hybrid nanofluid (HNF)
by considering magnetohydrodynamic influence. Marangoni convection is used to study
MHD flow of boundary layer Darcy-Forchheimer nanoliquid under effects of soret and
dufour by Jawad et al. [4]. The thin film nanofluid stream and heat transmission scrutiny
under combined effect of MC and MHD is explored by Gul et al. [5]. The combined effect
of MC and magnetic field across thin liquid sheet of casson liquid, blood-based CNT
nanoliquid is investigated by Akbar et al. [6]. Rasool et al. [7] conferred MC type casson
nanoliquid stream in the existence of Lorentz forces subjected to Riga sheet.

The investigation of electrically conducting nanofluid flows subjected to magnetic
fields has a wide range of applications, including nuclear reactors cooling, power genera-
tors, electrostatic filters and plasma, and geothermal energy exploitation. Rasool et al. [8]
exemplified entropy production on MHD Darcy–Forchheimer nanoliquid stream past a
non-linear stretchable sheet. Modather and Chamkha [9] analyzed the MHD micropolar
fluid past vertical surface with transverse magnetic field. Krishna and Chamkha [10]
conferred the impact of ion slip and Hall on rotating stream of nanofluid with MHD
and diffusion-thermo effect. Boundary layer flow subjected to solar radiation past a flat
inclined surface is investigated by Issa et al. [11]. Chamkha [12] considered the electrically
conducting non-Darcy mixed convection stream within permeable medium in existence
of hydromagnetic influence. Takhar et al. [13] exemplified the free stream velocity and
Hall current on viscous fluid past a moveable surface with magnetohydrodynamic effect.
Time dependent flow under magnetic field and heat transmission impact on semi-infinite
flat surface is investigated by Nath et al. [14]. Chamkha [15] also discussed MHD natural
convection stream with heat sink/source effect past a stretching sheet. Using finite ele-
ment technique, Ali et al. [16] examined MHD micropolar liquid under thermal radiation
and suction/injection due to inclined sheet. Habib et al. [17] numerically explored the
time dependent MHD stream of Maxwell/tangent hyperbolic fluid over a two directional
stretchable surface. The MHD stream of Ag-H2O based nanoparticles with Corlios and
Lorentz forces subjected to stretchable surface is debriefed by Siddique et al. [18].

Recently, some effective energy methods have been presented to reduce the amount
of wasted energy. Entropy optimization (EOP) analysis is a useful tool for analyzing the
optimization of various energy systems. When the irreversibilities are minimized, the
optimal design of energy systems can be attained. The use of both the first and second
laws of thermodynamics is used in this analysis. Entropy is generated for a variety of
reasons, including heat exchange, body motion, mixing and expansion of substances, solid
deformation, fluid flow, or any irreversible thermodynamic cycle, like heat pumps, heat
engines, air conditioners, and power plants. Various research studies employ the EOP
analysis. Khan et al. [19] analyzed the EOP of Darcy–Forchheimer stream on Hybrid
nanoliquid considering Marangoni convection (MC) and homogeneous heterogeneous
reaction. Kumar et al. [20] investigated the MC stream of HNF past a Darcy–Forchheimer
media with EOP analysis. Qayyum et al. [21] explained the EOP under MC and irregular
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heat generation phenomenon subjected to rotating disk. The EOP in MHD stream of
non-Newtonian fluid with MC and viscous dissipation effect is debriefed by Malaikah
and Ijaz [22]. Marangoni bi-convection of non-Newtonian liquid subjected to inclined
non Darcy medium with EOP by applying finite volume method (FVM) is investigated by
Ahmed et al. [23]. Khan et al. numerically analyzed EOP and activation energy impact on
MC stream of nanoliquid [24]. Hayat et al. [25] studied MHD stream of second grade fluid
under impact of MC and EOP.

Artificial neural network (ANN) entrusts data processing to a large number of small
and numerous processors that serve as interconnected and parallel ANNs. Pattern clas-
sification and recognition, regression, modeling, and mapping in various disciplines of
bioinformatics, system control, temporal data forecasting, and other applications of ANN
can be found. ANN is a burgeoning science and one of the most important trends in
artificial intelligence. ANNs have been utilized to anticipate and develop diverse systems
in recent years due to higher laboratory expenses as well as time savings [26–31]. Back
propagation (BP) is a supervised machine learning solution to decrease network error via
traversing the gradient of the error curve using the gradient descent method. In 1974,
Paul Werbos developed the BP method. The Levenberg-Marquardt (LM) approach is an
innovative convergent stability strategy for ANNs that can solve a broad range of fluid
flow problems numerically. The Levenberg Marquardt technique with artificial back propa-
gated neural network (LMT-ABPNN) was utilized by Khan et al. [32] to analyze the heat
transmission of nanoliquid flow between two parallel sheets considering Brownian and
thermophoretic phenomenon. Aljohani et al. [33] developed a wire coating model imple-
menting LMT-ABPNN for Eyring Powell liquid under various effects. The Cross magneto
nanoliquid stream in existence of magnetic force and permeable cylinder is modeled by
Shah et al. [34] using LMT-ABPNN.

According to the studies cited above, intelligence computations based on ANN are still
not investigated for EOP in MHD-SGFM with Marangoni convection, Joule heating, and
dissipation impact. Furthermore, these stochastic techniques have numerous advantages
over traditional techniques, and researchers are increasingly interested in using them
in a variety of fields, including EOP [35,36], hybrid nanofluid models [37,38], magneto-
hydrodynamic flow model [39], functionally graded material [40], Falkner Skan Model [41],
and numerous others [42–44]. Authors are motivated to examine the intelligent neuro-
computing paradigm for numerical treatment and analysis of EOP in MHD-SGFM after
reviewing these motivational recent relevant and valuable reported articles.

The following are some of the novel concepts concerning the suggested problem and
soft computational model that are presented throughout this research study:

• An innovative application of Levenberg Marquardt Technique with artificial back
propagated neural networks (LMT-ABPNN) is designed to examine the EOP in MHD-
SGFM with Marangoni convection, Joule heating, and dissipation impact.

• Generating datasets through HAM and utilizing in training/validation/testing pro-
cesses as targets to determine the approximated solution of proposed LMT-ABPNN.

• The suggested technique efficiently examines the dynamics of the problem for many
scenarios based on the variation of pertinent parameters to depict flows, velocity,
concentration, and temperature profiles.

• The LMT-ABPNN’s validity and verification are based on a thorough examination of
accuracy assessments, histograms, and regression analysis conducted for the MHD-
SGFM, which are given graphically and numerically in sufficient detail.

The research paper’s remaining structure is as follows: Section 2 provides the state-
ment of the proposed MHD-SGFM. Sections 3 and 4 provide a detailed numerical and
graphical description of the results obtained using the suggested LMT-ABPNN solver.
Section 5 looks at temperature, concentration, and velocity including Absolute Error Exam-
ination, as well as the analysis of Bejan number and entropy optimization in MHD-SGFM.
Section 6 contains the conclusions and future works.



Coatings 2021, 11, 1492 4 of 26

2. Problem Statement

Entropy-optimized magnetohydrodynamic flow of second-grade fluid is examined
here. Temperature and concentration gradients cause flow to develop. The temperature
gradient, magnetic field, and concentration gradient are used to compute Marangoni forced
convection’s dependency on surface pressure difference. In the influence of dissipation
and Joule heating processes, the heat equation is discussed. The Marangoni effect is used
to control the forward movement of liquid. The second law of thermodynamics is used
to generate the physical attribute of irreversibility exploration. Consider that the x-axis
lies parallel to the surface and the y-axis is perpendicular to it. At the surface, a constant
magnetic field B0 is applied. Assuming magnetic Reynolds number is small for flow,
the induced magnetic field is ignored [45]. Moreover, no electric field is expected so the
Hall effect is also neglected. Due to the non-existence of electric field small Reynolds
number assumptions uncouple Maxwell conditions from Navier Stokes equations [46]. The
temperature and concentration at the interface are supposed to be quadratic functions of
the distance x across it. The Marangoni surface tension effect, unlike the Boussinesq impact
on the body force term in buoyancy-induced flows, serves as a boundary condition on the
flow field’s governing equations. The physical diagram is shown in Figure 1.
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Figure 1. Flow geometry of the fluid flow system MHD-SGFM.

The following are the governing equations with B.Cs after applying boundary layer
approximations [47–49];

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂x

u +
∂u
∂y

v =
∂2u
∂y2 ν +

(
∂2u
∂y2

∂u
∂x
− ∂2u

∂x∂y
∂u
∂y

+
∂3u

∂x∂y2 u +
∂3u
∂y3 v

)
α1 − u

B2
0σ1

ρ
, (2)

∂T
∂x

u +
∂T
∂y

v =
∂2T
∂y2 α +

1(
ρcp
)((∂u

∂y

)2
µ +

(
∂2u

∂x∂y
∂u
∂y

u +
∂2u
∂y2

∂u
∂y

v
)

α1 + u2B2
0σ1

)
, (3)

∂C
∂x

u +
∂C
∂y

v =
∂2C
∂y2 DB, (4)

µ ∂u
∂y = − ∂σ

∂x =
(

∂T
∂x γT + ∂C

∂x γC

)
σ0, v = 0, T = T0X2 + T∞, C = C0X2 + C∞, at y = 0,

u(x, ∞)→ 0, T(x, ∞)→ T∞, C(x, ∞)→ C∞, X = x
L1

, at y = ∞.
(5)

Surface tension defined as the linear function of concentration and temperature:

σ = σ0 − (C− C∞)γC − (T − T∞)γT , (6)
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With

γC = − ∂σ

∂C

∣∣∣∣
C=C∞

, γT = − ∂σ

∂T

∣∣∣∣
T=T∞

. (7)

Consider [46,47]

ψ = νX f (η), η = y
L1

, u = ∂ψ
∂y , v = − ∂ψ

∂x ,
T = θ(η)T0X2 + T∞, C = φ(η)C0X2 + C∞,

(8)

Applying above suitable similarity transformation on PDEs system (1–5) we get ODEs
with B.Cs as follows:

f ′′′ − f ′2 + f f ′′ −M f ′ +
(

2 f ′′′ f ′ − f ′′ 2 − f f iv
)

β = 0, (9)

θ′′ − 2 f ′θPr + θ′ f Pr + f ′′ 2EcPr + f ′2MPrEc +
(

f ′′ 2 f ′ − f ′′′ f ′′ f
)

PrβEc = 0, (10)

φ′′ − 2 f ′φSc + f φ′Sc = 0, (11)

f (0) = 0, f ′′ (0) = −2 + 2Ma, θ(0) = 1, φ(0) = 1,
f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0.

(12)

Here second grade fluid parameter, Hartmann number, Prandtl Number, Schmidt
Number, Marangoni ratio parameter, and Eckert number are mathematically expressed as

β = α1
L2

1ρ
, M =

L2
1B2

0σ1
µ , Pr = ν

α , Sc = v
D , Ma = C0γC

T0γT
, Ec = ν2

cpT0L2
1

respectively.

Entropy Optimization

The following is dimensional form of entropy optimization (NG):

SG =
(

∂T
∂y

)2 k
T2

0
+
(

∂2u
∂x∂y

∂u
∂y u + ∂2u

∂y2
∂u
∂y v
)

α1
T0

+
(

∂u
∂y

)2 µ
T0

+
u2B2

0σ
T0

+
(

∂C
∂y

)2 RD
C0

+
(

∂C
∂y

∂T
∂y

)
RD
T0

, (13)

The dimensionless form is

NG = θ′
2
+ f ′′ 2

Br
A

+
(

f ′′ 2 f ′ − f ′′′ f ′′ f
)Brβ

A
+ f ′2MBr + θ′φ′L + φ′2L. (14)

The Bejan number

Be =
θ′2 + θ′φ′L + φ′2L

NG
. (15)

Mathematically, entropy rate, Brinkman number, diffusion parameter, and dimension-

less parameter expressed as NG =
L2

1SG
X4k , Br = v2µ

kL2
1T0

, L = C0RD
k , A = x

L1
respectively.

3. Solution Methodology

The brief discussion of results for proposed LMT-ABPNN subjected to entropy gener-
ation in Marangoni convection magnetohydrodynamic second grade fluidic flow model
(MHD-SGFM) with Joule heating and dissipation impact has been analyzed in this section.
The PDEs describing MHD-SGFM are reduced into ODEs by appropriate transforma-
tion. The dataset is determined through homotopy analysis method by the variation of
second grade fluid parameter (β), modified Hartmann number (M), Marangoni ratio
parameter (Ma), Eckert number (Ec), and Schmidt number (Sc). To solve governing
ODEs that characterize the flow model in Equations (9)–(12), the LMT-ABPNN solver
MATLAB integral toolbox for artificial neural networks (ANN) is utilized with the help
of “nftool” command. LMT-ABPNN has a two-layer structure (single input, hidden, and
output) for supervised neural networks using LMT backpropagation. As illustrated in
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Figure 2, the ANNs architecture is built on 10 neuron numbers with log-sigmoid activation,
whereas Figure 3 depicts the process flow architecture. The reference data samples for
training/validation/testing processes are utilized as target to determine the approximated
solution of proposed LMT-ABPNN. The LMT-ABPNN’s validity and verification are based
on a thorough examination of accuracy assessments, histograms, and regression analysis
conducted for the MHD-SGFM, which are given graphically and numerically in sufficient
detail (See Table 1).
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Table 1. Variants of MHD-SGFM.

Scenario Fluid Variants Case (1) Case (2) Case (3) Case (4)

1 β 0.1 0.4 0.7 1.0

2 M 0.1 0.6 1.2 1.8

3 Ma 0.1 0.4 0.7 1.0

4 Ec 0.1 0.4 0.7 1.0

5 Sc 0.1 0.3 0.5 0.7

For all four cases of five different scenarios of LMT-BPNN of MHD-SGFM, the refer-
ence dataset for velocity, temperature, and concentration profiles of proposed LMT-BPNN
is suggested using homotopy analysis method for η between 0 and 5, with step size of
0.05 for all four cases of five different scenarios of LMT-ABPNN. In this paper, the ob-
tained datasets are evaluated in terms of f ′(η), θ(η) and φ(η) as reference outcomes.
Tables 2–4 show the results of LMT-ABPNN for variants of f ′(η), θ(η), and φ(η) of MHD-
SGFM in terms of backpropagation networks, MSE (Training/validation/testing) and total
iterations/epochs, and time taken for all the scenarios connected with MHD-SGFM.

Table 2. Outcomes of LMT-ABPNN for variants of f ′(η) of MHD-SGFM.

Physical
Quantities

MSE
Performance Grad Mu Epochs Time

Training Validation Testing

β 2.52 × 10−9 5.56 × 10−9 4.53 × 10−9 2.52 × 10−9 9.98 × 10−8 1.00 × 10−8 916 34 s

M 2.14 × 10−9 2.47 × 10−9 2.41 × 10−9 1.83 × 10−9 1.55 × 10−6 1.00 × 10−9 565 11 s

Ma 1.01 × 10−10 1.38 × 10−10 1.46 × 10−10 1.01 × 10−10 2.96 × 10−7 1.00 × 10−10 1000 32 s
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Table 3. Outcomes of LMT-ABPNN for variants of θ(η) of MHD-SGFM.

Physical
Quantities

MSE
Performance Grad Mu Epochs Time

Training Validation Testing

β 1.99 × 10−10 2.24 ×
10−10

9.02 ×
10−10 1.99 × 10−10 9.95 × 10−8 1.00 × 10−8 432 10 s

M 2.99 × 10−9 1.45 × 10−9 4.09 × 10−9 2.99 × 10−9 9.90 × 10−8 1.00 × 10−8 508 24 s

Ma 5.69 × 10−10 9.50 ×
10−10 2.79 × 10−9 5.69 × 10−10 9.94 × 10−8 1.00 × 10−8 312 9 s

Ec 2.01 × 10−10 3.03 ×
10−10

4.34 ×
10−10 2.01 × 10−10 9.95 × 10−8 1.00 × 10−8 379 14 s

Table 4. Outcomes of LMT-ABPNN for variants of φ(η) of MHD-SGFM.

Physical
Quantities

MSE
Performance Grad Mu Epochs Time

Training Validation Testing

Ma 7.13 × 10−10 1.81 × 10−9 1.01 × 10−9 7.13 × 10−10 9.90 × 10−8 1.00 × 10−8 226 8 s

Sc 1.81 × 10−9 3.91 × 10−9 3.47 × 10−9 1.81 × 10−9 9.99 × 10−8 1.00 × 10−8 192 6 s

4. Result Interpretations

Figures 4a, 5a, 6a, 7a, 8a, 9a, 10a, 11a and 12a show graphs for designed LMT-
ABPNN for MHD-SGFM representing convergence of validation, training, and testing
process against epochs index for solving the cases of β, M, and Ma for f ′(η); the cases of
β, M, Ma, and Ec for θ(η); and finally, the cases of Ma, Sc for φ(η). The best excellent valida-
tion performance obtained at epochs 916, 559, 1000, 432, 508, 312, 379, 226, and 192 with
MSE almost 5.56 × 10−9, 2.47 × 10−9, 1.38 × 10−10, 2.24 × 10−10, 1.45 × 10−9, 9.50 × 10−10,
3.03 × 10−10, 1.81 × 10−9 and 3.91 × 10−9 in time 34, 11, 32, 10, 24, 9, 14, 8, and 6 s
respectively. It illustrates that all lines are smooth and approaches to a same point which
authenticates the ideal performance. The corresponding figures and Tables 2–4 suggest,
with lower MSE value the performance attitude will be best.

Figures 4b, 5b, 6b, 7b, 8b, 9b, 10b, 11b and 12b reveal the convergent efficiency
perfection and accuracy for solving the cases of β, M, and Ma for f ′(η); the cases of
β, M, Ma, and Ec for θ(η); and finally, the cases of Ma, Sc for φ(η). The gradient values
in all of these scenarios, as well as the values of the Mu parameter during training in
identifying another vector, are shown in Figures 4b, 5b, 6b, 7b, 8b, 9b, 10b, 11b and 12b.
Mu is the neural network training algorithm’s adaptive parameter. Error convergence is
directly influenced by the choice of Mu. The associated values of gradient 5.56 × 10−8,
1.55 × 10−6, 2.96 × 10−7, 9.95 × 10−8, 9.90 × 10−8, 9.94 × 10−8, 9.95 × 10−8, 9.90 × 10−8

and 9.99 × 10−8 with Mu parameter 10−8, 10−9, 10−10, 10−8, 10−8, 10−8, 10−8, 10−8, and
10−8, respectively. Results reveal that a rise in epoch corresponds to a reduction in the
gradient and Mu values. The extensive training of networks results in the form of better
convergence of the solution with lowest Mu and gradient values.

Figures 4c, 5c, 6c, 7c, 8c, 9c, 10c, 11c and 12c depict graphical representations of the
fitness analysis for the fluid flow highlighted variants associated with the mathematical
model, and the error shows the difference between the targeted and reference solutions.
For all scenarios, the graph shows that the target values overlap the output values of the
proposed LMT-BPNN solver, which validates the accuracy of solution.
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Figure 4. Graphic representation for LMT-ABPNN base on variants of β for f ′(η) of MHD-SGFM. (a) MSE representation,
(b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 5. Graphic representation for designed LMT-ABPNN for solving cases of M for f ′(η) of MHD-SGFM. (a) MSE Result,
(b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 6. Graphic representation for designed LMT-ABPNN for solving cases of 𝑀𝑎 for 𝑓′(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 
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Figure 6. Graphic representation for designed LMT-ABPNN for solving cases of Ma for f ′(η) of MHD-SGFM. (a) MSE
Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 7. Graphic representation for designed LMT-ABPNN for solving cases of 𝛽 for 𝜃(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 
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Figure 7. Graphic representation for designed LMT-ABPNN for solving cases of β for θ(η) of MHD-SGFM. (a) MSE Result,
(b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 8. Graphic representation for designed LMT-ABPNN for solving cases of 𝑀 for 𝜃(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 
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Figure 8. Graphic representation for designed LMT-ABPNN for solving cases of M for θ(η) of MHD-SGFM. (a) MSE Result,
(b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 9. Graphic representation for designed LMT-ABPNN for solving cases of 𝑀𝑎 for 𝜃(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 
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Figure 9. Graphic representation for designed LMT-ABPNN for solving cases of Ma for θ(η) of MHD-SGFM. (a) MSE
Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 9. Graphic representation for designed LMT-ABPNN for solving cases of 𝑀𝑎 for 𝜃(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 
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Figure 10. Graphic representation for designed LMT-ABPNN for solving cases of 𝐸𝑐 for 𝜃(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 
Figure 10. Graphic representation for designed LMT-ABPNN for solving cases of Ec for θ(η) of MHD-SGFM. (a) MSE
Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 11. Graphic representation for designed LMT-ABPNN for solving cases of 𝑀𝑎 for 𝜙(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 

Figure 11. Graphic representation for designed LMT-ABPNN for solving cases of Ma for φ(η) of MHD-SGFM. (a) MSE
Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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Figure 12. Graphic representation for designed LMT-ABPNN for solving cases of 𝑆𝑐 for 𝜙(𝜂) of MHD-SGFM. (a) MSE 

Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression. 

  

Figure 12. Graphic representation for designed LMT-ABPNN for solving cases of Sc for φ(η) of MHD-SGFM. (a) MSE
Result, (b) Results of the transition state, (c) Fitness of the curve, (d) Histogram for error analysis, (e) Regression.
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The error histograms plotted in Figures 4d, 5d, 6d, 7d, 8d, 9d, 10d, 11d and 12d explain
the distribution of error estimated from the zero axes after neural networks training. The
error values show how the expected and target values differ. The sample numbers from
the constructed data sample are represented by the instances. The greatest number of
error values falls over the zero line, which shows the accuracy of the LMT-ABPNN for
both scenarios and for each case, according to the error histogram analysis. Additionally,
regression analysis, which is plotted in Figures 4e, 5e, 6e, 7e, 8e, 9e, 10e, 11e and 12e,
is considered for training/validation/testing of the scenarios. The data prediction and
forecasting were investigated in this analysis. During the computation, the regression
value R = 1 represents the close correlation between the target and output values.

5. Impact of Profiles
5.1. Influence on Velocity Gradient f ′(η)

The comparative analysis of f ′(η) with reference solution is depicted in Figure 13
for variation of β, M, and Ma. Figure 13a reveals behavior of β with respect to f ′(η). A
greater value of β results to a lower viscosity of the fluid, which minimizes the resistive
force and hence raises f ′(η). The fluctuation of M via f ′(η) is shown in Figure 13c. The
disruption to the liquid particles improves when the Hartmann number is increased, and
so decreases the f ′(η). The behaviour of the Ma on f ′(η) is demonstrated in Figure 13e.
The velocity f ′(η) is increased by higher estimation of Ma. Physically, as Ma increases, the
solutal and thermal surface tension ratios increase, improving liquid mobility. To check the
accuracy criteria the absolute error (AE) analysis is plotted in Figure 13b,d,f for β, M, and
Ma, respectively. The AE values for β lie between 10−6 to 10−3, for M they lie between 10−8

to 10−4, while for Ma they lie between 10−7 to 10−4. All these AE values from reference
solution satisfy the accuracy criteria.

5.2. Influence on Temperature Gradient θ(η)

The comparative analysis of θ(η) with reference solution is depicted in Figure 14 for
variation of β, M, Ma, and Ec. Figure 14a reveals behavior of β with respect to θ(η). For
higher values of β the temperature increases. Figure 14c depicts the variation of M against
θ(η). The temperature rises as M increases. In fact, when M increases, more resistive force
is applied to the liquid particles, which increases collisions and, as a result, θ(η) rises. In
Figure 14e, the characteristics of Ma on θ(η) are highlighted. In this case, the temperature
distribution is enhanced for higher estimation of Ma. Figure 14g depicts the significant
effect of Ec on θ(η). Higher Ec approximations clearly provide more kinetic energy, which
boosts temperature distribution. To check the accuracy criteria the absolute error (AE)
analysis is plotted in Figure 14b,d,f,h for β, M, Ma and Ec, respectively. The AE values
for β lie between 10−7 to 10−4, for M between 10−7 to 10−3, while for Ma and Ec they lie
between 10−8 to 10−4. All these AE values fulfill the precision criteria.

5.3. Influence on Concentration Field φ(η)

The comparative analysis of φ(η) with reference solution is depicted in Figure 15 for
variation of Ma and Sc. The behaviour of Ma on concentration is estimated in Figure 15a.
Figure 15a reveals that φ(η) decays for Ma. Surface tension is created as a result of temper-
ature and concentration gradients, and so φ(η) reduced. Figure 15c shows the variation
in concentration due to Sc. The mass diffusivity decreases as the Schmidt number rises,
consequently φ(η) decays. The AE analysis is depicted for Ma and Sc in Figure 15b,d. The
AE values for Ma lies between 10−7 to 10−4,while for Sc lies between 10−7 to 10−3, which
measures the accuracy criteria.
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Figure 13. Assessment of LMT-ABPNN for f ′(η) with reference dataset of MHD-SGFM. (a) For variation of β for f′, (b) AE
for MHD-SGFM, (c) For variation of M for f′, (d) AE for MHD-SGFM, (e) For variation of Ma for f′, (f) AE for MHD-SGFM.
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Figure 14. Assessment of LMT-ABPNN for θ(η) with reference dataset of MHD-SGFM. (a) For variation of β for θ, (b) AE
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Figure 15. Assessment of LMT-ABPNN for 𝜙(𝜂)with reference dataset of MHD-SGFM. (a) For variation of 𝑀𝑎 for 𝜙,  
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5.4. Entropy Generation and Bejan Number Analysis

Figure 16 shows the effects of β, M, and Br on NG and Be. Figure 16a,b shows the
effects of fluid parameter β on NG and Be. It is noticed that the effects of NG and Be
on the fluid parameter are opposite to each other. Figure 16c,d depicts the impact of the
Hartmann number (M) on NG and Be. In this case, the entropy rate increases as M increases.
Physically, higher M results in increased resistance to liquid particles, which increases the
collision of molecules and, as a result, creates disorder in the thermal system. As a result,
NG is increased. For larger M, Be is reduced. Figure 16e,f shows Br fluctuation on NG and
Be. Here, NG is improved for Br. With greater Br, the viscous force increases, which raises
the resistive force, increasing system disorderliness, and therefore increasing NG. The Be is
decreased for better estimates of Br.
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6. Conclusions

An innovative application of LMT-ABPNN has been introduced to examine the en-
tropy generation in Marangoni convection magnetohydrodynamic second grade fluidic
flow model (MHD-SGFM) with Joule heating and dissipation impact. The PDEs describing
MHD-SGFM were reduced into ODEs by appropriate transformation. The dataset was
determined through HAM by the variation of physical parameters for all scenarios of pro-
posed LMT-ABPNN. The reference data samples for training/validation/testing processes
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were utilized as targets to determine the approximated solution of proposed LMT-ABPNN.
The performance of LMT-ABPNN was validated by MSE based fitness, error histogram
scrutiny, and regression analysis. The significant findings of this research are:

• The LMT-ABPNN’s validity and verification are based on a thorough examination of
accuracy assessments, histograms, and regression analysis.

• The higher the network’s testing and training efficiency, the better the convergence of
the produced results for the lowest Mu and gradient values.

• The larger β and Ma, the higher f ′(η) while M has the reverse influence on f ′(η).
• For higher values of β, M, Ma, and Ec, θ(η) boosts.
• The concentration φ(η) drops as Ma and Sc grow.
• An augmentation is noticed for NG for higher estimations of β, M, and Br.
• Larger β, M, and Br decays the Bejan number.

In future studies, one may work on supervised learning based LMT-ABPNN to solve
the linear and nonlinear fluidic problems [50–53]. Moreover, the proposed technique is
definitely helpful to exploit the different fluidic problems but other innovative heuristic
unsupervised techniques can also be used.
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Nomenclature

C∞ Ambient concentration Pr Prandtl number
T∞ Ambient Temperature of fluid Sc Schmidt Number
Be Bejan number T Temperature of fluid
Br Brinkman Number k Thermal Conductivity
x, y Cartesian co-ordinates u, v Velocity components
C Concentration Greek Symbol
A Dimensionless Parameter ρ Density
Ec Eckert number µ Dynamic viscosity
NG Entropy optimization rate σ1 Electric conductivity
L1 Reference length σ0, γT , γC Positive constant
B0 Magnetic strength β SG Fluid parameter
Ma Marangoni ratio parameter α1 SG liquid parameter
DB Mass Diffusivity cp Specific Heat
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