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Abstract: In the current investigation, AA2024 aluminum alloy is reinforced by alumina nanoparticles
using a friction stir process (FSP) with multiple passes. The mechanical properties and microstructure
observation are conducted experimentally using tensile, microhardness, and microscopy analysis
methods. The impacts of the process parameters on the output responses, such as mechanical
properties and microstructure grain refinement, were investigated. The effect of multiple FSP passes
on the grain refinement, and various mechanical properties are evaluated, then the results are
conducted to train a hybrid artificial intelligence predictive model. The model consists of a multilayer
perceptrons optimized by a grey wolf optimizer to predict mechanical and microstructural properties
of friction stir processed aluminum alloy reinforced by alumina nanoparticles. The inputs of the
model were rotational speed, linear processing speed, and number of passes; while the outputs were
grain size, aspect ratio, microhardness, and ultimate tensile strength. The prediction accuracy of the
developed hybrid model was compared with that of standalone multilayer perceptrons model using
different error measures. The developed hybrid model shows a higher accuracy compared with the
standalone model.

Keywords: friction stir processing; AA2024 aluminum alloy; alumina particles; multilayer percep-
trons; grey wolf optimizer

1. Introduction

Due to its simplicity, friction stir processing (FSP) has become one of the most impor-
tant techniques for manufacturing surface composites in recent years. Due to the intense
plastic deformation of the FSP process, the mechanical and microstructural properties
are enhanced [1–3]. As a result of the unique characteristics of nanocomposite materials,
this method has been utilized to fabricate nanocomposite structures for diverse purposes.
During dynamic recrystallization of grains, nanocomposite structures contain reinforce-
ment nanoparticles that disperse along grain boundaries [4–10]. Al2O3, SiC, Ti2B, and
CNT were used as reinforcement particles to strengthen the aluminum alloy matrix; hence,
multiple FSP passes are carried out during the process [11–15]. Processing parameters have
a considerable influence on FSP and produced metal matrix composites; in particular, the
number of processing passes is one such critical parameter that refines grain and improves
mechanical properties [16–23]. The dispersion of reinforcing nanoparticles in a metal matrix
improves the hardness and wear resistance of manufactured metal matrix nanocomposites
(MMNCs) [12,24]. Many studies have studied the impact of Al2O3 nanoparticles on surface
composites, reporting improved mechanical, wear, and strength characteristics, as well as
increased or decreased toughness and ductility [25–30]. As a result of these developments,
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the current study evaluated the impacts of processing parameters such as rotational and
traverse speeds, and the number of processing passes on the behavior and properties of
the manufactured surface composites.

Prediction of the mechanical properties and the microstructure characteristics of the
friction stir processed specimens (FSPS) plays a vital role in developing and obtain high-
quality FSPS with minimum cost. Nevertheless, the nonlinear relationship between the
properties of FSPS and the process factors makes this process a cumbersome problem. Most
literature studies focused on modeling this process using response surface methodology
(RSM) [31–33]. However, RSM has a critical disadvantage as it fits experimental data to
a polynomial model with the second-order regardless of the nonlinearity degree of the
data. Artificial intelligence-based models such as artificial neural networks (ANN), random
vector functional link network (RVFL), and adaptive neuro-fuzzy inference system (ANFIS)
have been reported in the literature as a robust prediction tool that used in modeling differ-
ent nonlinear engineering processes such as friction stir welding process [34–38]. Moreover,
the integration between artificial intelligence modeling and metaheuristic optimizers such
as equilibrium optimizer [39], Harris hawks optimizer [40], cat swarm optimizer [41],
flower pollination [42], crow search optimizer [43], mayfly optimizer [44], ecosystem-based
optimizer [45], manta ray foraging optimizer [46], parasitism-predation optimizer [47], and
political optimizer [48], has shown promising application in modeling different engineering
problems. This artificial based modeling approaches overcomes the problems of conven-
tional mathematical modeling techniques as well as numerical modeling techniques such
as model complexity and nonlinearity [49,50]. Kumar et al. [51] developed an ANN model
as well as a fuzzy inference model to predict the wear resistance of FSPS made of AA5083
plates. The hardness of the specimens was enhanced by refining the grains using the FSP
technique. The input control factors of the model were tool traverse speed, tool rotation
speed, and shoulder diameter, while the output response was the wear resistance. The
fuzzy model outperformed ANN to predict the wear resistance of FSPS. Rathore et al. [52]
predicted the ultimate tensile strength (UTS) and the hardness of Al 2219-Y2O3 composite
processed using FSP technique by utilizing an ANFIS model. The input control variables
were spindle rotary speed, traverse speed, tool rotation direction, and number of passes.
The results of ANFIS demonstrate its better accuracy and robustness compared with the
conventional response surface models. Dinaharan et al. [53] applied an ANN model to
predict the tribological properties of FSPS made of copper matrix and ceramic additives
such as Al2O3, SiC, WC, TiC, and B4C. The input process parameters of the model were
ceramic particle, tool rotational speed, traverse speed, and groove width, while the model
output was wear rate. ANN was compared with response surface methodology (RSM) to
predict the wear behavior of FSPS made of aluminum reinforced by ceramic additives [54].
The inputs of the models were tool rotational speed, sliding speed, and load, while the
model outputs were wear rate and coefficient of friction. The comparative study shows
that the predictive accuracy of the ANN model is higher than that of RSM model.

From the abovementioned literature, it is realized that the application of artificial intel-
ligence models in FSP is still in its cradle. Moreover, the developed models are feed-forward,
optimized using conventional back-propagation techniques such as conjugate gradient and
Levenberg–Marquardt. No previous studies were carried out on the applications of hybrid
fine-tuned artificial intelligence models in modeling FSP in which conventional models are
integrated with advanced metaheuristic optimizers. This motivated us to develop a new
hybrid model to predict the mechanical properties and microstructure characteristics of
FSPS. The developed model consists of a conventional artificial intelligence model called
multi-layer perceptron (MLP) integrated with a metaheuristic optimizer called grey wolf
optimizer (GWO). GWO was used as a subroutine to optimize MLP parameters instead
of conventional back-propagation techniques. The proposed model was compared with a
standalone MLP model based on different statistical measures. Both models were trained
using experimental data of FSP employed on AA 2024 sheets reinforced by Al2O3 nanopar-
ticles. The process control factors were rotational speed, traverse speed, and the number
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of FSP passes. The process responses were grain size, aspect ratio, microhardness, and
ultimate tensile strength. The accuracy of the models, namely MLP and MLP-GWO, were
evaluated using four statistical measures: determination coefficient, efficiency coefficient,
root mean square error, and mean absolute error.

2. Materials and Methods

The base metals were 4 mm thick AA 2024 wrought aluminum alloy plates. Table 1
displays the plates’ chemistry. Plates were produced and modified for the proper operation
on surfaces with 5 mm wide and 2 mm deep rectangular grooves. The AA 2024 plates were
strengthened with 30 nm Al2O3 nanoparticles. The FSP tool used to fabricate the materials
were created using the methodology explained in [55], resulting in the utilization of H13
steel. FSP was performed utilizing an automated vertical milling machine (Knuth-VFM5,
Knuth, Wasbek, Germany) with three processing passes with 900, 1200, and 1500 rpm rota-
tional speeds. During fabrication, the FSP tool’s tilt angle was set at 2◦. The experimental
setup and the fabrication process of the surface composite are shown in Figure 1.

Table 1. Chemical composition of the AA 2024 base metal (%).

Cu Mg Mn Zn Fe Si Pb Other Al

4.81 1.5 0.62 0.15 0.2 0.1 0.02 0.6 92
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Figure 1. (a) Friction stir processing using milling machine, (b) the preparation of the AA2024
sheet filled with Al2O3 nanoparticles, and (c) composite surface with different FSP passes. (d) The
orientation of the tensile, hardness, and microstructure samples.

All samples were sliced, sectioned, and ground prior to etching using Keller’s reagent
(2 drops HF (48%) + 6 mL HNO3 + 90 pure water). After a few seconds of etching at
room temperature, the microstructure of FSPS was explored using an optical microscope
(BX51, Olympus, Tokyo, Japan). The microstructures and hardness samples were sectioned
perpendicular to the processing direction. In contrast, the tensile samples were sectioned
along with the processing direction (parallel to the FSP direction), as illustrated in the
schematic drawing in Figure 1d. An inverted metal microscope (Olympus GX41, Tokyo,
Japan) examined the sample, while a transmission electron microscope (TEM) was used
to study the Al2O3 nanoceramics (JEOL JSM-200F, Tokyo, Japan). We utilized a Branson
CPX5800H-E ultrasonic bath (Emerson, St. Louis, MO, USA) from the United States to
fully scatter the powders and then uploaded the sample onto a copper-coated 200 mesh
carbon grid to determine the particle size distribution. Figure 2 shows the TEM image
of the alumina nanoparticles, with an average particle size of 11.3 ± 2 nm. The alumina
nanoparticles were found to have a crystalline polymorphic phase α-Al2O3 and appear in
white powder.
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The tensile tests on the specimens were carried out with the help of an MTS tension
machine (MTS, Guangdong, China). The specimens were milled on a computer numerical
control (CNC) milling machine in a direction parallel to the processing direction. Each
tested specimen had its applied load and extension measured and recorded.

3. Hybrid Predictive Model
3.1. Multi-Layer Perceptron (MLP)

MLP is an ANN model widely used to solve complex problems in many engineering
applications such as prediction, optimization, modeling, pattern recognition, and clustering.
It consists of three main layers: an input layer used to receive data, an output layer used to
produce computed data, and one or more hidden layers to link the input and output layers,
as shown in Figure 3. Each layer contains some perceptrons, which mimic the biological
behavior of the neurons of the nervous system. Synaptic weights represent the connections
between the perceptrons. These weights are adjusted during the training process of the
MLP model by applying a suitable optimization process. The experimental datasets
were normalized before using them in the training of the models using the following
equation [56]:

Di = 0.1 + 0.8
(

di − dmin

dmax − dmin

)
(1)

where, Di, di, dmin, and dmax denote the normalized data, experimental data, minimum
value of the experimental data, and maximum value of the experimental data, respectively.

The training data is fed-forward to the MLP model in which it is subjected to some
mathematical operations to compute the response of the model. These mathematical
operations are executed by the perceptrons in different layers and have two sequential
steps. The first operation is the summation of the weight products and each perceptron
input value.

xn = ∑
m=1

wmnym + b (2)

where wmn denotes the synaptic weight, ym denotes the input signal of the perceptron, m
and n are the hidden and output layers, b denotes the bias, and xn denotes the summation
output, which is used as an input to the transfer function.

The computed value is introduced into a suitable transfer function to limit the output
range of the perceptron. The sigmoid function is the commonly used activation function
that limits the output value (yn) between zero and one; it is given by:

yn =
1

1 + e−xn
(3)
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To optimize the network, the experimental datasets should be divided into two groups,
namely the learning or training group used to optimize the weights and the testing group
used to check the generalization level of the model. During the training process, the data is
introduced to the model, and it computes a response. The computed response is compared
with the target value obtained from the experimental results to calculate the prediction
error using a suitable error measure such as mean square error (MSE), which is given as:

MSE =
1
N ∑

N
(E(x)− P(x))2 (4)

where N, P(x), and E(x) denote the number of training vectors, predicted data, and
experimental data, respectively. Based on the calculated error between the responses and
the target data, the weights of the network are updated using the following formula:

wn = wo − ξ
δei
δwo

(5)

where wn, wo, ξ, and ei denote the new weight, old weight, learning rate, and computed
error, respectively. δei

δwo
is the derivative of the computed error with respect to the old

weight.
The aim of the weights’ optimization could be achieved by decreasing the mean

squared error (MSE) value to obtain more accurate responses. MSE is used as a cost
function during the optimization process. Once the weights’ optimization is accomplished,
the testing data is presented to the model. The predicted results are compared with the
experimental ones to evaluate the model accuracy using different statistical measures
presented in Table 2.

To obtain an accurate MLP model, the network was trained using 85% of the experi-
mental data and tested using the remaining data. Besides the weights’ optimization, there
are several parameters, which should be optimized to obtain an accurate model, such as
the number of hidden layers and perceptrons, learning rate, and learning coefficients.
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Table 2. Statistical measures used for model evaluation [57].

Statistical Measure Abbreviation Formula Optimal Value

Determination
coefficient R2 (∑N

i=1(E(x)−E(x))(P(x)−P(x)))
2

∑N
i=1(E(x)−E(x))

2×∑N
i=1(P(x)−P(x))

2
Approach unity

Efficiency coefficient EC 1− ∑N
i=1(E(x)−P(x))2

∑N
i=1(E(x)−E(x))

2
Approach unity

Root mean square
error RMSE

√
1
N

N
∑

i=1
(E(x)− P(x))2 Approach zero

Mean absolute error MAE 1
N

N
∑

i=1
|E(x)− P(x)| Approach zero

3.2. Grey Wolf Optimizer (GWO)

GWO is a swarm-based metaheuristic optimizer that mimics the social behavior of
wolves during the hunting of prey [58]. Wolves are arranged into three main groups;
namely, the first one is the fittest group represented by α, the other two normal groups are
represented by β and δ. The fittest wolves mange the search process for the prey. The other
two normal groups follow the fittest one during the search process within the search space.
The hunting behavior of the wolves could be represented by three stages, namely encircling,
tracking, and attacking the prey. The encircling stage is mathematically formulated as
follows:

∆(s + 1) =
∣∣C.Xp(s + 1)− X(s + 1)

∣∣ (6)

X(s + 1) =
∣∣Xp(s + 1)− D.∆(s + 1)

∣∣ (7)

where ∆ denotes the distance between prey Xp and wolf X, and C and D are coefficient
vectors given by:

C = 2 v1 (8)

D = 2av2 − a (9)

where v1 and v2 denote random vectors ranges between 0 and 1, and a is a linearly
decreased vector.

The position of any wolf X is updated based on the position of the three main groups
(α, β, and δ) of the wolves as follows:

X(s + 1) =
Xe + xt + Xa

3
(10)

where
Xe = |Xα−UαVα|, Xt =

∣∣Xβ−UβVβ

∣∣, Xa = |Xδ−UδVδ| (11)

Vα = |C1Xα − X|, Vβ =
∣∣C2Xβ − X

∣∣, Vδ = |C3Xδ − X| (12)

Figure 4 shows the behavior of wolves during the search process to update their
position based on encircling, tracking, and attacking groups in a two-dimensional search
space. Once the position of the prey is estimated, and the positions of wolves are updated
randomly around the prey based on the aforementioned formulas.

3.3. Fine-Tuned Model

The MLP model is optimized using GWO, which acts as a subroutine embedded into
the model. GWO is used as an internal optimizer instead of conventional back-propagation
algorithms such as conjugate gradient and Levenberg–Marquardt, to optimize the weights
and biases of the network that maximize the prediction accuracy. The use of GWO may help
in overcoming the problems of these conventional algorithms, such as trapping into local
minima and slow convergence speeds. The training process of the MLP with GWO starts
with initializing the weights and biases of MLP model randomly. The training samples from
the training dataset are fed into the network. The MLP model computes the output and
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compares it with the target based on an error criterion such as MSE given in Equation (4).
This computed error is used as an objective function that should be minimized to maximize
the model accuracy. The GWO is implemented using these random values to compute
the next set of biases and weights for the next iteration. The implementation of GWO is
repeated until the stopping criterion is fulfilled. Finally, the network parameters with the
minimum error from all executed iterations are considered as the optimal solution. The
flow chart of the implemented MLP-GWO model is given in Figure 5.
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4. Results and Discussions

This section will discuss three topics: microstructural observation, mechanical proper-
ties evaluation, and validation of the predictive models. The experiments are conducted
using various combinations of process control factors, namely rotational, traverse speed,
and number of FSP passes. Four process responses are measured: the grain size, aspect
ratio, microhardness, and ultimate tensile strength. The effects of the process factors on
the responses will be demonstrated to figure out the relationship between them. Then, the
experimental data presented in Table 3 are used to train and test the developed MLP and
MLP-GWO models. The accuracy of the models is evaluated using statistical measures.

Table 3. Experimental data.

Specimen
Code

Rotational
Speed (rpm)

Traverse
Speed

(mm/min)

Number of
Passes

Grain Size
(µm) Aspect Ratio Micro-Hardness

(HV)
Ultimate Tensile
Strength (MPa)

1 1120 10 1 25.4275 0.486825 68.2 258.993
2 1120 15 1 30.2 0.481 98.4 239.1106
3 1120 20 1 24.8175 0.48175 88.8 209.9856
4 1500 10 1 42.825 0.281 68.8 195.0305
5 1500 15 1 44.8375 0.418 78.8 188.1139
6 1500 20 1 26.075 0.259 96.4 176.9834
7 900 10 1 32.75875 0.4215 68 190.1551
8 900 15 1 22.2825 0.4425 84.4 230.3401
9 900 20 1 26.595 0.335975 83.2 195.6401
10 1800 10 1 35.165 0.45825 91.6 239.675
11 1800 15 1 26.91875 0.4045 100.8 120.7028
12 1800 20 1 22.1475 0.34325 93.4 94.10151
13 1120 10 2 26.075 0.40025 64.4 301.2278
14 1120 15 2 31.91 0.34825 83.4 260.5566
15 1120 20 2 33.125 0.37425 96.8 246.3574
16 1500 10 2 26.6125 0.4375 75.4 217.8233
17 1500 15 2 24.475 0.3275 105.4 165.6143
18 1500 20 2 20.6675 0.4125 96.2 133.4589
19 900 10 2 36.26975 0.3765 91.2 293.0167
20 900 15 2 5.399 0.7575 69.6 234.7553
21 900 20 2 59.565 0.49175 72.2 224.2906
22 1800 10 2 31.83 0.3765 102.8 273.9346
23 1800 15 2 21.725 0.478 77.6 236.1191
24 1800 20 2 29.6175 0.2375 88.2 313.7088
25 900 10 3 7.475 0.77425 66.4 305.9897
26 900 15 3 3.425 0.76125 109.6 273.9346
27 900 20 3 28.9925 0.24975 71.4 236.1191
28 1120 10 3 11.81 0.73075 84.4 313.7088
29 1120 15 3 7.9675 0.78325 103 276.0911
30 1120 20 3 9.06375 0.72975 101.4 271.6196
31 1500 10 3 23.7 0.41375 62.4 287.8736
32 1500 15 3 24.7825 0.27875 79.8 211.0938
33 1500 20 3 25.2375 0.45125 100.2 168.7652
34 1800 10 3 28.925 0.44275 103.8 209.1876
35 1800 15 3 5.905 0.72025 106.2 162.8843
36 1800 20 3 5.3915 0.41725 94.2 89.71616

4.1. Microstructural Observation

The FSP processing parameters have a significant impact on microstructural behavior.
Using the JMicroVision software, the average grain intercept approach was used to compute
microstructural grain sizes (Roduit, N. JMicroVision, version 1.3.1, Switzerland). The AA
2024 base metal was observed to have a grain size of 130 µm. Refinement of grain is seen
in Figure 6. After the first pass, the grains size was reduced to 35 µm under ideal FSP
processing conditions. Increasing the FSP passes enhances the third pass’s microstructural
grain refining process by less than 7 µm. Multiple FSP passes improved Al2O3 nanoparticle
dispersion and surface homogeneity in MMNCs (Figure 7). Rotational speed influenced
microstructural grain refinement during FSP, increasing the average grain size. This is
owing to the relationship between rotational speed and the heat generated during the FSP
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process. There is a significant effect of the multiple processing passes on the mechanical and
the microstructure grain refinement. This grain refinement occurred during the dynamic
recrystallization process of the friction stir action. The grain refinement enhances the
mechanical properties by increasing the processed alloy’s ductility and plastic deformation
behavior.
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By increasing FSP passes, a low rotating speed helps to improve the microstructural
refinement process. Furthermore, a single pass is unreliable for ceramic or hardened
particle surfaces due to the accumulation of the reinforcement particles in the first pass. In
contrast, more FSP passes to increase the dispersion and distribution of such particles in
the metal matrix. Thus, the type and number of reinforced particles used in the fabrication
process affect FSP heat generation.

4.2. Effect of Tool Rotational and Traverse Speed on Ultimate Tensile Strength

Ultimate tensile strength curves are represented in the comparison form. The effect of
rotation speed on the ultimate tensile strength throughout different passes number has been
investigated. Tool rotations speed performed at 900 and 1120 rpm has a higher ultimate
tensile strength than other speeds, especially when processed at 10 and 15 mm/min traverse
speeds. The third pass causes an improvement in the tensile strength. The maximum value
for UTS is improved by 27% rather than the base metal. The tool rotation speed at 1800 rpm
remarked that having a lower UTS over the three passes performed.
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Figure 8 shows the ultimate tensile strength UTS curves in the comparison form
through different processing parameters of traverse speed and number of FSP passes.
The effect of rotation speed on the ultimate tensile strength throughout different passes
number has been investigated. Tool rotations speed performed at 900 and 1120 rpm has
a higher ultimate tensile strength than other speeds, especially when processed at 10
and 15 mm/min traverse speeds. The third pass causes an improvement in the tensile
strength. The maximum value for UTS is improved by 27% rather than the base metal.
The tool rotation speed at 1800 rpm remarked that having a lower UTS over the three
passes performed. Additionally, the feed rate influences the mechanical characteristics of
Al-alloys. The tool rotation speed in conjunction with an appropriate traverse speed is a
critical parameter in the FSP. With a relatively modest traverse rate of 10 and 15 mm/min,
enhanced results for these metal matrix composites are obtained. The increased traversal
speed utilized in friction stir processed FSPed for the nanocomposite matrix did not result
in an adequate amount of heat being produced during processing. The observed data
indicated that increasing the traverse speed resulted in a drop in the UTS values.
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Additionally, the feed rate influences the mechanical characteristics of Al-alloys. The
tool rotation speed in conjunction with an appropriate traverse speed is a critical parameter
in the FSP. With a relatively modest traverse rate of 10 and 15 mm/min, enhanced results
for these metal matrix composites are obtained. The increased traversal speed utilized in
FSPed for the nanocomposite matrix did not result in an adequate amount of heat being
produced during processing. The observed data indicated that increasing the traverse
speed resulted in a drop in the UTS values.

4.3. Influence of Tool Speed on the Grain Size

The number of FSP passes significantly impacts the grain structure and precipitate
dispersion in FSPed samples as shown in Figure 9. The average grain size in specimen
samples collected from the agitated zone. The third pass improves the average grain size
with four distinct rotation rates of 900, 1120, 1500, and 1800 rpm, respectively, processed
at 10 mm/min travel speed. Finer grain is produced when the tool rotation speed is set
at 900 RPM. Throughout all passes, the difference in average grain size is obtained at low
rotation speed (900 rpm) and high rotation speed (1800 rpm). The multi-pass processing
affects the samples processed at 900 rpm and 10 mm/min travel speed. The average grain
size decreases as the number of passes increases. The average grain size was reduced by
75% in the third pass compared to the first. Furthermore, the aspect ratio has been increased
by 50%. The multi-pass FSP has no noticeable impact on grain size at 1500 rotation speed
and 10 mm/min traverse speed. The aspect ratio varies noticeably between the second and
third passes. When the tool travel speed is increased to 20 mm/min with a higher rotation
speed (1800 rpm), the development of finer grain is observed owing to a greater rotation
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to travel speed ratio. Larger grains develop when the ratio falls with increasing rotation
speed. Coarse grain was discovered at lower rotating tool speeds.
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Figure 9. The effect of passes number on the microstructure refinement at rotation speed 900 rpm
and 10 mm/min traverse speed; (a) first pass, (b) second pass, and (c) third pass.

4.4. Validation of the Predictive Model

To evaluate the capability of the developed MLP-GWO model to predict the mechani-
cal properties and microstructure characteristics of the prepared FSPS, it is compared with
standalone MLP. The inputs of MLP and MLP-GWO models are rotational speed, traverse
speed, and number of FSP passes, while the outputs are grain size, the aspect ratio of
grains, microhardness, and tensile strength. The total number of the measured datasets
used to train and test the models was 36 datasets, 85% were used to train the models, and
the remaining 15% were used to test the models. The testing sets were selected randomly
from the experimental sets. Each response has its own testing set. For grain size the indices
of the testing sets are 4, 5, 12, 23, and 26. For aspect ratio the indices of the testing sets
are 3, 6, 14, 25, and 34. For microhardness the indices of the testing sets are 9, 20, 21, 29,
and 34. For ultimate tensile strength the indices of the testing sets are 9, 12, 22, 25, and 35.
These data are normalized using before using it in the training process using Equation (1).
The convergence plots of MLP and MLP-GWO models during the training processes of all
predicted responses are shown in Figure 10. The MLP-GWO model convergences faster
than MLP model for all predicted responses. Moreover, the computed MSE in the case of
MLP-GWO is lower than that of standalone MLP. Less than 0.02 s is elapsed for execution
a single iteration of the model on a desktop computer (Intel(R) Core(TM) i5-3470 CPU @
3.20GHz) using MATLAB R2020a.

Figure 11 shows the predicted grain size, aspect ratio of grains, microhardness, and
tensile strength versus the measured ones. All predicted responses using MLP-GWO
(in blue) are in a better agreement with the predicted ones (in black) compared with
that of standalone MLP (in red). This agreement between the results of MLP-GWO and
experimental data indicates the important role of GWO in enhancing the performance of
the MLP model compared with the classical optimization techniques.

Figure 12 presents the normalized error plots and the error histograms for all inves-
tigated responses. The normalized error for the results obtained by MLP-GWO is much
lower than that of standalone MLP, which indicates the importance of GWO to boost the
performance of the MLP model. In the case of grain size, the normalized error ranges be-
tween −1–0.5 and −0.2–0.2 for MLP and MLP-GWO, respectively; while it ranges between
−0.5–0.5 and −0.2–0.2 in the case of aspect ratio, it ranges between −0.2–0.2 and −0.1–0.1
in the case of microhardness, and it ranges between −0.2–0.2 and −0.07–0.07 in the case of
tensile strength. The error histograms show that the error distribution of MLP-GWO results
is much lower than that of MLP results for all predicted responses. The low normalized
error and the tight distribution of the error of the results obtained by MLP-GWO indicate
its enhanced accuracy compared with standalone MLP.
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Figure 10. Convergence plots of MLP and MLP-GWO models. (a) grain size (MLP); (b) grain
size (MLP-GWO); (c) aspect ratio (MLP); (d) aspect ratio (MLP-GWO); (e) micro-hardness (MLP);
(f) micro-hardness (MLP-GWO); (g) tensile strength (MLP); (h) tensile strength (MLP-GWO).

Figure 13 shows QQ plots for all predicted responses, particularly grain size, aspect
ratio, microhardness, and tensile strength using MLP and MLP-GWO. In these plots, the
spread of plotted points away from the straight line reveals the deficiency of the predictive
model. The predicted responses of MLP have a poor fitting with the experimental ones for
all predicted responses (red color plots), while the predicted responses of MLP-GWO have
a good fitting with the experimental ones for all investigated cases (blue color plots). QQ
plots are another indicator of the outperformance of MLP-GWO over standalone MLP.
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The accuracy of MLP and MLP-GWO models is evaluated using four statistical mea-
sures, namely R2, EC, RMSE, and MAE as tabulated in Table 4. MLP-GWO has the highest
R2 ranges between 0.915–0.971, and MLP has the lowest R2 ranges between 0.416–0.715.
R2 of MLP-GWO is higher than that of standalone MLP by about 79.924, 119.952, 75.329,
and 35.804 for grain size, the aspect ratio of grains, microhardness, and tensile strength,
respectively. MLP-GWO also has the highest EC ranges between 0.909–0.968 and MLP
has the lowest EC ranges between 0.271–0.705. EC of MLP-GWO is higher than that of
standalone MLP by about 98.535, 235.424, 74.669, and 37.695 for grain size, the aspect ratio
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of grains, microhardness, and tensile strength, respectively. The high R2 and EC values of
MLP-GWO results compared with standalone MLP reveal the high correlation between
the predicted results of MLP-GWO and the experimental ones, and consequently, the high
accuracy of the MLP-GWO model to predict the mechanical properties and microstructure
characteristics of the prepared FSPS. On the other hand, MLP-GWO has the lowest RMSE
and MAE range between 0.047–10.411 and 0.038–9.291, respectively, while MLP has the
highest RMSE and MAE range between 0.134–32.160 and 0.107–29.662, respectively.
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Table 4. Evaluation of MLP and MLP-GWO results using statistical measures.

Algorithm R2 EC RMSE MAE

Grain size
MLP 0.533 0.478 8.611 6.904

MLP-GWO 0.959 0.949 2.68 2.321

Aspect ratio MLP 0.416 0.271 0.134 0.107
MLP-GWO 0.915 0.909 0.047 0.038

Grain size
MLP 0.531 0.529 9.461 8.049

MLP-GWO 0.931 0.924 3.7942 3.101

Aspect ratio MLP 0.715 0.703 32.160 29.662
MLP-GWO 0.971 0.968 10.411 9.291

RMSE of MLP-GWO is lower than that of standalone MLP by about 68.877, 64.925,
59.896, and 67.627; while MAE for MLP-GWO is lower than that of MLP by about 66.381,
64.485, 61.473, and 68.677 for grain size, an aspect ratio of grains, microhardness, and
tensile strength, respectively. The low values of RMSE and MAE of MLP-GWO predicted
results compared with standalone MLP reveal the high accuracy of the MLP-GWO model
to predict the prepared mechanical properties and microstructure characteristics FSP.

From the aforementioned analysis, it could be realized that the use of GWO as sub-
routines in the conventional MLP model improves the model accuracy via optimizing
the internal parameters of the network. Generally, the incorporation between MLP and
advanced metaheuristic optimizers such as GWO is recommended as an alternative to
conventional MLP models to predict the mechanical properties and microstructure charac-
teristics of the prepared FSPS.



Coatings 2021, 11, 1476 15 of 17

5. Conclusions

In this study, an optimized multilayer perceptrons model using grey wolf optimizer is
developed to predict mechanical and microstructural properties of friction stir processed
aluminum alloy reinforced by alumina nanoparticles. The inputs of the model were
rotational speed, linear processing speed, and number of passes; while the outputs were
grain size, aspect ratio, microhardness, and ultimate tensile strength. The prediction
accuracy of the developed hybrid model was compared with that of standalone multilayer
perceptrons model using different error measures. The main finding of the investigation
could be summarized as follows:

• Superior tensile strength is obtained at low rotating speeds of 900 and 1120 rpm, with
a 15 mm/min medium travel speed.

• Increasing the FSP passes results in grain refinement and excellent dispersion of
alumina nanoparticles in the composite matrix.

• Average microhardness is enhanced by 40% in the stirring zone higher than the base
metal. Regarding the grain refinement and reinforcing nanoparticles.

• The results demonstrate that there is an excellent homogeneous and dispersion of
Al2O3 nanoparticles inside the stirring zone.

• GWO could be used as a powerful alternative to conventional back-propagation
techniques to optimize MLP model.

• The hybrid MLP-GWO outperformed the standalone MLP model.
• MLP-GWO has the highest R2 ranges between 0.915–0.971, and MLP has the lowest

R2 ranges between 0.416–0.715. R2 of MLP-GWO is higher than that of standalone
MLP by about 79.924, 119.952, 75.329, and 35.804 for grain size, the aspect ratio of
grains, microhardness, and tensile strength, respectively.
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