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Abstract: Nonlinear science is a fundamental science frontier that includes research in the common
properties of nonlinear phenomena. This article is devoted for the study of new extended hyperbolic
function method (EHFM) to attain the exact soliton solutions of the perturbed Boussinesq equation
(PBE) and KdV–Caudery–Dodd–Gibbon (KdV-CDG) equation. We can claim that these solutions are
new and are not previously presented in the literature. In addition, 2d and 3d graphics are drawn to
exhibit the physical behavior of obtained new exact solutions.
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1. Introduction

The analysis of exact solutions to nonlinear evolution equations (NLEEs) is fundimen-
tal to the study of nonlinear properties. NLEEs are extensively used to illustrate complex
materialistic development in numerous zones of sciences, chiefly in fluid mechanics, chem-
ical diffusion dynamics, ion acoustics, atmospheric physics, solid-state mechanics, and
nonlinear vibrations [1–8].

Researchers put much effort into obtaining the exact systematic solutions to nonlinear
partial differential equations (NLPDEs). Efficient techniques for extracting exact solutions
to NLEEs have been reported by many researchers, such as the Jacobi elliptic function
expansion method [9–11], tanh method [12–14], exp-function method [15,16], F-expansion
methods [17–21], ansatz function method [22], auxiliary differential equation method [23,24],
homogeneous balance method [25,26], (G′/G)-expansion method [27,28], modified simple
equation method [29], trail function method [30,31], the variational method [32–34], sub-
ODE method [35], function transformation method [36–38], new EHFM [39–42], and
many more.

In this article, a modern technique, namely new EHFM [39–41], is utilized to retrieve
solutions to PBE and KdV-CDG equations arising in acoustic waves, long water waves,
quantum mechanics, plasma waves, and nonlinear optics. The main advantage of using
method EHFM is to construct the dark, bright, singular, and periodic soliton solutions.

2. The Extended Hyperbolic Function Method

Consider nonlinear PDEs as follows:

G(υ, υt, υx, υxt, υxx, . . . ) = 0, (1)
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where G is a nonlinear function. Let υ(x, t) = υ(θ), θ = kx + ηt which transforms (1) into
the following ODE:

H(υ, υ
′
, υ
′′
, . . . ) = 0. (2)

The steps of the EHFM [37–41] are presented by following two forms:
Form 1: Let the solution of (2) be given as

u(ξ) =
N

∑
i=0

aiTi(ξ), aN 6= 0, (3)

where ai(0 ≤ i ≤ N) are coefficients and T(ξ) satisfies the following ODE

T
′
(ξ) =

dT
dξ

= T
√

c + dT2, c, d ∈ R. (4)

N can be calculated by applying balancing principle on ODE. Using (2)–(4) and by taking
coefficients of powers of T equal to zero, a set of algebraic equations is obtained. After
solving obtained set of equations, one can derive all values of the involved coefficients.
The general solutions to ODE (4) have the following types
Set 1: When c > 0, d > 0,

T1(ξ) = −
√

c
d

csch
√

c(ξ + ξ0), (5)

Set 2: When c < 0, d > 0,

T2(ξ) =

√
−c
d

sec
√
−c(ξ + ξ0), (6)

Set 3: When c > 0, d < 0,

T3(ξ) =

√
c
−d

sech
√

c(ξ + ξ0), (7)

Set 4: When c < 0, d > 0,

T4(ξ) =

√
−c
d

csc
√
−c(ξ + ξ0), (8)

Set 5: When c > 0, d = 0,

T5(ξ) = exp[
√

c(ξ + ξ0)], (9)

Set 6: When c < 0, d = 0,

T6(ξ) = cos
√
−c(ξ + ξ0) + ιsin

√
−c(ξ + ξ0), (10)

Set 7: When c = 0, d > 0,

T7(ξ) = ±
1√

d(ξ + ξ0)
, (11)

Set 8: When c = 0, d < 0,

T8(ξ) = ±
ι√

−d(ξ + ξ0)
. (12)
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Form 2: Let the ODE in (2) have exact solution of the form (3) and let T(ξ) satisfy ODE

T
′
(ξ) =

dT
dξ

= c + dT2, c, d ∈ R, (13)

Substituting (3) into (2) and applying (14), we attain a set of algebraic equations. We get all
values of the involved constants by solving the obtained set of equations. The ODE (13)
has the following types of solutions
Set 1: When cd > 0,

T1(ξ) = sgn(c)
√

c
d

tan(
√

cd(ξ + ξ0)), (14)

Set 2: When cd > 0,

T2(ξ) = −sgn(c)
√

c
d

cot(
√

cd(ξ + ξ0)), (15)

Set 3: When cd < 0,

T3(ξ) = sgn(c)
√
− c

d
tanh(

√
−cd(ξ + ξ0)), (16)

Set 4: When cd < 0,

T4(ξ) = sgn(c)
√
− c

d
coth(

√
−cd(ξ + ξ0)), (17)

Set 5: When c = 0, d > 0,

T5(ξ) = −
1

d(ξ + ξ0)
, (18)

Set 6: When c < 0, d = 0,

T6(ξ) = c(ξ + ξ0). (19)

The multiple exact special solutions of nonlinear PDE (1) are acquired using (3) and
(14)–(19).
Notice that the sign is the familiar sign function.

Remarks: The constraints of Equations (5)–(12) and (14)–(19) are uniformly suitable.
From sets 1–4 of Equations (14)–(17), their conditions are influenced by the evidence that
(13) has the form of the following Riccati equation.

(i) dT
dξ = c(1− T2), which has solution of the form [42].

(ii) T(ξ) = c−dexp(−2cξ)
c+dexp(−2cξ)

, where c and d are arbitrary constants which satisfy c2 + d2 6= 0.
Depending on the results in [43], one can attain the miscellaneous forms of Equations (14)–
(17) and their conditions from the analysis of the inconsistent constants of (ii).

Step 4. After obtaining the value of N, we will compare coefficients of all the powers
of T(ξ) and obtain a system of algebraic equations from the resultant equations.

3. Solutions to the Perturbed Boussinesq Equation

Consider the following strongly PBE [44,45]

qtt − κ2qxx + p(q2n)xx + rqxxxx = ωqxx + ρqxxxx, (20)
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The PBE is one of the NLEEs that the efficient shallow water wave model assists in many fields
of engineering and science. To solve PBE by EHFM, we introduce following transformation

q(x, t) = u(ξ), ξ = x− νt, (21)

Taking n = 1 in (20) and using (21) converts PBE into the following ODE:

ν2u′′ − κ2u′′ + p(u2)′′ + ru′′′′ = ωu′′ + ρu′′′′. (22)

By two integrations of (22), (22) turns into

(ν2 − κ2 −ω)u + pu2 + (r− ρ)u′′ = 0. (23)

Using the balancing principle on (23) gives N = 2.
Form 1: Consider that the solution of (23) in terms of (3) satisfies (4). For N = 2, the
solution to (23) has the following form:

u(ξ) = a0 + a1T(ξ) + a2T2(ξ), (24)

where ai, i = 0, 1, 2 are constants. By inserting (24) into (23), a system of algebraic equations
is acquired. After solving obtained system of equations, we retrieve the following values
of constants

c =
ν2 − κ2 −ω

4(r− ρ)
, a0 =

−ν2 + κ2 + ω

p
, a2 =

−6d(r− ρ)

p
. (25)

By using Equations (24), (25) and (5)–(12), along with (21), we obtain the following new
soliton solution of PBE:
Case 1: When c > 0, d > 0,

q1(x, t) =
−(ν2 − κ2 −ω)

p
[1 +

3
2

csch2(

√
ν2 − κ2 −ω

4(r− ρ)
(ξ + ξ0))]. (26)

Case 2: When c < 0, d > 0,

q2(x, t) =
−(ν2 − κ2 −ω)

p
[1− 3

2
sec2(

√
−ν2 + κ2 + ω

4(r− ρ)
(ξ + ξ0))]. (27)

Case 3: When c > 0, d < 0,

q3(x, t) =
−(ν2 − κ2 −ω)

p
[1− 3

2
sech2(

√
ν2 − κ2 −ω

4(r− ρ)
(ξ + ξ0))]. (28)

Case 4: When c < 0, d > 0,

q4(x, t) =
−(ν2 − κ2 −ω)

p
[1− 3

2
csc2(

√
−ν2 + κ2 + ω

4(r− ρ)
(ξ + ξ0))]. (29)

Case 5: When c > 0, d = 0,

q5(x, t) =
−(ν2 − κ2 −ω)

p
. (30)

Case 6: When c < 0, d = 0,

q6(x, t) =
−(ν2 − κ2 −ω)

p
. (31)
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Case 7: When c = 0, d > 0,

q7(x, t) =
−(ν2 − κ2 −ω)

p
− 6(r− ρ)

p(ξ + ξ0)2 . (32)

Case 8: When c = 0, d < 0,

q8(x, t) =
−(ν2 − κ2 −ω)

p
− 6(r− ρ)

p(ξ + ξ0)2 . (33)

Form 2: Let solution of (22) in the form of (3) satisfy (13). For N = 2, the solution of (22)
has the form

u(ξ) = a0 + a1T(ξ) + a2T2(ξ), (34)

where ai, i = 0, 1, 2 are constants. By inserting (23) in (22), we get a system of algebraic
equations. After solving the obtained system of equations, following values of constants
are acquired

c =
−ν2 + κ2 + ω

4d(r− ρ)
,

a0 =
ν2 − κ2 −ω

2p
,

a2 =
−6d2(r− ρ)

p
. (35)

Using Equations (14)–(19), (34), and (35), along with (21), we get the following soliton
solution of PBE:
Case 1: When cd > 0,

q9(x, t) =
(ν2 − κ2 −ω)

2p
− 6d2(r− ρ)

p

× [sgn(
−ν2 + κ2 + ω

4d(r− ρ)
)

√
−ν2 + κ2 + ω

4d2(r− ρ)
tan(

√
−ν2 + κ2 + ω

4(r− ρ)
(ξ + ξ0))]

2. (36)

Case 2:When cd > 0,

q10(x, t) =
(ν2 − κ2 −ω)

2p
− 6d2(r− ρ)

p

× [−sgn(
−ν2 + κ2 + ω

4d(r− ρ)
)

√
−ν2 + κ2 + ω

4d2(r− ρ)
cot(

√
−ν2 + κ2 + ω

4(r− ρ)
(ξ + ξ0))]

2. (37)

Case 3: When cd < 0,

q11(x, t) =
(ν2 − κ2 −ω)

2p
− 6d2(r− ρ)

p

× [sgn(
−ν2 + κ2 + ω

4d(r− ρ)
)

√
ν2 − κ2 −ω

4d2(r− ρ)
tanh(

√
ν2 − κ2 −ω

4(r− ρ)
(ξ + ξ0))]

2. (38)

Case 4: When cd < 0,

q12(x, t) =
(ν2 − κ2 −ω)

2p
− 6d2(r− ρ)

p

× [sgn(
−ν2 + κ2 + ω

4d(r− ρ)
)

√
ν2 − κ2 −ω

4d2(r− ρ)
coth(

√
ν2 − κ2 −ω

4(r− ρ)
(ξ + ξ0))]

2. (39)
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Case 5: When c = 0, d > 0,

q13(x, t) =
(ν2 − κ2 −ω)

2p
− 6(r− ρ)

p(ξ + ξ0)2 . (40)

Case 6: When c < 0, d = 0,

q14(x, t) =
(ν2 − κ2 −ω)

2p
− 3(−ν2 + κ2 + ω)2

8p(r− ρ)
(ξ + ξ0)

2. (41)

4. Solutions to the KdV–CDG Equation

Consider the combined Kdv–CDG equation [45,46]

st + κ(sxx +
1
5

αs2)x + p(
1

15
αs3 + αssxx + sxxxx)x = 0. (42)

In order to solve combined KdV–CDG equation by EHFM, take

s(x, t) = u(ξ), ξ = x− µt. (43)

which modifies (43) into the following ODE:

−µu′ + κ(u′′ +
1
5

αu2)′ + p(
1

15
αu3 + αuu′′ + u′′′′)′ = 0 (44)

By integrating (44), we determine

−µu + κ(u′′ +
1
5

αu2) + p(
1

15
αu3 + αuu′′ + u′′′′) = 0 (45)

Use balancing principle on (45) yields N = 2.
Form 1: Consider that the solution of (45) has the form

u(ξ) = a0 + a1T(ξ) + a2T2(ξ), (46)

By inserting (46) into (45), an algebraic system of equations is obtained, from which
we acquire following values of constants:

a0 =
20µ

κ
,

c = − (15 +
√

15)µ
4(3 +

√
15)κ

,

d =
1

10
(−9 +

√
15)a2

48
. (47)

Using Equations (5)–(12), (46),(47), and (43), the following new soliton solutions of
combined KdV–CDG equation are derived:
Case 1: When c > 0, d > 0,

s1(x, t) =
20µ

κ

+ a2[−
√

−120(15 +
√

15)µ
(3 +

√
15)κ(−9 +

√
15)a2

csch(

√
− (15 +

√
15)µ

4(3 +
√

15)κ
(ξ + ξ0))]

2. (48)
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Case 2: When c < 0, d > 0,

s2(x, t) =
20µ

κ

+ a2[

√
120(15 +

√
15)µ

(3 +
√

15)κ(−9 +
√

15)a2
sec(

√
(15 +

√
15)µ

4(3 +
√

15)κ
(ξ + ξ0))]

2. (49)

Case 3: When c > 0, d < 0,

s3(x, t) =
20µ

κ

+ a2[

√
120(15 +

√
15)µ

(3 +
√

15)κ(−9 +
√

15)a2
sech(

√
− (15 +

√
15)µ

4(3 +
√

15)κ
(ξ + ξ0))]

2. (50)

Case 4: When c < 0, d > 0,

s4(x, t) =
20µ

κ

+ a2[

√
120(15 +

√
15)µ

(3 +
√

15)κ(−9 +
√

15)a2
csc(

√
(15 +

√
15)µ

4(3 +
√

15)κ
(ξ + ξ0))]

2. (51)

Case 5: When c > 0, d = 0,

s5(x, t) =
20µ

κ
+ a2[exp

√
− (15 +

√
15)µ

4(3 +
√

15)κ
(ξ + ξ0)]

2. (52)

Case 6: When c < 0, d = 0,

s6(x, t) =
20µ

κ
+ a2[cos

√
(15 +

√
15)µ

4(3 +
√

15)κ
(ξ + ξ0) + ιsin

√
(15 +

√
15)µ

4(3 +
√

15)κ
(ξ + ξ0)]

2. (53)

Case 7: When c = 0, d > 0,

s7(x, t) =
20µ

κ
+ a2[

480
(−9 +

√
15)a2(ξ + ξ0)2

]. (54)

Case 8: When c = 0, d < 0,

s8(x, t) =
20µ

κ
+ a2[

480
(−9 +

√
15)a2(ξ + ξ0)2

]. (55)

Form 2: Let (45) have the solution in terms of (3) satisfying (13). For N = 2, the solution of
(45) has the form

u(ξ) = a0 + a1T(ξ) + a2T2(ξ), (56)

Substituting (46) into (45) and setting the coefficients of T(ξ) to zero, a algebraic system
of equations is extracted. After solving the system, the following values of constants are
derived:

a0 =
−15
4p

(κ +
√

κ2 + 4pµ),

a2 =
−15
8pc2 [µ +

(κ +
√

κ2 + 4pµ)κ

2p
],

d =
(κ +

√
κ2 + 4pµ)

8pc
. (57)
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Using Equations (14)–(19), (56), (57), and (43), we attain following new soliton solution
of combined KdV-CDG equation:
Case 1: When cd > 0,

s9 =
−15
4p

(κ +
√

κ2 + 4pµ)− 15
8pc2 [µ +

(κ +
√

κ2 + 4pµ)κ

2p
]

× [sgn(c)

√
8pc2

κ +
√

κ2 + 4pµ
tan(

√
κ +

√
κ2 + 4pµ

8p
(ξ + ξ0))]

2. (58)

Case 2: When cd > 0,

s10 =
−15
4p

(κ +
√

κ2 + 4pµ)− 15
8pc2 [µ +

(κ +
√

κ2 + 4pµ)κ

2p
]

× [−sgn(c)

√
8pc2

κ +
√

κ2 + 4pµ
cot(

√
κ +

√
κ2 + 4pµ

8p
(ξ + ξ0))]

2. (59)

Case 3: When cd < 0,

s11 =
−15
4p

(κ +
√

κ2 + 4pµ)− 15
8pc2 [µ +

(κ +
√

κ2 + 4pµ)κ

2p
]

× [sgn(c)

√
−8pc2

κ +
√

κ2 + 4pµ
tanh(

√
κ +

√
κ2 + 4pµ

−8p
(ξ + ξ0))]

2. (60)

Case 4: When cd < 0,

s12 =
−15
4p

(κ +
√

κ2 + 4pµ)− 15
8pc2 [µ +

(κ +
√

κ2 + 4pµ)κ

2p
]

× [sgn(c)

√
−8pc2

κ +
√

κ2 + 4pµ
coth(

√
κ +

√
κ2 + 4pµ

−8p
(ξ + ξ0))]

2. (61)

Case 5: When c = 0, d > 0,

s13 =
−15
4p

(κ +
√

κ2 + 4pµ)− 15
8pc2 [µ +

(κ +
√

κ2 + 4pµ)κ

2p
]

× [
8pc

(κ +
√

κ2 + 4pµ)(ξ + ξ0)
]2. (62)

Case 6: When c < 0, d = 0,

s14 =
−15
4p

(κ +
√

κ2 + 4pµ)− 15
8pc2 [µ +

(κ +
√

κ2 + 4pµ)κ

2p
]

× [
κ +

√
κ2 + 4pµ

8pc
(ξ + ξ0)]

2. (63)

5. Conclusions

In this work, we presented EHFM to retrieve the multiple exact soliton solutions
of the PBE and KdV–CDG equations. From this integration scheme, bright, dark, singu-
lar, periodic singular, and bright-singular combo soliton solutions are retrieved. These
algorithms are concise, efficient and immensely useful in further analysis of nonlinear
problems. For physical understanding of the solutions, some 2D and 3D graphs of solu-
tions (26)–(28), (32), (36), (38), (41), (50), (51), (55), and (59)–(61) are plotted in Figures 1–13.
Figures 1, 4, 10 and 13 show 3D and 2D plots of singular soliton of solutions (26), (32), (55)
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and (61), respectively. Figures 2, 5, 9 and 11 represent 3D and 2D plots of periodic singular
soliton of solutions (27), (36), (51), and (59), respectively. Figures 3 and 8 represent 3D
and 2D plots of the bright soliton of solutions (28) and (50), respectively. Figures 6 and 12
demonstrate 3D and 2D plots of dark soliton of solution (38), respectively.

− 4− 4− 3− 3− 2− 2− 1− 1

− 4− 4 − 3− 3
xx00

− 4.× 1016− 4.× 1016

− 2− 2

− 3.× 1016− 3.× 1016

− 1− 1

11

− 2.× 1016− 2.× 1016

00
tt

22

11

− 1.× 1016− 1.× 1016

22

00

33

33 44
44

Figure 1. (left) 3D representation of solution (26) for ν = 1.5, κ = 1, ω = −0.5, ρ = 1.5, r = 1.7, p = 1, ξ = 2,
ξ0 = 0.5 and − 4 ≤ x, t ≤ 4. (right) 2D representation of solution (26) with t = 0 and − 4 ≤ x ≤ 4; this represents the
singular soliton.

− 3− 3

10001000

20002000

− 2− 2

30003000

40004000

− 1− 1

50005000

00 − 3− 3
tt

− 2− 211 − 1− 100
xx

22 112233

Figure 2. (left) 3D representation of solution (27) for ν = 1.5, κ = 1, ω = −0.5, ρ = −1.2, r = −1.7, p = 1, ξ = 0.5,
ξ0 = 0.5 and − 3 ≤ x, t ≤ 3. (right) 2D representation of solution (27) for t = 1 and − 3 ≤ x ≤ 3; this represents the
periodic singular soliton.



Coatings 2021, 11, 1429 10 of 17

− 4− 4− 2− 200
xx

− 1.5− 1.5

− 4− 4

− 1− 1

− 0.5− 0.5

00

22− 2− 2

0.50.5

00
tt

22 4444

Figure 3. (left) 3D representation of solution (28) for ν = 1.5, κ = 1, ω = −0.5, ρ = 1.2, r = 1.5, p = 1, ξ = −2.5,
ξ0 = 2 and − 5 ≤ x, t ≤ 5. (right) 2D representation of solution (28) for t = 1 and − 5 ≤ x ≤ 5; this represents the bright
soliton.

− 4− 4

− 1000− 1000

− 4− 4

− 800− 800

− 2− 2

− 600− 600

− 400− 400

− 2− 2

− 200− 200

00
xx

00

00
tt

2222
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Figure 4. (left) 3D representation of solution (32) for ν = 2, κ = 0.5, ω = 1, ρ = −0.5, r = −1, p = −1.5, d = 1, ξ = 2.5,
ξ0 = 1.5 and − 5 ≤ x, t ≤ 5. (right) 2D representation of solution (32) for t = 0 and − 5 ≤ x ≤ 5; this represents the
singular soliton.
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Figure 5. (left) 3D representation of solution (36) for ν = 1.5, κ = 0.5, ω = 1, ρ = 0, r = 1.2, p = 1, d = −1, ξ = 2,
ξ0 = 1.5 and − 4 ≤ x, t ≤ 4. (right) 2D representation of solution (36) for t = 2 and − 8 ≤ x ≤ 8; this represents the
periodic singular soliton.
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Figure 6. (left) 3D representation of solution (38) for ν = 1.5, κ = 0.5, ω = 0, ρ = 0, r = 1.2, p = 1, d = 1, ξ = 2,
ξ0 = 1.5 and − 6 ≤ x, t ≤ 6. (right) 2D representation of solution (38) for t = 1 and − 6 ≤ x ≤ 6; this represents the dark
soliton.
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Figure 7. (left) 3D representation of solution (41) for ν = 0.5, κ = 0, ω = 1, ρ = 0, r = 1.5, p = 1, ξ = 3.7, ξ0 = 2 and
−6 ≤ x, t ≤ 6. (right) 2D representation of solution (41) for t = 1 and − 6 ≤ x ≤ 6; this represents the kink soliton.
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Figure 8. (left) 3D representation of solution (50) for µ = 0.5, κ = −0.5, a2 = 1, ξ = 2, ξ0 = 0.5 and − 4 ≤ x, t ≤ 4. (right) 2D
representation of solution (50) for t = 1 and − 4 ≤ x ≤ 4; this represents the bright soliton.
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Figure 9. (left) 3D representation of solution (51) for µ = 1.5, κ = 1, a2 = −1, ξ = 2.5, ξ0 = 2 and − 3 ≤ x, t ≤ 3. (right) 2D
representation of solution (51) for t = 0 and − 6 ≤ x ≤ 6; this represents the periodic singular soliton.
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Figure 10. (left) 3D representation of solution (55) for µ = 0.5, κ = −1, a2 = 1.5, ξ = 2, ξ0 = 1.5 and − 3 ≤ x, t ≤ 3. (right)
2D representation of solution (55) for t = 1 and − 3 ≤ x ≤ 3; this represents the singular soliton.
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Figure 11. (left) 3D representation of solution (59) for µ = 0.5, κ = 0, c = −1, p = 1, ξ = 2, ξ0 = 1.5 and − 6 ≤ x, t ≤ 6.
(right) 2D representation of solution (59) for t = 0 and − 6 ≤ x ≤ 6; this represents the periodic singular soliton.
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Figure 12. (left) 3D representation of solution (60) for µ = −1, κ = 0, c = 1, p = −0.5, ξ = −1.5, ξ0 = 2 and − 4 ≤ x, t ≤ 4.
(right) 2D representation of solution (60) for t = 0 and − 4 ≤ x ≤ 4; this represents the dark soliton.
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Figure 13. (left) 3D representation of solution (61) for µ = −1, κ = 0, c = 1, p = −0.5, ξ = −2.5, ξ0 = 2.7 and − 4 ≤ x, t ≤ 4.
(right) 2D representation of solution (61) for t = 0 and − 4 ≤ x ≤ 4; this represents the singular soliton.
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