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Abstract: TiN thin films were obliquely bideposited with different subdeposit thicknesses. The
morphology of the bideposited film was varied from a nano-zigzag array to a vertically grown
columnar structure by reducing the subdeposit thickness. The principal index of refraction and
extinction coefficient were obtained to explain the measured reflectance and transmittance spectra.
The loss of the bideposited thin film decreased as the thickness of the subdeposit decreased. The
principal indices for normal incidence were near or under unity, indicating the low reflection by the
bideposited thin films. A TiN film with a subdeposit thickness of 3 nm demonstrated an average
index of refraction of 0.83 and extinction coefficient of below 0.2 for visible wavelengths. The retrieved
principal refractive indexes explained the anisotropic transmission and reflection. For most normal
incident cases, the analysis offers the tunable anisotropic property of a TiN nanostructured film for
multilayer design in the future.

Keywords: titanium nitride; glancing angle deposition; nanostructure; refractive index

1. Introduction

Transition metal nitrides (TMNs), such as titanium nitride (TiN) and zirconium nitride
(ZrN), are new plasmonic materials that are replacing noble metals in plasmonic applica-
tions [1–3]. As well as featuring carrier concentrations and mobilities as high as those of
noble metals [4], TMNs feature high melting points and chemical stabilities at temperatures
above 2000 ◦C [5,6]. Conventionally, TMNs with mechanical refraction have been used
in hard coatings [7]. Recent works focused on the tunable optical properties of TMN
films [8,9]. For example, the permittivity of a TiN film that is deposited in a sputtering sys-
tem can be tuned to be metal-like or dielectric-like by controlling the deposition parameters,
including the substrate bias voltage and the nitrogen and argon flow rates [10]. Usually,
TiN film displays lossy dielectric properties in visible wavelength ranges and metal-like
properties at infrared wavelength ranges. The wavelength-dependent optical property
enables TiN to be applied in intermediate components that absorb solar irradiation [11].
Notably, nanostructured TiN films have favorable admittance matching properties. Due to
plasmonic effects, TiN nano-square rings [12] are regularly distributed on SiO2 films that
are coated on silicon to provide high absorptance for visible wavelengths. Like TiN nano-
square ring arrays, glancing-angle deposited TiN nanorod arrays also exhibit broadband
and wide-angle admittance matching [13].

Glancing-angle deposition (GLAD) is a unique form of physical vapor deposition that
involves tilting the substrate so that its surface normal makes an angle α with respect to
the incident vapors. The initial nucleation of condensed adatoms on a substrate induces
self-shadowing, preventing the arrival of the vapor flux at the shadowed area. GLAD is a
method for easily fabricating tilted nanorod arrays over large areas. A tilted nanorod array
exhibits polarization-dependent reflection and transmission, which limit its range of uses
at normal incidence. With one of its three principal axes parallel to nanorod growth [14–16],
a tilted nanorod array exhibits complex optical properties at normal incidence, especially
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when its principal refractive indices are complex. Besides tilted nanorod arrays, various
dielectric nanostructures can be mass-produced by manipulating the substrate during
deposition [14,17]. Serial bideposition involves rotating the substrate stepwise by half a
turn about its normal during GLAD to grow zigzag nanostructured arrays [18,19]. The half-
pitch of a zigzag is the thickness of subdeposit, dsub. When the thickness of subdeposit is
close to or less than the rod width, the individual zigzag structure shrinks to a column that
is perpendicular to the substrate. The pitch-dependent birefringence of a bideposited TiO2
film [19] was investigated to show that the pitch length was inversely proportional to the
birefringence. Figure 1 schematically depicts a nano-zigzag array and system coordinates
whose z axis is normal to the surface and whose y-z plane is coincident with the deposition
plane that contains the surface normal and the direction of initial deposition flux. When
the dsub is near to or less than the rod width, the equivalent principal axes are coincident
with the system coordinates. The principal z axis is normal to the surface; and the principal
x axis is on the deposition plane that contains the z and x axes. For normal incidence, the
birefringence nx–ny (the difference between principal indexes nx and ny) of a bideposited
TiO2 film increases as the subdeposit thickness is reduced. The maximum birefringence
of a bideposited TiO2 thin film with a pitch length of less than 5 nm was 0.15. In another
work, a bideposited Ag film exhibited a negative real index of refraction nx and a positive
real index of refraction ny, causing extremely large phase retardation with only a small
thickness [20]. Since TiN exhibits dielectric optical properties at visible wavelengths less
than the cross-zero wavelength (the wavelength at which the real part of permittivitty is
zero) and metal optical property at wavelengths larger than the cross-zero wavelength, it is
interesting to study the anisotropic optical property from a bideposited TiN film. On the
other hand, a TiN nanorod array can be derived by nitrogenizing a GLAD TiO2 nanorod
array [21], which inspired us to observe the anisotropic property of a bideposited TiN film
and investigate the influence of deposition parameter on the anisotropy. Furthermore, a
bideposited thin film presents two orthogonal principal indexes for normal incident waves,
which could benefit multilayer design in the future.
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2. Fabrication

In this study, GLAD was used to bideposit serially TiN nanozigzag arrays with
different dsub. The birefringence and two principal indices corresponding to the normal
incident wave that varied with subdeposit thickness were investigated. In the fabrication,
TiN nanostructured films were deposited on glass substrates in a DC magnetron sputtering
system in a prior background vacuum of 4× 10−6 torr at room temperature. The deposition
was conducted at a pressure of 4 × 10−3 torr with a varying flow rate of nitrogen. A Ti
target with a diameter of 3 inches, a thickness of 4 mm, and a purity of 99.99% was attached
to a Cu plate for sputtering. The deposition rate was controlled using a quartz crystal
microbalance and maintained at 0.07 nm per second; the deposition angle θv = 86◦ was
the angle between the vertical line and the substrate normal. Sputtered atoms were aligned
and the flux was controlled by setting a plate parallel to the substrate [22]. All the films
were deposited with a substrate bias of 100 V and the flow rates of Ar and N2 were fixed at
15 and 3.5 sccm, respectively. The deposition parameters were demonstrated to result in the
growth of a metal-like TiN thin film [23]. To determine the actual growth deposition rate of
bideposition, a slanted TiN nanorod array (NRA) with a thickness of 90.4 nm was fabricated
by GLAD before bideposition. The thickness growth rate per minute was 0.25 nm/min
which was obtained from the cross-sectional SEM image for the TiN NRA, as shown in
Figure 2a. The thickness of the bideposited film was controlled accordingly. The optical
property of a TiN NRA was reported in our previous paper [23]. The TiN NRA in this
work was used to discover the growth rate of GLAD. Four TiN bideposited thin films with
designed dsub of 50, 25, 12.5, 6 and 3 nm were fabricated on BK7 glass substrates (I-MEI
MATERIALS, Taipei, Taiwan) [24], and denoted as TiN3

50, TiN4
25, TiN8

12.5, TiN16
6 , and TiN32

3 ,
respectively. The superscript in the notation specifies the number of bideposits in the
fabrication. BK7 glass is an extremely common crown glass with an index of refraction of
1.52 and a wavelength of 550 nm [24]. All of the samples except for TiN3

50 featured similar
thicknesses, around 90.8 nm. Figure 2 presents top-view and cross-sectional SEM images of
all the samples. The sample TiN3

50 retains the clear zigzag morphology. The mean tilt angle
of the rods, measured between the rod and normal to the surface is 24.7◦, and the mean
rod width is 27 nm. These values are close to those for a slanted TiN nanorod array. For
TiN4

25, the zigzag morphology is vague and the average width of an individual saw-like
column is 56 nm. As the subdeposit thickness was reduced to less than 12.5 nm, the zigzag
structure became columnar. The insets displayed in Figure 2 were observed using Image
J [25] to determine the width of the column. The porosity was inversely proportional
to the dsub because the nanorods in the obvious zigzag structures overlapped with each
other, as shown in Figure 2. As the dsub reduced, the overlap phenomenon disappeared
to leave more space for air. The width of the column decreased from 56 to 47 nm as dsub
decreased from 25 to 3 nm. Table 1 shows the width of the nanozigzag, thicknesses, and
the deposition time for each sample.

Table 1. The morphology parameters of TiN nano-zigzag deposited at different subdeposit thicknesses.

Samples Average Width of
Nanozigzag (nm) Thicknesses (nm) Deposition Time

(min)

TiN NRA 60 90.4 396
TiN3

50 66 132.52 608
TiN4

25 56 91.09 408
TiN8

12.5 53 91.45 408
TiN16

6 49 91.35 408
TiN32

3 47 89.67 408
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Figure 2. Cross-section and top-view scanning electron microscopic (SEM) images of TiN NRA and bideposited thin films:
(a) TiN NRA; (b) TiN3

50; (c) TiN4
25; (d) TiN8

12.5; (e) TiN16
6 ; (f) TiN32

3 .

3. Measurement and Discussion

The phase retardation between the x-polarized and y-polarized waves that were
transmitted through the film was measured using an ellipsometer (J. A. Woollam Co.,
M2000, Lincoln, NE, USA). The spectra of phase retardation (PR) of all the samples decayed
from a wavelength of 380 to 1680 nm, and were smooth and varied only slightly in the
infrared regime, as shown in Figure 3a. Phase retardation can be achieved using a lossless
anisotropic thin film with equivalent birefringence ∆n, ∆n = λ × PR/(2πd); λ is the
wavelength in free space, and d is the film thickness. At the shortest wavelength, the
bideposited TiN films demonstrated larger equivalent birefringence values than TiN NRA,
but its dsub exhibited no evident trend. However, the birefringence at infrared wavelengths
was larger than in the visible regime and inversely proportional to dsub. Figure 3b plots the
equivalent birefringence as a function of wavelength. At dsub < 12.5 nm, ∆n was close to
2.17 at λ = 1680 nm.

The reflectance (R) and transmittance (T) spectra of bideposited thin films were
measured using a spectrometer (UH4150, Hitachi, Tokyo, Japan), as shown in Figure 4. The
extinctance (E) was calculated using the relation E = 1 − R − T. In the measurement, the
incident plane was coincident with the deposition plane (x-z plane). All the films exhibited
similar trends of transmittance and reflectance. The p-polarized transmittance exceeded
the s-polarized transmittance and the p-polarized reflectance was less than the s-polarized
reflectance. The bideposited TiN thin films exhibited a larger polarization-dependent
transmittance (reflectance) than did the TiN NRA. The difference between the p-polarized
and s-polarized transmittances of the bideposited thin film varied within the range of 10%
to 15% and that between the p-polarized and s-polarized reflectances varied by less than
5% over the whole wavelength range. The transmittance increased and the reflectance
decreased as dsub decreased. Because the average width of the nanozigzags was reduced
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by decreasing the dsub, the thinner nanozigzag led to better admittance matching and
lower reflectance. The extinction was also improved because the porosity was higher for a
sample with lower dsub. The fitting index of refraction and extinction coefficient spectra
demonstrated the reasons that caused the trends in Figure 4. The average p-polarized
reflectance of sample TiN32

3 was below 12.1% and the average s-polarized reflectance was
16.4% over the whole wavelength range. Since the low reflection was associated with
effective admittance matching, the equivalent principal refractive indexes Nx = nx − ikx
and Ny = ny − iky were retrieved by fitting both the reflectance and the transmittance
spectra. Figure 5 presents the equivalent refractive index spectra of each bideposited
sample for both polarizations.
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The principal index of refraction nx was larger than ny and the extinction coefficient
kx was less than ky for all the samples. In the sample TiN3

50, the index of refraction ny
decreased from 1.23 at 400 nm to 0.717 at 2000 nm and the index of refraction nx decreased
from 1.326 at 400 nm to 0.733 at 2000 nm. Both indices nx and ny decreased as dsub

decreased. Therefore, the index of refraction ny of TiN32
3 decreased from 0.807 at 500 nm

to 0.568 at 1850 nm and the index of refraction nx decreased from 0.905 at 500 nm to
0.768 at 1850 nm. The extinction coefficient dipped at λ = 500 nm and increased from its
minimum with λ up to 1700 nm. For the samples with dsub = 25, 12.5, 6 and 3 nm, the
extinction coefficients increased smoothly over the infrared wavelengths. Both indices
kx and ky also decreased as dsub decreased. The difference between kx and ky increased
with the wavelength in Figure 5, which was in agreement with the fact that the difference
between the s-polarized extinctance and p-polarized extinctance remained similar over the
wavelength range in Figure 4. A typical deposited TiN film exhibited metal properties at
infrared wavelengths and the magnitude of its negative real permittivity increased with
wavelength [23]. Therefore the anisotropic structure caused anisotropic extinction, which
increased with the wavelength. For the sample TiN32

3 , the extinction coefficient ky increased
from 0.191 at 500 nm to 0.717 at 1700 nm, and the extinction coefficient kx increased from
0.099 at 500 nm to 0.228 at 850 nm, remaining between 0.22 and 0.26 from 850 to 2000 nm.
The extinction coefficients kx and ky decreased as dsub decreased.
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Figures 6–8 plot the measured s-polarized and p-polarized transmittance, reflectance
and extinctance spectra versus the angle of incidence from 0◦ to 70◦, respectively. The
results for TiN NRA are similar to those in our previous work. The p-polarized extinctance
that corresponded to longitudinal plasmonic resonance reached its maximum at the angle of
incidence at which the electric field oscillated along the rods. The p-polarized transmittance
was clearly asymmetrical to surface normal for TiN NRA and TiN32

3 . As dsub decreased,
the transmittance became symmetrical to surface normal due to the vertical growing
columns. The p-polarized reflectance and the s-polarized reflectance were low over all
the wavelengths and angles of incidence between θ = 50◦ and θ = −50◦, which clearly
shows admittance matching over wide range of incident angle. For TiN3

50, the p-polarized
transmittance demonstrated two peaks at θ = −60◦ and θ = 70◦ at wavelengths over
1600 nm. As dsub decreased, the area of high transmittance in Figure 6 extended over
wide ranges of incident angles and wavelengths. For TiN32

3 , the p-polarized transmittance
exceeded 62.3% over wavelengths from 400 to 2000 nm and incident angles from −50◦ to
50◦. The bideposited columnar TiN samples TiN8

12.5, TiN16
6 , and TiN32

3 demonstrated their
maximum p-polarized extinctance at the largest angles of θ = 70◦ and θ =−70◦ because
the electric field with the largest component oscillated along the columns at the largest
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angles of measurement. This also indicated that the principal refractive index Nz featured
the largest imaginary part kz among the three principal refractive indices. The fact that
maximum extinctance decays as dsub decreases indicated that the imaginary part of the
principal refractive index kz also reduced as dsub decreased.
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4. Conclusions

In summary, bideposited TiN films with different subdeposit thicknesses were fabri-
cated to exhibit different optical properties. As well as the deposition parameters, such as
reactive gas flow rate, substrate temperature, and deposition rate, the equivalent refractive
index could be tuned by varying subdeposit thickness of a bideposited TiN film. The phase
retardation values of all the bideposited films varied only slightly with wavelengths over
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1000 nm, favoring achromatic application in polarization modulation. The bideposited
films exhibited low reflection over a broad range of wavelengths and wide range of angles
of incidence, indicating that they had favorable admittance matching to air. Most energy of
incident light can be coupled into such bideposited thin films efficiently. The bideposited
TiN film with a subdeposit thickness of around or less than 12.5 nm demonstrated a re-
fractive index of approximate unity and a low but unavoidable extinction coefficient in
the visible range. A multilayer can be designed and fabricated by alternating bideposited
and high-index films to form an edge filter as a thermovoltaic device that performs high
absorption in visible wavelength ranges and high reflection in infrared ranges.
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