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Abstract: The drag reduction design of underwater vehicles is of great significance to saving energy
and enhancing speed. In this paper, the drag reduction characteristics of Paramisgurnus dabryanus
loach was explored using 3D ultra-depth field microscopy to observe the arrangement of the scales.
Then, a geometric model was established and parameterized. A simulated sample was processed
by computer numerical control (CNC) machining and tested through using a flow channel bench.
The pressure drop data were collected by sensors, and the drag reduction rate was consequently
calculated. The test results showed that the drag reduction rate of a single sample could reach 23% at
a speed of 1.683 m/s. Finally, the experimental results were verified by numerical simulation and
the drag reduction mechanism was explored. The boundary layer theory and RNG k-ε turbulence
model were adopted to analyze the velocity contour, pressure contour and shear force contour
diagrams. The numerical simulation results showed that a drag reduction effect could be achieved by
simulating the microstructure of scales of the Paramisgurnus dabryanus loach, showing that the results
are consistent with the flow channel experiment and can reveal the drag reduction mechanism. The
bionic surface can increase the thickness of boundary layer, reduce the Reynolds number and wall
resistance. The scales disposition of Paramisgurnus dabryanus loach can effectively reduce the surface
friction, providing a reference for future research on drag reduction of underwater vehicles such as
ships and submarines.

Keywords: Paramisgurnus dabryanus loach; scales; microscopic morphology; drag reduction
characteristics; bionic design

1. Introduction

For underwater vehicles, the frictional resistance from water accounts for about 80%
of the total resistance [1]. In order to improve the power efficiency, it is necessary to
reduce the surface friction of underwater vehicles. The theory of bionic tribology has
become popular in the field of drag reduction in recent decades. There are two main factors
affecting the tribological characteristics of a surface: the composition of the material itself
and the surface structure [2–5]. Hossein [6] used two different SiO2 nanoparticle surfaces,
modified with polydimethylsiloxane (PDMS) and beeswax. The drag reduction of the
surfaces could reach up to 24%. Ganesh [7] fabricated rice-shaped TiO2 nanostructures
by an electro-spinning technique to create a solid superamphiphobic coating on glass
substrates. Changing the material properties or adding smooth coatings may change the
original material’s performance and require high costs [8]. Therefore, the research on
microstructure drag reduction has become increasingly popular, and it has been applied in
the fields of natural gas pipelines, airplanes, navigation, swimming suits, etc. [9–11].

Through billions of years of selection, organisms in Nature have evolved almost perfect
functions and structures. They compete with each other and consequently form the most
reasonable, economical and effective drag reduction function which provides researchers
with natural samples and principles to invent novel drag reduction techniques [12].
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The microstructure plays an important role in the drag reduction effect. Scholars have
explored various preparation methods for different structures, such as direct biological
replication and micro-imprint technology, photolithography, laser engraving and polish-
ing, CNC machining, 3D printing technology, electrospinning technology, etc. [13–15].
Lang [16] printed small transverse grooves of both rectangular and sinusoidal shapes by
3D technology and found that the sinusoidal grooves which most resembled dolphin skin
were proved the most effective in drag reduction. Luo [17] used silicone rubber and resin
polymer to vacuum-cast shark skin and obtained a flexible biomimetic shark skin through
repeated demolding, and the peak of drag reduction rate could reach 14%. Kim [18] created
overhanging arrays of micro-disks through a simple lithographic technique to form a
cylindrical channel, which is promising for biofouling-free tubing for blood circulation.
Li [19] manufactured five types of bionic flexible coatings that mimic the skin of dolphins,
and the drag reduction rate was 21.6% when the rotation speed of the rotating aluminum
disc was at 50 r/min. By a 3D printing method, Graeber [20] prepared-combined arrays of
alternating surface protrusions and indentations. Lloyd [21] printed two arrays of denticles
on a flat plate and obtained a drag reduction of 2%. The bionic studies on massive aquatic
creatures include those on rectangular, V-shaped, U-shaped and L-shaped biomimetic
shark scales [22,23]. There are also some studies on waveform non-smooth surfaces [24–27].
For smaller or slower fishes, there are few studies on the distribution of surface scales and
the characteristics of surface flow field.

Numerical simulation of flow fields has enjoyed more and more application in drag
reduction analysis of bionic surfaces. Chen [28] established a bionic dual surface model
imitating tuna skin, and found that at a speed of 6.94 m/s, the maximum drag reduction
rate was 25.7%. Liu [29] obtained a maximum drag reduction rate of 9.85% for the bionic
blade of L-shaped slot under braking conditions. Zhou [30] used the Fourier function to fit
the non-smooth structure of the pufferfish surface and found that when the flow velocity
was 5 m/s, the reduction rate of viscous resistance was 23.2%, and the total drag reduction
rate was 12.94%. Mohammadi [31] proved that the triangular, trapezoidal, rectangular
and circular grooves could reduce the shear resistance in a laminar flow channel driven
by gradient pressure. Rong [32] designed a periodic array micro-nanostructure of bionic
fish scales. The surface of fish scales is impregnated with lubricant oil and the ambient
flow medium is water. At a flow velocity of 2 m/s, the drag reduction rate along and in the
reverse direction of the fish scales were 33.86% and 28.95%, respectively.

Loaches can usually swim at speeds of up to 3.0 m/s and even faster when they are
being hunted [33]. In this study, fan-shaped units were proposed based on the scale shape
of loaches. The microstructure of loach skin was taken as the size parameter. Bionic units
were processed on the aluminum substrate by CNC machining. Resistance tests were
carried out on a flow channel test bench. Finally, the experimental results were verified by
numerical simulation and the drag reduction mechanism was analyzed. This research can
provide a reference for drag reduction of underwater vehicles.

2. Materials and Methods
2.1. Analysis of the Scale Structure of the Loach

First, the loach was anesthetized with diethyl ether (Fuyu Chemical Company Lim-
ited, Tianjin, China). A piece of skin was removed from the abdomen and immersed in
5% sodium hydroxide (Rui Jinte Chemicals Company Limited, Tianjin, China) solution
for 2 min to remove the mucus. The treated loach skin was washed in a Petri dish with
deionized water. Most of the liquid was absorbed with absorbent paper and the sam-
ple immediately observed with a VHX-5000 3D ultra-depth field microscope (KEYENCE,
Osaka, Japan). The whole process involved no animal abuse or blood loss and complied
with the Chinese law on the Protection of Animals. Ethical approval was given by the
Animal Experimental Ethical Inspection, Shenyang Agricultural University.
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2.2. Preparation of Samples

By using a CNC machining system, an aluminum substrate was carved into a sample
with scale-like morphology and a size of 70 × 64 × 5 mm3. The preparation process is
shown in Figure 1.
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Figure 1. The preparation process.

Real loach scales are irregularly round, so they were simplified to a regular circle. The
shape of a single loach scale exposed outside was obtained by drawing an auxiliary circle.
The shape parameter (a) was defined as the center distance between the original circle and
the auxiliary circle. Figure 2b,c show more structural details of the artificial sample under
200× magnification. The height of the outer edge of each unit (h) is 20 µm, the diameter
(d) is 0.60 mm, the shape parameter (a) is 0.36 mm, and the array distribution distance
(b) is 0.43 mm.
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Figure 2. The aluminum artificial sample. (a) A sample with scale-like morphology; (b) The height
“h” of the artificial sample under 200 times magnification; (c) The structural details of “a”, ”b” and “d”.

2.3. Flow Channel Experiments
2.3.1. Design of Test Device

In a channel, fluid resistance is expressed by the pressure drop between two points.
The resistance can be measured by collecting the pressure values between two points [34].
In this study, a flow channel was built to test the resistance. The test equipment comprises
a power device (40TBFS15-10-1.5 pump, Xiepan Pump Industry, Shanghai, China), a
flow regulating device (T40H-16P valve, Huizheng Automatic valve Group Company
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Limited, Wenzhou, China), a flow velocity detecting device (Tianxing Shengshi Technology
Company Limited, Beijing, China), a pressure detecting device (TXY815 pressure sensor,
Tianxing Shengshi Technology Company Limited, Beijing, China), a data processing device
(NI9203 Data Acquisition Card (DAQ card), National Instruments, Austin, TX, USA), a
circulating pipeline and a tank (Figure 3). By adjusting the valve, the resistance on the
surface of the samples under different flow velocity was tested.
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Details of the facilities are listed in Table 1.

Table 1. Type, accuracy and range of experimental equipment.

Equipment Type Accuracy Range

Pressure sensor TXY815 0.5% 0–0.6 MPa
Flow meter TXY920 Level 0.5 0–18 m3/h

DAQ card NI9203 16-bit resolution
200 k/s sample frequency -

The external dimensions of the copper base of the pressure detecting device are
580 mm length and 150 mm width, the inner area of the flow passage is 500 mm length,
70 mm width and 8 mm depth, as shown in Figure 4a. In this experiment, a H-shaped frame
with 5 cm thick with grooves was placed in the copper base, as shown in the Figure 4b.
The samples were fixed in the corresponding grooves. A bulge of 10 mm width and 3 mm
height is designed on both sides of the acrylic cover plate to compress the H frame, as
shown in Figure 4c. Consequently the size of the cross-sectional area of the flow test section
was 50 mm width and 3 mm height, as shown in Figure 4c.
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The data acquisition process is shown in Figure 5. The pressure values at both ends of
the two samples were collected by three sensors, and the current signal was transmitted to
the computer terminal through the DAQ card. After being processed by LabVIEW software
(National Instruments, Austin, TX, USA), the pressure values at both ends of the samples
can read directly on the operation panel, then the pressure drop and drag reduction rate
were calculated.
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Figure 5. Schematic diagram of the pressure data acquisition.

In order to check the reliability of the setup, the pressure sensors and electromagnetic
flow meter were calibrated. The calibrated current equation of three sensors are shown in
Equations (1)–(3), respectively:

Y0 = 26.637x0 + 3.9377 (1)

Y1 = 26.902x1 + 3.9649 (2)

Y2 = 26.637x2 + 3.9377 (3)

The calibration equation of the electromagnetic flow meter is Equation (4):

Y3 =
1

0.424926
x3 + 3.9612 (4)

We input the slope and intercept of the four fitting curves into the settings of each path
of LabVIEW panel to improve the accuracy. Slope and intercept represent the sensitivity
and offset, respectively.

2.3.2. Experiment Plan

The samples of 70 × 64 × 5 mm3 size were placed in the channel. The flow velocity
was adjusted, after the flow velocity stabilized, 5 s data were collected each time, then we
take an average of the readings from each sensor. The pressure drop at both ends of the
sample can be obtained from the difference in readings between adjacent pressure sensors.
Pressure drop (PD) and drag reduction rate (k) were calculated by Equations (5) and (6),
respectively:

PD = Pbefore − Pafter (5)

k =
PDsmooth − PDbionic

PDsmooth
× 100% (6)

where PD is the pressure drop, Pbefore is the pressure value before the sample, Pafter is the
pressure value after the sample, PDsmooth is the pressure drop between two ends of the
smooth sample, and PDbionic is the pressure drop between two ends of the bionic sample.

3. Results and Analysis
3.1. Structure of the Loach Scales

Figure 6 shows an image of Paramisgurnus dabryanus loach and its scales. There is
some mucus on Figure 6a, and after removing the mucus (Figure 6b), the arrangement of
scales can be clearly observed. The diameter of a single scale is 0.60 mm, the scales are in
diamond arrangement with an array distance of 0.43 mm.
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3.2. Results of the Channel Test

The drag reduction rate can be obtained by comparing the pressure drop between
two ends of the smooth and bionic samples under a certain flow velocity. The results are
shown in Table 2. The number of the pressure sensor fluctuates in the test process, so
the average value of three flow channel tests is taken to get more scientific test results.
Although the electromagnetic flow meter and pressure sensor have been strictly calibrated
before use, there are still errors in the self-built flow channel to a certain extent. Moreover,
the flow state during the test is turbulent, so there are some differences in the values of
each test. However, it can be seen from the results that the overall trend presents a drag
reduction effect, and the relative standard deviation (RSD) is within 5%, so the test results
are credible.

Table 2. Channel test results.

Volume Flow Rate
(m3/h)

PD Smooth (Pa)

SD RSDSmooth
Test 1

Smooth
Test 2

Smooth
Test 3

Average
Value

0.204 672.5468 683.2486 711.3469 689.0474 16.3622 2.37%
0.303 665.9226 669.5486 703.6699 679.7137 17.0042 2.50%
0.398 680.7184 650.3495 625.5408 652.2029 22.5643 3.46%
0.507 646.1646 625.1648 629.6532 633.6608 9.0293 1.42%
0.611 659.2171 665.3649 721.5431 682.0417 28.0442 4.11%
0.715 639.2333 645.3654 702.5038 662.3675 28.4909 4.30%
0.792 642.6022 659.2654 643.2336 648.3671 7.7106 1.19%
0.900 636.4690 642.5895 687.5243 655.5276 22.7626 3.47%
1.06 691.1193 746.3654 757.8527 731.7791 29.1308 3.98%

Volume Flow Rate
(m3/h)

PD Bionic (Pa)

SD RSDBionic
Test 1

Bionic
Test 2

Bionic
Test 3

Average
Value

0.204 628.4862 642.4862 664.9267 645.2997 15.0092 2.33%
0.303 647.1653 689.5464 641.1235 659.2784 21.5444 3.27%
0.398 608.2772 598.4687 560.1497 588.9652 20.7654 3.53%
0.507 527.4023 547.6554 553.1338 542.7305 11.0670 2.04%
0.611 560.2364 543.6548 520.4762 541.4558 16.3063 3.01%
0.715 499.4779 489.3478 538.4779 509.1012 21.1801 4.16%
0.792 643.6147 638.4715 707.0017 663.0293 31.1640 4.70%
0.900 650.4684 615.2646 621.0669 628.9333 15.4108 2.45%
1.06 710.8683 642.5698 678.2129 677.2170 27.8916 4.12%
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The drag reduction rate can be obtained through PD calculation. The results are shown
in Table 3 below. It can be seen that when the flow velocity is 1.683 m/s, the drag reduction
rate reaches the maximum 23%.

Table 3. Drag reduction rate at different flow velocities.

Flow Velocity
(m/s) 0.48 0.713 0.937 1.193 1.438 1.683 1.864 2.118 2.498

k (%) 6% 3% 10% 14% 21% 23% −2% 4% 7%

3.3. Numerical Simulation
3.3.1. Establishment of the Model

Using the loach scales as bionic prototype, a model with scales as units was established.
The geometric parameters are the same as the artificial sample, namely, h is 20 µm, d is
0.60 mm, a is 0.36 mm, and b is 0.43 mm (Figure 7).
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0.611 560.2364 543.6548 520.4762 541.4558 16.3063 3.01% 

0.715 499.4779 489.3478 538.4779 509.1012 21.1801 4.16% 

0.792 643.6147 638.4715 707.0017 663.0293 31.1640 4.70% 

0.900 650.4684 615.2646 621.0669 628.9333 15.4108 2.45% 

1.06 710.8683 642.5698 678.2129 677.2170 27.8916 4.12% 

The drag reduction rate can be obtained through PD calculation. The results are 

shown in Table 3 below. It can be seen that when the flow velocity is 1.683 m/s, the drag 

reduction rate reaches the maximum 23%. 

Table 3. Drag reduction rate at different flow velocities. 

Flow Velocity 

(m/s) 
0.48 0.713 0.937 1.193 1.438 1.683 1.864 2.118 2.498 

k (%) 6% 3% 10% 14% 21% 23% −2% 4% 7% 

3.3. Numerical Simulation 

3.3.1. Establishment of the Model 

Using the loach scales as bionic prototype, a model with scales as units was estab-

lished. The geometric parameters are the same as the artificial sample, namely, h is 20 μm, 

d is 0.60 mm, a is 0.36 mm, and b is 0.43 mm (Figure 7). 

 

Figure 7. Structure unit parameters. Figure 7. Structure unit parameters.

3.3.2. Setting of Initial Conditions

The sample in this test is aluminum with a rigid surface and no obvious deformation
under the fluid. In order to calculate efficiently and quickly, fluid-structure interaction
is not considered and computational fluid dynamics (CFD) simulation calculations are
selected. A cuboid calculation domain was built with a size of 30 × 8 × 6 mm3 (Figure 8),
with the inlet on the left and the outlet on the right. We chose the method “Magnitude,
normal to Boudary” to define the inlet velocity and it is a uniform flow profile. The bottom
surface containing the bionic structure is called the B-wall, the smooth surface on the top is
the S-wall. The test zone in red color in Figure 8 is 6 × 8 mm2 and the size parameters of
the scale element are exactly the same as those of the experiment sample. The other walls
are all named Wall, which are set as no sliding wall surfaces.
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Figure 8. Computational domain.

The density of aluminum is 2719 kg/m3. The flow field medium was water, whose
density was 998.2 kg/m3. The dynamic viscosity coefficient was 0.001003 Pa·s and the
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time was set to transient. The calculation time step size was 0.001 s, the number of time
steps was 1000, and the number of iterations was set to 10. The hydraulic diameter and
turbulence intensity were used to make a preliminary definition of the flow field and
calculated by Equations (7) and (8):

Rh =
2zy

z + y
(7)

I =
0.16

Re
1
8

(8)

where Rh is the hydraulic diameter, which is the equivalent diameter corresponding to the
circular pipe. y and z are the length and width of the inlet of the flow field area, respectively.
I is the intensity of turbulence and Re is the Reynolds number. In this paper, the Re under
flow conditions are all greater than those under transition conditions, so the RNG k-ε
turbulence model was selected for calculation.

3.3.3. Mesh Generation

The mesh module of ANSYS workbench was selected to generate the mesh. Consider-
ing the existence of sharp angles on the bionic surface, the hexahedral structured mesh and
tetrahedral unstructured mesh were used to generate the mesh. After repeated attempts,
the mesh size was finally set to be 0.25 mm in the middle part of the fluid region and
0.1 mm in the boundary layer region. Due to the small size of fish scale unit, the finest
meshes meshes were generated on the bionic surface with a size of 0.025 mm. Figure 9
shows the mesh image of the whole computational region and local bionic surface.
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Figure 9. Mesh image of the whole computational region and local bionic surface.

3.3.4. Simulation Scheme

In the simulation, both the smooth and bionic surface were analyzed under exactly
the same calculated area and flow velocity range of 0.8–13 m/s. Compared with the
smooth surface, the drag reduction rate (η) of the bionic surface can be obtained through
Equation (9):

η =
Fsmooth − Fbionic

Fsmooth
× 100% (9)

where, Fsmooth is the total resistance on the smooth surface, Fbionic is the total resistance on
the bionic surface, and η is the drag reduction rate. When an object is in contact with a fluid
and in relative motion, the total resistance is formed by differential pressure resistance and
viscous resistance (Equation (10)):

F = Fdp + Fv (10)

where, F is the total resistance, Fdp is the differential pressure resistance and Fv is the
viscous resistance. The main influencing factors on differential pressure resistance include
cross-sectional area, the shape of the object and posture in the flow field. The viscous
resistance is related to the roughness, the relative speed, and the friction coefficient [10].
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3.3.5. Results of Numerical Simulation

Table 4 shows the resistance value of both surfaces under conditions of low, medium
and high speed, as well as the drag reduction rate of viscous resistance and the
total resistance.

Table 4. Drag reduction rate under different flow velocities.

Flow
Velocity

(m/s)
Re

Resistance of B-Wall (N) Resistance of S-Wall (N) Drag Reduction Rate

Differential
Pressure Viscous Total Differential

Pressure Viscous Total Viscous
Resistance

Total
Resistance

Low

0.8 5485.6 1.73 × 10−6 2.30 × 10−4 2.32 × 10−4 0 2.41 × 10−4 2.41 × 10−4 4.41% 3.70%
1 6857.0 2.66 × 10−6 3.36 × 10−4 3.38 × 10−4 0 3.56 × 10−4 3.56 × 10−4 5.57% 5.00%

1.2 8228.4 4.79 × 10−6 4.57 × 10−4 4.62 × 10−4 0 4.94 × 10−4 4.94 × 10−4 7.51% 6.54%
1.4 9599.8 5.28 × 10−6 5.95 × 10−4 6.00 × 10−4 0 6.50 × 10−4 6.50 × 10−4 8.46% 7.65%
1.6 10971.2 6.99 × 10−6 7.46 × 10−4 7.53 × 10−4 0 8.10 × 10−4 8.10 × 10−4 7.87% 7.01%
1.8 12342.6 8.99 × 10−6 9.11 × 10−4 9.20 × 10−4 0 9.76 × 10−4 9.76 × 10−4 6.63% 5.71%

Mid

2 13714.0 1.13 × 10−5 1.09 × 10−3 1.10 × 10−3 0 1.16 × 10−3 1.16 × 10−3 5.93% 4.95%
2.2 15085.4 1.40 × 10−5 1.28 × 10−3 1.30 × 10−3 0 1.36 × 10−3 1.36 × 10−3 5.79% 4.77%
2.4 16456.8 1.70 × 10−5 1.49 × 10−3 1.51 × 10−3 0 1.58 × 10−3 1.58 × 10−3 5.94% 4.86%
2.6 17828.2 2.04 × 10−5 1.71 × 10−3 1.73 × 10−3 0 1.82 × 10−3 1.82 × 10−3 6.13% 5.02%
2.8 19199.6 2.41 × 10−5 1.94 × 10−3 1.97 × 10−3 0 2.07 × 10−3 2.07 × 10−3 6.27% 5.11%
3 20571.0 2.83 × 10−5 2.19 × 10−3 2.22 × 10−3 0 2.34 × 10−3 2.34 × 10−3 6.31% 5.10%

High

4 27428.0 5.59 × 10−5 3.63 × 10−3 3.68 × 10−3 0 3.83 × 10−3 3.83 × 10−3 5.28% 3.82%
5 34285.0 9.63 × 10−5 5.40 × 10−3 5.49 × 10−3 0 5.65 × 10−3 5.65 × 10−3 4.43% 2.73%
7 47999.0 2.24 × 10−4 9.93 × 10−3 1.02 × 10−2 0 1.04 × 10−2 1.04 × 10−2 4.53% 2.39%
9 61713.0 4.29 × 10−4 1.59 × 10−2 1.63 × 10−2 0 1.66 × 10−2 1.66 × 10−2 4.14% 1.55%

11 75427.0 7.29 × 10−4 2.32 × 10−2 2.40 × 10−2 0 2.40 × 10−2 2.40 × 10−2 3.17% 0.13%
13 89141.0 1.14 × 10−3 3.20 × 10−2 3.31 × 10−2 0 3.26 × 10−2 3.26 × 10−2 1.84% −1.65%

It can be seen from Table 4, the total resistance is formed by the differential pressure
resistance and the viscous resistance, and the viscous resistance accounts for a larger
proportion in the total resistance. The differential pressure resistance on the bionic wall
increases by almost three orders of magnitude as the Re is increased, whereas that on the
smooth wall remains unchanged at zero. Although the pressure differential resistance of
the bionic surface is greater than that of the smooth surface, its viscous resistance is far less
than that of the smooth surface. Therefore, the overall trend of drag reduction is obvious.

Figure 10a shows the total resistance of both surfaces among the whole range of
flow velocity. Figure 10b,c show the detailed information of the low-speed group and the
medium-speed group, respectively. In the low-speed group, the total resistance on the
smooth surface was higher than that on the bionic surface and it increased rapidly. In the
medium-speed group, the total resistance of the both surfaces increased simultaneously,
and the drag reduction rate fluctuated at about 5%. In the high-speed group, the total
resistance of the both surfaces increased rapidly and became equal gradually. When the
flow velocity was 13 m/s, the resistance on the bionic sample was more than that on the
smooth sample.

When the sample moves in the fluid, the viscous resistance accounts for a large
proportion of the total resistance, so the variation trend of the viscous resistance affects
the variation trend of the total resistance to a great extent. The relation curve of flow
velocity and drag reduction rate is shown in Figure 11. At 1.4 m/s, the total drag reduction
rate reached a maximum value of 7.65%. With the increase of flow velocity, the drag
reduction rate gradually decreased. The variation trend of viscous drag reduction rate was
roughly the same as that of total drag reduction rate. With the increase of flow velocity, the
proportion of differential pressure resistance in total drag increased gradually, so the drag
reduction effect was lost to some extent.
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3.4. Comparison between Results of Numerical Simulation and Experiment

The accuracy of the experimental result was verified by CFD. Figure 12 shows the
comparison of drag reduction rate between experiment and numerical simulation.
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Figure 12. Comparison of experiment and numerical simulation results.

As can be seen from the Figure 12, both the experimental and numerical simulation
results showed the drag reduction effect of the bionic sample. Within the water velocity
range of 0.5–2 m/s, the peak drag reduction rate obtained in the experiment was 23%,
which occurred at the velocity of 1.68 m/s. In the numerical simulation, the peak drag
reduction rate was 7.65%, which occurred at the velocity of 1.4 m/s. As for the difference
of peak drag reduction rate, due to the small calculation area of numerical simulation and
the relatively large size of test samples in the actual experiment, the difference between
them was hundreds of times. In addition, the processing accuracy of test samples would
also affect the accuracy of test results.

4. Mechanism Analysis

Figure 13 shows the velocity cloud diagram of the x-y cross-section. Figure 13a,b show
detailed views of the smooth surface and the bionic surface, respectively. It can be seen
that the contours of the bionic surface are smoother than the smooth surface. Therefore,
the structure of biomimetic fish scale arrangement can effectively control the flow near the
wall and reduce energy loss.



Coatings 2021, 11, 1357 12 of 20

Coatings 2021, 11, 1357 13 of 21 
 

4. Mechanism Analysis 

Figure 13 shows the velocity cloud diagram of the x-y cross-section. Figure 13a and 

b show detailed views of the smooth surface and the bionic surface, respectively. It can be 

seen that the contours of the bionic surface are smoother than the smooth surface. There-

fore, the structure of biomimetic fish scale arrangement can effectively control the flow 

near the wall and reduce energy loss. 

 

Figure 13. Velocity cloud diagram of the x-y cross-section. (a) Detailed view of the smooth surface; 

(b) Detailed view of the bionic surface. 

The velocity distribution was analyzed at the three positions near the wall of the x-y 

plane, as shown in Figure 14. It can be seen that in the case of the same distance in the y 

direction, the speed of the bionic surface increases slowly and the speed gradient and vis-

cous resistance is small, so the bionic surface can increase the thickness of boundary layer 

and reduce the resistance. 

Figure 15 shows the shear force cloud diagram and pressure cloud diagram of the 

upper and lower surfaces. By extracting the values on the center lines of the test area in 

Figures 15a,b and 16a,b were obtained. 

 

Figure 14. Velocity distribution near the wall. 

Figure 13. Velocity cloud diagram of the x-y cross-section. (a) Detailed view of the smooth surface;
(b) Detailed view of the bionic surface.

The velocity distribution was analyzed at the three positions near the wall of the x-y
plane, as shown in Figure 14. It can be seen that in the case of the same distance in the
y direction, the speed of the bionic surface increases slowly and the speed gradient and
viscous resistance is small, so the bionic surface can increase the thickness of boundary
layer and reduce the resistance.
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Figure 15 shows the shear force cloud diagram and pressure cloud diagram of the
upper and lower surfaces. By extracting the values on the center lines of the test area in
Figure 15a,b and Figure 16a,b were obtained.
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The shear force and pressure on the bionic surface decreased rapidly in reaching the
test area, and the corresponding x-coordinate was −0.001 m. After passing through the
bionic region, they reached the minimum value when the x-coordinate was about 0.001 m.
After water flowed through the fish scale array, the wall shear force increased until it was
almost equal to the wall shear force at the same position as the smooth surface. As can be
seen from the pressure cloud diagram in Figure 15b, there was a high-pressure backflow
area at the back of the array scales, so the pressure tended to rise when the x-coordinate was
between 0.001 m and 0.002 m. After passing through this region, the pressure decreased
again to almost the same value at the same coordinates on the smooth surface.
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In Figure 17, the yellow frame is the area where the bionic sample is placed, and the
red one for smooth sample. As can be seen from the detailed views, the bionic sample area
approached the low-pressure area of 75 Pa pressure isoline earlier, and with the increase of
the scale number, the area of the low-pressure area became larger and larger. The presence
of a low pressure region will absorb a certain volume of fluid. The reasonable distribution,
size and shape of these scales connect each low-pressure water trapping area together to
form a stable and continuous liquid film, which plays a role of fluid lubrication instead of
solid-liquid contact to achieve the purpose of drag reduction.
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Figure 18 shows the distribution of turbulent kinetic energy. It can be seen that the
turbulent kinetic energy at all positions of the smooth surface is higher than that of the
bionic surface. For example, the maximum and minimum values of turbulent kinetic
energy of smooth surface are 0.077 and 0.011, respectively, while that corresponding to
the bionic surface are 0.066 and 0, respectively. On the other hand, the turbulent kinetic
energy of the bionic surface is more evenly distributed than that of the smooth surface in
the test area.
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4.1. X-z Plane “Corrugated” Flow

Figure 19 shows the distribution of pressure and velocity along the array direction.
Figure 19a shows the location and direction of value line. Along the red, green and blue
lines, the variation of pressure and velocity are shown in Figure 19b,c. It can be seen that
the high and low pressure and high and low velocity regions appeared periodically. As in
the flow direction, and the values of both pressure and velocity decreased gradually. The
pressure difference between inlet and outlet was 44.74 Pa after calculation, and the velocity
difference was 0.13 m/s.
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Figure 20 shows the wavy flow on the surface. As shown in Figure 20a,b the direction
of streamlines in overlapping regions of fish scales showed regular periodic changes, the
streamlines appear to be “corrugated” within the overlapping area marked with yellow. In
the blue square of Figure 20b, due to the change in pressure, the streamlines dispersed from
the middle to the outskirts firstly, and then gathered from the outside to the inside. The
detailed view in the orange square is shown in Figure 20c, and the direction of streamlines
changed between every two scales. Muthuramalingam [35] also found that the overlapping
arrangement of bionic fish scales could produce streaks along the flow. The fish scale array
can stabilize the laminar boundary layer and delay the transformation. The drag was
reduced consequently.
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4.2. Stable High and Low Speed Streaks and Variation Trend of Bionic Surface Velocity

Figure 21a shows the average velocity distribution of each region obtained in this
experiment. It can be seen that only two velocity peaks appear in the middle position of
fish scales in the second and fourth rows. Figure 21b shows the experimental results of
Muthuramalingam‘s team. They also set up five rows of fish scale arrays along the flow
direction, and the test results showed that the high-speed streaks appeared four times.
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There are two main reasons for this situation. In this paper, the size of scale is smaller
and the distance between each column is larger contrast to the scale size, so the high-speed
streaks on both sides of the second and fourth row develops and merges into one peak.
In the reference [35], due to the large size of scale and the distance between the columns
is smaller contrast to the scale size, the peak velocities can occur in adjacent overlapping
regions at the same time.

A conclusion that can be drawn from the above is that the periodic change of velocity
in z direction could be influenced by scale size and distribution. Figure 22 shows the
velocity distribution of each column of fish scales. Nine positions are taken in the array
area to analyze the velocity data on each line. In the z-axis direction, the average velocity of
each scale column is shown in Figure 22a. The nine points on the red solid line correspond
to the average speed of each column. We take 20 points with equal spacing on each scale
column and calculate the velocity of each point to form a broken line chart, as shown in
Figure 22b. As can be seen from the figure, from the entrance to the exit, the peak velocity
of columns 1–9 gradually decreases and tends to be stable.
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As can be seen from the definition of Reynolds number, when the flow medium and
flow environment remain unchanged, the Reynolds number decreases when the flow
velocity decreases. 15 points were selected at the same position of the smooth surface
and the bionic surface like Figure 23a. The velocity change of each points was shown
in Figure 23b. It can be seen that after passing the test area (yellow frame) in Figure 23a,
the velocity decrease value of the bionic surface was LB-wall = 0.05 m/s, and that of the
smooth surface was LS-wall = 0.025 m/s. Namely, the Reynolds number of bionic surface
decreases more.
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4.3. The Vortex Lifting Mechanism in the x-y Plane

Figure 24 shows the distribution of vortices and the streamline of the x-y cross section.
During the flow process, a clockwise vortex was generated behind each scale. The fluid
was lifted through the scale and reached the highest point at the end edge of the scale.
The vortex behind the scale makes the high-speed fluid move away from the near-wall
region, which effectively reduces the near-wall velocity and greatly weakens the turbulence.
In addition, these vortices are located in low-pressure regions that continuously attract
fluid, converting solid-liquid friction into liquid-liquid friction and effectively reducing
drag [37]. The part marked with yellow in Figure 24c is the schematic diagram of the
contact surface between liquid and a solid. Due to the presence of a thin film of liquid
on the low-pressure surface, bionic surface can reduce the contact area and reduce the
frictional resistance [38,39]. Therefore, the hypothesis that surface waves can reduce the
resistance was reasonable and effective [40,41].
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In this paper we did not examine the influence of height and surface features on
drag reduction. The work of modeling, sample preparation and simulation analysis were
carried out according to the structural parameters of the original loach skin prototype.
Subsequent studies will be carried out on the influence of different structural parameters
on drag reduction.

5. Conclusions

In order to reduce the underwater flow resistance, inspired by the structure and
distribution of the skin of the Paramisgurnus dabryanus loach, a bionic non-smooth drag
reduction surface was studied. Based on experimental and numerical simulation, the
following conclusions were drawn:

(1) An aluminum sample was processed by the CNC method, and a flow channel was built.
The sample size was 70 × 64 × 5 mm3 with hundreds of bionic fish scale units. The
drag reduction rate of the sample could reach 23% when the velocity was 1.683 m/s.

(2) A model with 23 scales was built for numerical simulation. A drag reduction effect
was achieved within a velocity range of 0.8–11 m/s, and the maximum drag reduction
rate was 7.65% when the flow velocity was 1.4 m/s.

(3) The bionic micro-structure can control near-wall flow, reduce near-wall velocity gradi-
ent, increase boundary layer thickness, and delay the transition of layer
flow turbulence.

(4) Due to the existence of high and low pressure zones, alternating high and low speed
streaks were generated in the x direction. As the water flows over the bionic surface,
it slows down significantly, which could effectively reduce the Reynolds number and
delay the transition of laminar to turbulent flow.

(5) Vortices were generated behind each scale, which helped to form the liquid-liquid
friction film and thus reducing the resistance.
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