Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review
Abstract
:1. Introduction
2. MMT Nanoclay
3. Lignocellulosic Fibers
3.1. Cellulose
3.2. Hemicellulose
3.3. Lignin
4. Processing Techniques for MMT/Natural Fiber Reinforced Polymer Nanocomposites
4.1. Conventional Composite Fabrication Techniques for Nanocomposites
4.2. Intercalation of Polymer
4.3. Melt Intercalation
4.4. In Situ Polymerization
5. Mechanical Properties of MMT/Natural Fiber Reinforced Polymer Nanocomposites
6. Thermal Properties of MMT/Natural Fiber Reinforced Polymer Nanocomposites
6.1. MMT-Reinforced Natural Fiber Polymer Nanocomposites
6.2. MMT-Reinforced Hybrid Natural Fiber Polymer Nanocomposite
7. Flame Retardancy Properties of MMT/Natural Fiber Reinforced Polymer Nanocomposites
8. Biodegradation Properties of MMT/Natural Fiber Reinforced Polymer Nanocomposites
9. Applications and Potential Use of MMT/Natural Fiber Reinforced Polymer Nanocomposites
9.1. Automotive Applications
9.2. Outdoor Applications
9.3. Coating Applications
10. Environmental Concerns, Health, and Safety Issues of MMT
11. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APTES | Aminopropyltriethoxysilane |
APP | Ammonium polyphosphate (APP) |
B | Bamboo |
BR | Butadiene rubber |
CF | Chopstick fiber |
CNF | Cellulose nanofibers |
CNW | Cellulose nanowhiskers |
COP | Carbon monoxide production |
CS | Coconut sheath |
CS | Corn starch |
DAPA | Divinyl acrylicpimaric acid |
DMA | Dynamic mechanical analysis |
DSC | Differential scanning calorimetry |
DTG | Derivative thermogravimetry |
E″ | Loss modulus |
E′ | Storage modulus |
ECAE | Equal channel angular extrusion |
EP | Ethylene–propylene |
EVA | Ethylene-vinyl acetate |
EVOH | Ethylene vinyl alcohol |
EG | Expandable graphene |
GPTMS | Glicydoxy propyl trimethoxysilane |
HDPE | High density polyethylene |
HDT | Heat deflection temperature |
HNT | Halloysite nanotube |
HRR | Heat release rate |
iPP | isotactic PP |
IFR | Intumescent flame retardant |
K | Kenaf |
KeC | Kenaf composites |
KF | Kenaf fiber |
LCA | Life cycle assessment |
LDPE | Low-density polyethylene |
LOI | Limiting oxygen index |
MAESO | Methacrylic anhydride modified epoxidized soybean oil |
MAH | Maleic anhydride |
MaPE | Maleic anhydride-grafted polyethylene |
MAPP | Maleated anhydride grafted polypropylene |
MCC | Microcrystalline cellulose |
MCF | Modified chopstick fiber |
MEP | Maleated ethylene–propylene |
MLR | Mass loss rate |
MMT | Montmorillonite |
MOMMT | Modified montmorillonite |
NaMMT | natural sodium montmorillonite |
NBR | Nitrile butadiene rubber |
NFRPC | Natural fiber reinforced composites |
NHTSA | National highway traffic safety administration |
OMLS | Organo-modified layered silicates |
OMMT | Organically modified montmorillonite |
OPEFB | Oil palm empty fruit bunch |
OTR | Oxygen transmission rate |
PBS | Poly(butylene succinate |
PEG | Poly(ethylene glycol) |
PEMA | Poly(ethylmethacrylate) |
PEO | Poly(ethylene oxide) |
PHR | Peak of release heat |
PLA | Polylactic acid |
PP-g-MAH | Maleic anhydride grafted polypropylene |
PP | Polypropylene |
PS | Polystyrene |
PVA | Polyvinyl alcohol |
PVC | Poly(vinylchloride) |
PVP | Poly(vinyl pyrrolidone) |
RH | Rice husk |
SBR | Styrene butadiene rubber |
SiB | Silane treated banana fiber |
SPR | Smoke release |
SEM | Scanning electron microscope |
TAF | Treated aloe vera fiber |
TEM | Transmission electron microscopy |
TKF | Treated kenaf fiber |
TG | Thermogravimetry |
TGA | Thermogravimetric analysis |
THR | Total heat release |
TPS | Tapioca starch |
TTI | Time to ignition |
WF | Wood flour |
WHF | Water hyacinth fiber |
WSF | Walnut shell flour |
WVTR | Water vapour permeability rate |
References
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Utilization of Bracing Arms as Additional Reinforcement in Pultruded Glass Fiber-Reinforced Polymer Composite Cross-Arms: Creep Experimental and Numerical Analyses. Polymers 2021, 13, 620. [Google Scholar] [CrossRef] [PubMed]
- Ogin, S.L.; Brøndsted, P.; Zangenberg, J. Composite materials: Constituents, architecture, and generic damage; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Appl. Sci. 2021, 11, 2061. [Google Scholar] [CrossRef]
- Amir, A.L.; Ishak, M.R.; Yidris, N.; Zuhri, M.Y.M.; Asyraf, M.R.M. Advances of composite cross arms with incorporation of material core structures: Manufacturability, recent progress and views. J. Mater. Res. Technol. 2021, 13, 1115–1131. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Comparison of Static and Long-term Creep Behaviors between Balau Wood and Glass Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers Polym. 2021, 22, 793–803. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M.; et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef]
- Kyriazoglou, C.; Guild, F.J. Quantifying the effect of homogeneous and localized damage mechanisms on the damping properties of damaged GFRP and CFRP continuous and woven composite laminates-an FEA approach. Compos. Part A Appl. Sci. Manuf. 2005, 36, 367–379. [Google Scholar] [CrossRef]
- Hamidon, M.H.; Sultan, M.T.H.; Ariffin, A.H.; Shah, A.U.M. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. J. Mater. Res. Technol. 2019, 8, 3327–3337. [Google Scholar] [CrossRef]
- Ali, S.S.S.; Razman, M.R.; Awang, A.; Asyraf, M.R.M.; Ishak, M.R.; Ilyas, R.A.; Lawrence, R.J. Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability 2021, 13, 4441. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Atiqah, A.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Nurazzi, N.M.; Atikah, M.S.N.; Ansari, M.N.M.; et al. Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polym. Compos. 2020, 41, 459–467. [Google Scholar] [CrossRef]
- Ilyas, R.; Sapuan, S.; Atikah, M.; Asyraf, M.; Rafiqah, S.A.; Aisyah, H.; Nurazzi, N.M.; Norrrahim, M. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text. Res. J. 2021, 91, 152–167. [Google Scholar] [CrossRef]
- Omran, A.A.B.; Mohammed, A.A.B.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Koloor, S.S.R.; Petrů, M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef]
- Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers 2021, 13, 423. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Asyraf, M.R.M.; Atikah, M.S.N.; Ibrahim, R.; Dele-Afolabia, T.T. Introduction to biofiller reinforced degradable polymer composites. In Biofiller Reinforced Biodegradable Polymer Composites; Sapuan, S.M., Jumaidin, R., Hanafi, I., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–23. [Google Scholar]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Azrina, A.; Razman, M.R. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose 2021, 28, 2675–2695. [Google Scholar] [CrossRef]
- Amir, A.L.; Ishak, M.R.; Yidris, N.; Zuhri, M.Y.M.; Asyraf, M.R.M. Potential of Honeycomb-Filled Composite Structure in Composite Cross-Arm Component: A Review on Recent Progress and Its Mechanical Properties. Polymers 2021, 13, 1341. [Google Scholar] [CrossRef]
- Johari, A.N.; Ishak, M.R.; Leman, Z.; Yusoff, M.Z.M.; Asyraf, M.R.M. Influence of CaCO3 in pultruded glass fibre/unsaturated polyester composite on flexural creep behaviour using conventional and TTSP methods. Polimery 2020, 65, 46–54. [Google Scholar] [CrossRef]
- El-zayat, M.M.; Mohamed, M.A. Effect of gamma radiation on the physico mechanical properties of recycled HDPE/modified sugarcane bagasse composite. J. Macromol. Sci. Part A 2019, 56, 1–9. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Harussani, M.M.; Aisyah, H.A.; Ilyas, R.A.; Norrrahim, M.N.F.; Khalina, A.; Abdullah, N. Treatments of natural fiber as reinforcement in polymer composites—a short review. Funct. Compos. Struct. 2021, 3, 024002. [Google Scholar] [CrossRef]
- Zin, M.H.; Abdan, K.; Norizan, M.N.; Mazlan, N. The effects of alkali treatment on the mechanical and chemical properties of banana fibre and adhesion to epoxy resin. Pertanika J. Sci. Technol. 2018, 26, 161–176. [Google Scholar]
- Norizan, M.N.; Abdan, K.; Salit, M.S.; Mohamed, R. The effect of alkaline treatment on the mechanical properties of treated sugar palm yarn fibre reinforced unsaturated polyester composites reinforced with different fibre loadings of sugar palm fibre. Sains Malaysiana 2018, 47, 699–705. [Google Scholar] [CrossRef]
- Abdel-Hakim, A.; El-Wakil, A.E.A.A.; El-Mogy, S.; Halim, S. Effect of fiber coating on the mechanical performance, water absorption and biodegradability of sisal fiber/natural rubber composite. Polym. Int. 2021, 70, 1356–1366. [Google Scholar] [CrossRef]
- Abdel-Hakim, A.; Mourad, R.M. Mechanical, water uptake properties, and biodegradability of polystyrene-coated sisal fiber-reinforced high-density polyethylene. Polym. Compos. 2020, 41, 1435–1446. [Google Scholar] [CrossRef]
- Akil, H.M.; Santulli, C.; Sarasini, F.; Tirillò, J.; Valente, T. Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos. Sci. Technol. 2014, 94, 62–70. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Asyraf, M.R.M.; Dayana, D.A.Z.N.; Amelia, J.J.N.; Rani, M.S.A.; Norrrahim, M.N.F.; Nurazzi, N.M.; Aisyah, H.A.; Sharma, S.; et al. Polymer composites filled with metal derivatives: A review of flame retardants. Polymers 2021, 13, 1701. [Google Scholar] [CrossRef]
- Azman, M.A.; Asyraf, M.R.M.; Khalina, A.; Petrů, M.; Ruzaidi, C.M.; Sapuan, S.M.; Wan Nik, W.B.; Ishak, M.R.; Ilyas, R.A.; Suriani, M.J. Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers 2021, 13, 1917. [Google Scholar] [CrossRef]
- Edwards, D.C. Polymer-filler interactions in rubber reinforcement. J. Mater. Sci. 1990, 25, 4175–4185. [Google Scholar] [CrossRef]
- Bhattacharya, M. Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef]
- Majeed, K.; Ahmed, A.; Abu Bakar, M.S.; Mahlia, T.M.I.; Saba, N.; Hassan, A.; Jawaid, M.; Hussain, M.; Iqbal, J.; Ali, Z. Mechanical and thermal properties of montmorillonite-reinforced polypropylene/rice husk hybrid nanocomposites. Polymers 2019, 11, 1557. [Google Scholar] [CrossRef][Green Version]
- Okada, A.; Usuki, A. Twenty years of polymer-clay nanocomposites. Macromol. Mater. Eng. 2006, 291, 1449–1476. [Google Scholar] [CrossRef]
- Ramesh, P.; Prasad, B.D.; Narayana, K.L. Effect of fiber hybridization and montmorillonite clay on properties of treated kenaf/aloe vera fiber reinforced PLA hybrid nanobiocomposite. Cellulose 2020, 27, 6977–6993. [Google Scholar] [CrossRef]
- Khan, A.; Asiri, A.M.; Jawaid, M.; Saba, N. Inamuddin Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohydr. Polym. 2020, 239, 116248. [Google Scholar] [CrossRef] [PubMed]
- Shahroze, R.M.; Ishak, M.R.; Salit, M.S.; Leman, Z.; Asim, M.; Chandrasekar, M. Effect of organo-modified nanoclay on the mechanical properties of sugar palm fiber-reinforced polyester composites. BioResources 2018, 13, 7430–7444. [Google Scholar] [CrossRef]
- Al-Samhan, M.; Samuel, J.; Al-Attar, F.; Abraham, G. Comparative Effects of MMT Clay Modified with Two Different Cationic Surfactants on the Thermal and Rheological Properties of Polypropylene Nanocomposites. Int. J. Polym. Sci. 2017, 2017, 5717968. [Google Scholar] [CrossRef]
- Jia, Z.R.; Gao, Z.G.; Lan, D.; Cheng, Y.H.; Wu, G.L.; Wu, H.J. Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chinese Phys. B 2018, 27, 117806. [Google Scholar] [CrossRef]
- Ramesh, P.; Prasad, B.D.; Narayana, K.L. Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/ PLA-Hybrid Biocomposites. Silicon 2020, 12, 1751–1760. [Google Scholar] [CrossRef]
- Rozman, H.D.; Musa, L.; Azniwati, A.A.; Rozyanty, A.R. Tensile properties of kenaf/unsaturated polyester composites filled with a montmorillonite filler. J. Appl. Polym. Sci. 2011, 119, 2549–2553. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Rafidah, M.; Ilyas, R.A.; Razman, M.R. Potential application of green composites for cross arm component in transmission tower: A brief review. Int. J. Polym. Sci. 2020, 2020, 8878300. [Google Scholar] [CrossRef]
- Nik Baihaqi, N.M.Z.; Khalina, A.; Mohd Nurazzi, N.; Aisyah, H.A.; Sapuan, S.M.; Ilyas, R.A. Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery/Polymers 2021, 66, 36–43. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Nurazzi, N.M.; Jenol, M.A.; Farid, M.A.A.; Janudin, N.; Ujang, F.A.; Yasim-Anuar, T.A.T.; Syed Najmuddin, S.U.F.; Ilyas, R.A. Emerging development of nanocellulose as an antimicrobial material: An overview. Mater. Adv. 2021, 2, 3538–3551. [Google Scholar] [CrossRef]
- Sabaruddin, F.A.; Paridah, M.T.; Sapuan, S.M.; Ilyas, R.A.; Lee, S.H.; Abdan, K.; Mazlan, N.; Roseley, A.S.M.; Abdul Khalil, H.P.S. The Effects of Unbleached and Bleached Nanocellulose on the Thermal and Flammability of Polypropylene-Reinforced Kenaf Core Hybrid Polymer Bionanocomposites. Polymers 2020, 13, 116. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, M.S.; Norizan, M.N.; Norrrahim, M.N.F.; Ibrahim, R.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi, A.M.; Izwan, S.; Azammi, A.M.N.; et al. Macro to nanoscale natural fiber composites for automotive components: Research, development, and application. In Biocomposite and Synthetic Composites for Automotive Applications; Sapuan, M.S., Ilyas, R.A., Eds.; Woodhead Publishing Series: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Zin, M.H.; Abdan, K.; Mazlan, N.; Zainudin, E.S.; Liew, K.E.; Norizan, M.N. Automated spray up process for Pineapple Leaf Fibre hybrid biocomposites. Compos. Part B Eng. 2019, 177, 107306. [Google Scholar] [CrossRef]
- Bergaya, F.; Detellier, C.; Lambert, J.-F.; Lagaly, G. Introduction to clay–polymer nanocomposites (CPN). In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 655–677. [Google Scholar]
- Said, M.; Abu Hasan, H.; Mohd Nor, M.T.; Mohammad, A.W. Removal of COD, TSS and colour from palm oil mill effluent (POME) using montmorillonite. Desalin. Water Treat. 2016, 57, 10490–10497. [Google Scholar] [CrossRef]
- Uddin, F. Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 2008, 39, 2804–2814. [Google Scholar] [CrossRef]
- Nakato, T.; Miyamoto, N. Liquid crystalline behavior and related properties of colloidal systems of inorganic oxide nanosheets. Materials 2009, 2, 1734–1761. [Google Scholar] [CrossRef]
- Uddin, F. Montmorillonite: An introduction to properties and utilization; IntechOpen: London, UK, 2018. [Google Scholar]
- Zhu, T.T.; Zhou, C.H.; Kabwe, F.B.; Wu, Q.Q.; Li, C.S.; Zhang, J.R. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Appl. Clay Sci. 2019, 169, 48–66. [Google Scholar] [CrossRef]
- Zhou, C.H.; Keeling, J. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Appl. Clay Sci. 2013, 74, 3–9. [Google Scholar] [CrossRef]
- Chan, M.; Lau, K.; Wong, T.; Ho, M.; Hui, D. Mechanism of reinforcement in a nanoclay/polymer composite. Compos. Part B Eng. 2011, 42, 1708–1712. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y.; Liu, H.; Ying, J.; Liu, C.; Shen, C. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos. Sci. Technol. 2020, 190, 108048. [Google Scholar] [CrossRef]
- Shehap, A.M.; Nasr, R.A.; Mahfouz, M.A.; Ismail, A.M. Preparation and characterizations of high doping chitosan/MMT nanocomposites films for removing iron from ground water. J. Environ. Chem. Eng. 2021, 9, 104700. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y.; Park, S.-J. A modeling methodology to investigate the effect of interfacial adhesion on the yield strength of MMT reinforced nanocomposites. J. Ind. Eng. Chem. 2019, 69, 331–337. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A. Development and Characterization of Polypropylene Waste from Personal Protective Equipment (PPE)-Derived Char-Filled Sugar Palm Starch Biocomposite Briquettes. Polymers 2021, 13, 1707. [Google Scholar] [CrossRef] [PubMed]
- Saba, N.; Paridah, T.M.; Abdan, K.; Ibrahim, N.A. Preparation and characterization of fire retardant nano-filler from oil palm empty fruit bunch fibers. BioResources 2015, 10, 4530–4543. [Google Scholar] [CrossRef]
- Kumar, P.; Sandeep, K.P.; Alavi, S.; Truong, V.D.; Gorga, R.E. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite. J. Food Sci. 2010, 75, N46–N56. [Google Scholar] [CrossRef]
- Fan, Q.; Han, G.; Cheng, W.; Tian, H.; Wang, D.; Xuan, L. Effect of intercalation structure of organo-modified montmorillonite/polylactic acid on wheat straw fiber/polylactic acid composites. Polymers 2018, 10, 896. [Google Scholar] [CrossRef][Green Version]
- Xue, M.-L.; Yu, Y.-L.; Li, P. Preparation, dispersion, and crystallization of the poly (trimethylene terephthalate)/organically modified montmorillonite (PTT/MMT) nanocomposites. J. Macromol. Sci. Part B Phys. 2010, 49, 1105–1116. [Google Scholar] [CrossRef]
- Swearingen, C.; Macha, S.; Fitch, A. Leashed ferrocenes at clay surfaces: Potential applications for environmental catalysis. J. Mol. Catal. A Chem. 2003, 199, 149–160. [Google Scholar] [CrossRef]
- Jia, F.; Song, S. Exfoliation and characterization of layered silicate minerals: A review. Surf. Rev. Lett. 2014, 21, 1430001. [Google Scholar] [CrossRef]
- Asgari, M.; Abouelmagd, A.; Sundararaj, U. Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Appl. Clay Sci. 2017, 146, 439–448. [Google Scholar] [CrossRef]
- Nistor, M.-T.; Vasile, C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly (vinyl alcohol)/montmorillonite nanocomposites. J. Therm. Anal. Calorim. 2013, 111, 1903–1919. [Google Scholar] [CrossRef]
- Ejder-Korucu, M.; Gürses, A.; Karaca, S. Poly (ethylene oxide)/clay nanaocomposites: Thermal and mechanical properties. Appl. Surf. Sci. 2016, 378, 1–7. [Google Scholar] [CrossRef]
- Yang, F.; Mubarak, C.; Keiegel, R.; Kannan, R.M. Supercritical carbon dioxide (scCO2) dispersion of poly (ethylene terephthalate)/clay nanocomposites: Structural, mechanical, thermal, and barrier properties. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Ammar, A.; Elzatahry, A.; Al-Maadeed, M.; Alenizi, A.M.; Huq, A.F.; Karim, A. Nanoclay compatibilization of phase separated polysulfone/polyimide films for oxygen barrier. Appl. Clay Sci. 2017, 137, 123–134. [Google Scholar] [CrossRef]
- Wu, H.; Krifa, M.; Koo, J.H. Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Text. Res. J. 2014, 84, 1106–1118. [Google Scholar] [CrossRef]
- Roghani-Mamaqani, H.; Haddadi-Asl, V.; Najafi, M.; Salami-Kalajahi, M. Preparation of nanoclay-dispersed polystyrene nanofibers via atom transfer radical polymerization and electrospinning. J. Appl. Polym. Sci. 2011, 120, 1431–1438. [Google Scholar] [CrossRef]
- Zhang, G.; Ke, Y.; He, J.; Qin, M.; Shen, H.; Lu, S.; Xu, J. Effects of organo-modified montmorillonite on the tribology performance of bismaleimide-based nanocomposites. Mater. Des. 2015, 86, 138–145. [Google Scholar] [CrossRef]
- Kord, B. Nanofiller reinforcement effects on the thermal, dynamic mechanical, and morphological behavior of HDPE/rice husk flour composites. BioResources 2011, 6, 1351–1358. [Google Scholar]
- Kord, B. Effect of nanoparticles loading on properties of polymeric composite based on hemp fiber/polypropylene. J. Thermoplast. Compos. Mater. 2012, 25, 793–806. [Google Scholar] [CrossRef]
- Sinha Ray, S. Clay-Containing Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Kenned, J.J.; Sankaranarayanasamy, K.; Kumar, C.S. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review. Polym. Polym. Compos. 2020, 29. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Ariffin, H.; Yasim-Anuar, T.A.T.; Hassan, M.A.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Nishida, H. Performance Evaluation of Cellulose Nanofiber with Residual Hemicellulose as a Nanofiller in Polypropylene-Based Nanocomposite. Polymers 2021, 13, 1064. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Ariffin, H.; Yasim-Anuar, T.A.T.; Ghaemi, F.; Hassan, M.A.; Ibrahim, N.A.; Ngee, J.L.H.; Yunus, W.M.Z.W. Superheated steam pretreatment of cellulose affects its electrospinnability for microfibrillated cellulose production. Cellulose 2018, 25, 3853–3859. [Google Scholar] [CrossRef]
- Norrrahim, M.N.F.; Ariffin, H.; Hassan, M.A.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Nishida, H. Utilisation of superheated steam in oil palm biomass pretreatment process for reduced chemical use and enhanced cellulose nanofibre production. Int. J. Nanotechnol. 2019, 16, 668–679. [Google Scholar] [CrossRef]
- Matsuda, D.K.M.; Verceheze, A.E.S.; Carvalho, G.M.; Yamashita, F.; Mali, S. Baked foams of cassava starch and organically modified nanoclays. Ind. Crops Prod. 2013, 44, 705–711. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.; Pua, G.; Jawaid, M.; Islam, M.S. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef][Green Version]
- Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Khalina, A.; Sapuan, S.M.; Ilyas, R.A.; Rafiqah, S.A.; Hanafee, Z.M. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J. Mater. Res. Technol. 2020, 9, 1606–1618. [Google Scholar] [CrossRef]
- Rahul, K.C. Chemical Analysis of Spruce Needles. Available online: https://www.theseus.fi/handle/10024/280086 (accessed on 20 May 2021).
- Brunner, G. Processing of biomass with hydrothermal and supercritical water. In Supercritical Fluid Science and Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 395–509. [Google Scholar]
- Malherbe, S.; Cloete, T.E. Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol. 2002, 1, 105–114. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 24, 1–24. [Google Scholar] [CrossRef]
- Patel, J.P. and Parsania, P.H. Characterization, testing, and reinforcing materials of biodegradable composites. In Biodegradable and Biocompatible Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2018; pp. 55–79. [Google Scholar]
- Calvo-Flores, F.G.; Dobado, J.A. Lignin as renewable raw material. ChemSusChem 2010, 3, 1227–1235. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef][Green Version]
- Brebu, M.; Vasile, C. Thermal degradation of lignin - A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Rozman, H.D.; Tan, K.W.; Kumar, R.N.; Abubakar, A.; Mohd. Ishak, Z.A.; Ismail, H. The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites. Eur. Polym. J. 2000, 36, 1483–1494. [Google Scholar] [CrossRef]
- Silva, I.S.; de Menezes, C.R.; Franciscon, E.; dos Santos, E.d.C.; Durrant, L.R. Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under icroaerobic conditions. Brazilian Arch. Biol. Technol. 2010, 53, 693–699. [Google Scholar] [CrossRef]
- Nurazzi, N.; Khalina, A.; Sapuan, S.; Laila, A.H.D.; Mohamed, R. Curing behaviour of unsaturated polyester resin and interfacial shear stress of sugar palm fibre. J. Mech. Eng. Sci. 2017, 11, 2650–2664. [Google Scholar] [CrossRef]
- Norizan, M.N.; Abdan, K.; Salit, M.S.; Mohamed, R. Physical, mechanical and thermal properties of sugar palm yarn fibre loading on reinforced unsaturated polyester composites. J. Phys. Sci. 2017, 28, 115–136. [Google Scholar] [CrossRef][Green Version]
- Haghdan, S.; Renneckar, S.; Smith, G.D. Sources of Lignin. In Lignin in Polymer Composites; William Andrew: Norwich, NY, USA, 2016; pp. 1–11. ISBN 9780323355667. [Google Scholar]
- Azeez, M.A.; Orege, J.I. Bamboo, Its Chemical Modification and Products. In Bamboo—Current and Future Prospects; Abdul Khalil, H.P.S., Ed.; InTech: London, UK, 2018. [Google Scholar]
- Ansell, M.P.; Mwaikambo, L.Y. The structure of cotton and other plant fibres. In Handbook of Textile Fibre Structure; Elsevier: Amsterdam, The Netherlands, 2009; pp. 62–94. [Google Scholar]
- Barreto, A.C.H.; Rosa, D.S.; Fechine, P.B.A.; Mazzetto, S.E. Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 492–500. [Google Scholar] [CrossRef]
- Daud, Z.; Mohd Hatta, M.Z.; Mohd Kassi, A.S.; Mohd Aripi, A. Analysis of the Chemical Compositions and Fiber Morphology of Pineapple (Ananas comosus) Leaves in Malaysia. J. Appl. Sci. 2014, 14, 1355–1358. [Google Scholar] [CrossRef]
- Zainudin, E.S.; Yan, L.H.; Haniffah, W.H.; Jawaid, M.; Alothman, O.Y. Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym. Compos. 2014, 35, 1418–1425. [Google Scholar] [CrossRef]
- Agubra, V.; Owuor, P.; Hosur, M. Influence of Nanoclay Dispersion Methods on the Mechanical Behavior of E-Glass/Epoxy Nanocomposites. Nanomaterials 2013, 3, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, X.; Huang, C.; Zhao, Y. An investigation about solid equal channel angular extrusion on polypropylene/organic montmorillonite composite. J. Appl. Polym. Sci. 2012, 123, 2222–2227. [Google Scholar] [CrossRef]
- Creasy, T.S.; Kang, Y.S. Fibre fracture during equal-channel angular extrusion of short fibre-reinforced thermoplastics. J. Mater. Process. Technol. 2005, 160, 90–98. [Google Scholar] [CrossRef]
- Beloshenko, V.A.; Voznyak, A.V.; Voznyak, Y.V.; Novokshonova, L.A.; Grinyov, V.G.; Krasheninnikov, V.G. Processing of Polypropylene-Organic Montmorillonite Nanocomposite by Equal Channel Multiangular Extrusion. Int. J. Polym. Sci. 2016, 2016, 8564245. [Google Scholar] [CrossRef][Green Version]
- Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer-nanoclay composites. Appl. Sci. 2018, 8, 1696. [Google Scholar] [CrossRef][Green Version]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Ayana, B.; Suin, S.; Khatua, B.B. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr. Polym. 2014, 110, 430–439. [Google Scholar] [CrossRef]
- Tian, H.; Wang, K.; Liu, D.; Yan, J.; Xiang, A.; Rajulu, A.V. Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation. Int. J. Biol. Macromol. 2017, 101, 314–320. [Google Scholar] [CrossRef]
- Trifol, J.; Plackett, D.; Sillard, C.; Szabo, P.; Daugaard, A.E. Hybrid poly (lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym. Int. 2016, 65, 988–995. [Google Scholar] [CrossRef][Green Version]
- Li, J.; Zhou, M.; Cheng, G.; Cheng, F.; Lin, Y.; Zhu, P.X. Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydr. Polym. 2019, 210, 429–436. [Google Scholar] [CrossRef]
- Boonprasith, P.; Wootthikanokkhan, J.; Nimitsiriwat, N. Mechanical, thermal, and barrier properties of nanocomposites based on poly(butylene succinate)/thermoplastic starch blends containing different types of clay. J. Appl. Polym. Sci. 2013, 130, 1114–1123. [Google Scholar] [CrossRef]
- Zahedi, M.; Pirayesh, H.; Khanjanzadeh, H.; Tabar, M.M. Organo-modified montmorillonite reinforced walnut shell/polypropylene composites. Mater. Des. 2013, 51, 803–809. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, K.; Zhu, F.; Xue, P.; Jia, M. Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: Effects of coupling agents and layered silicate. Polym. Degrad. Stab. 2006, 91, 2874–2883. [Google Scholar] [CrossRef]
- Essabir, H.; Raji, M.; Bouhfid, R.; Qaiss, A.E.K. Nanoclay and Natural Fibers Based Hybrid Composites: Mechanical, Morphological, Thermal and Rheological Properties. In Nanoclay Reinforced Polymer Composites; Mohammad, J., Abouel, K.Q., Rachid, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 175–207. [Google Scholar]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef][Green Version]
- Saba, N.; Tahir, P.M.; Jawaid, M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Yousefian, H.; Rodrigue, D. Hybrid Composite Foams Based on Nanoclays and Natural Fibres. In Nanoclay Reinforced Polymer Composites; Mohammad, J., Abouel, K.Q., Rachid, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 175–207. [Google Scholar]
- Santulli, C. Nanoclay Based Natural Fibre Reinforced Polymer Composites: Mechanical and Thermal Properties. In Nanoclay Reinforced Polymer Composites; Mohammad, J., Abouel, K.Q., Rachid, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 175–207. [Google Scholar]
- Nisini, E.; Santulli, C.; Liverani, A. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Compos. Part B Eng. 2017, 127, 92–99. [Google Scholar] [CrossRef]
- Rozman, H.D.; Rozyanty, A.R.; Musa, L.; Tay, G.S. Ultra-violet radiation-cured biofiber composites from kenaf: The effect of montmorillonite on the flexural and impact properties. J. Wood Chem. Technol. 2010, 30, 152–163. [Google Scholar] [CrossRef]
- Hetzer, M.; De Kee, D. Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: A review. Chem. Eng. Res. Des. 2008, 86, 1083–1093. [Google Scholar] [CrossRef]
- Chen, Z.; Kuang, T.; Yang, Z.; Ren, X. Effect of Nanoclay on Natural Fiber/Polymer Composites. In Nanoclay Reinforced Polymer Composites; Mohammad, J., Abouel, K.Q., Rachid, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 175–207. [Google Scholar]
- Zahedi, M.; Khanjanzadeh, H.; Pirayesh, H.; Saadatnia, M.A. Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flour-polypropylene bio-nanocomposites. Compos. Part B Eng. 2015, 71, 143–151. [Google Scholar] [CrossRef]
- Petersson L, O.K. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol. 2006, 66, 2187–2196. [Google Scholar] [CrossRef]
- Arjmandi, R.; Hassan, A.; Haafiz, M.K.M.; Zakaria, Z. Effect of microcrystalline cellulose on biodegradability, tensile and morphological properties of montmorillonite reinforced polylactic acid nanocomposites. Fibers Polym. 2015, 16, 2284–2293. [Google Scholar] [CrossRef]
- Jalalvandi, E.; Majid, R.A.; Ghanbari, T.; Ilbeygi, H. Effects of montmorillonite (MMT) on morphological, tensile, physical barrier properties and biodegradability of polylactic acid/starch/MMT nanocomposites. J. Thermoplast. Compos. Mater. 2015, 28, 496–509. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A. Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr. Build. Mater. 2016, 123, 15–26. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Review: Raw Natural Fiber-Based Polymer Composites. Int. J. Polym. Anal. Charact. 2014, 19, 256–271. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmad, M.B.; Hasan, M.; Aziz, S.A.; Jawaid, M.; Haafiz, M.K.M.; Zakaria, S.A.H. Natural fiber-reinforced hybrid polymer nanocomposites: Effect of fiber mixing and nanoclay on physical, mechanical, and biodegradable properties. BioResources 2015, 10, 1394–1407. [Google Scholar] [CrossRef][Green Version]
- Goodarzi, V.; Jafari, S.H.; Khonakdar, H.A.; Seyfi, J. Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. J. Polym. Res. 2011, 18, 1829–1839. [Google Scholar] [CrossRef]
- Mata-Padilla, J.M.; Medellín-Rodríguez, F.J.; Ávila-Orta, C.A.; Ramírez-Vargas, E.; Cadenas-Pliego, G.; Valera-Zaragoza, M.; Vega-Díaz, S.M. Morphology and chain mobility of reactive blend nanocomposites of PP-EVA/Clay. J. Appl. Polym. Sci. 2014, 131, 1–14. [Google Scholar] [CrossRef]
- Castro-Landinez, J.F.; Salcedo-Galan, F.; Medina-Perilla, J.A. Polypropylene/ethylene—and polar—monomer-based copolymers/montmorillonite nanocomposites: Morphology, mechanical properties, and oxygen permeability. Polymers 2021, 13, 705. [Google Scholar] [CrossRef]
- Shikaleska, A.V.; Pavlovska, F.P. Advanced materials based on polymer blends/polymer blend nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2012, 40, 012009. [Google Scholar] [CrossRef][Green Version]
- Sengwa, R.J.; Choudhary, S. Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 2014, 131, 1–11. [Google Scholar] [CrossRef]
- Ramesh, P.; Prasad, B.D.; Narayana, K.L. Influence of Montmorillonite Clay Content on Thermal, Mechanical, Water Absorption and Biodegradability Properties of Treated Kenaf Fiber/ PLA-Hybrid Biocomposites. Silicon 2021, 13, 109–118. [Google Scholar] [CrossRef]
- Gwon, J.G.; Lee, S.Y.; Chun, S.J.; Doh, G.H.; Kim, J.H. Physical and mechanical properties of wood–plastic composites hybridized with inorganic fillers. J. Compos. Mater. 2012, 46, 301–309. [Google Scholar] [CrossRef]
- Khare, A.; Deshmukh, S. Studies Toward Producing Eco-Friendly Plastics. J. Plast. Film Sheeting 2006, 22, 193–211. [Google Scholar] [CrossRef]
- Tajeddin, B.; Rahman, R.A.; Abdulah, L.C. The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites. Int. J. Biol. Macromol. 2010, 47, 292–297. [Google Scholar] [CrossRef]
- George, J.; Kumar, R.; Jayaprahash, C.; Ramakrishna, A.; Sabapathy, S.N.; Bawa, A.S. Rice bran-filled biodegradable low-density polyethylene films: Development and characterization for packaging applications. J. Appl. Polym. Sci. 2006, 102, 4514–4522. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites — A Review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H.P.S.; Salema, A.A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 2013, 46, 391–410. [Google Scholar] [CrossRef]
- Chee, S.S.; Jawaid, M.; Alothman, O.Y.; Fouad, H. Effects of nanoclay on mechanical and dynamic mechanical properties of bamboo/kenaf reinforced epoxy hybrid composites. Polymers 2021, 13, 395. [Google Scholar] [CrossRef]
- Wei, J.; Wang, B.; Li, Z.; Wu, Z.; Zhang, M.; Sheng, N.; Liang, Q.; Wang, H.; Chen, S. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Carbohydr. Polym. 2020, 238, 116207. [Google Scholar] [CrossRef]
- Mohan, T.P.; Kanny, K. Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos. Part B Eng. 2019, 169, 118–125. [Google Scholar] [CrossRef]
- Chee, S.S.; Jawaid, M.; Sultan, M.T.H.; Alothman, O.Y.; Abdullah, L.C. Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Compos. Part B Eng. 2019, 163, 165–174. [Google Scholar] [CrossRef]
- Anand, G.; Alagumurthi, N.; Elansezhian, R.; Venkateshwaran, N. Dynamic mechanical, thermal and wear analysis of Ni-P coated glass fiber/Al₂O₃ nanowire reinforced vinyl ester composite. Alexandria Eng. J. 2018, 57, 621–631. [Google Scholar] [CrossRef]
- Joseph, S.; Appukuttan, S.P.; Kenny, J.M.; Puglia, D.; Thomas, S.; Joseph, K. Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites. J. Appl. Polym. Sci. 2010, 117, 1298–1308. [Google Scholar] [CrossRef]
- Majeed, K.; Hassan, A.; Bakar, A.A. Influence of maleic anhydride-grafted polyethylene compatibiliser on the tensile, oxygen barrier and thermal properties of rice husk and nanoclay-filled low-density polyethylene composite films. J. Plast. Film Sheeting 2014, 30, 120–140. [Google Scholar] [CrossRef]
- Ali Dadfar, S.M.; Alemzadeh, I.; Reza Dadfar, S.M.; Vosoughi, M. Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Mater. Des. 2011, 32, 1806–1813. [Google Scholar] [CrossRef]
- Arulmurugan, S.; Venkateshwaran, N. Effect of nanoclay addition and chemical treatment on static and dynamic mechanical analysis of jute fibre composites. Polímeros 2019, 29, 4–11. [Google Scholar] [CrossRef]
- Palanivel, A.; Veerabathiran, A.; Duruvasalu, R.; Iyyanar, S.; Velumayil, R. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite. Polímeros 2017, 27, 309–319. [Google Scholar] [CrossRef][Green Version]
- Jesuarockiam, N.; Jawaid, M.; Zainudin, E.S.; Hameed Sultan, M.T.; Yahaya, R. Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers 2019, 11, 1085. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yussuf, A.A.; Massoumi, I.; Hassan, A. Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. J. Polym. Environ. 2010, 18, 422–429. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Asrofi, M.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi, A.M.; et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 2019, 8, 2753–2766. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata). Carbohydr. Polym. 2018, 181, 1038–1051. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int. J. Biol. Macromol. 2019, 123, 379–388. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S. Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources 2017, 12, 8734–8754. [Google Scholar] [CrossRef]
- Ayu, R.S.; Khalina, A.; Harmaen, A.S.; Zaman, K.; Isma, T.; Liu, Q.; Ilyas, R.A.; Lee, C.H. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers 2020, 12, 1571. [Google Scholar] [CrossRef]
- Syafri, E.; Sudirman; Mashadi; Yulianti, E.; Deswita; Asrofi, M.; Abral, H.; Sapuan, S.M.; Ilyas, R.A.; Fudholi, A. Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J. Mater. Res. Technol. 2019, 8, 6223–6231. [Google Scholar] [CrossRef]
- Ismail, H.; Pasbakhsh, P.; Fauzi, M.N.A.; Abu Bakar, A. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym. Test. 2008, 27, 841–850. [Google Scholar] [CrossRef]
- Sajna, V.; Mohanty, S.; Nayak, S.K. Hybrid green nanocomposites of poly(lactic acid) reinforced with banana fibre and nanoclay. J. Reinf. Plast. Compos. 2014, 33, 1717–1732. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos. Sci. Technol. 2008, 68, 424–432. [Google Scholar] [CrossRef]
- Du, Y.; Wu, T.; Yan, N.; Kortschot, M.T.; Farnood, R. Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos. Part B Eng. 2014, 56, 717–723. [Google Scholar] [CrossRef]
- Yuzay, I.E.; Auras, R.; Soto-Valdez, H.; Selke, S. Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polym. Degrad. Stab. 2010, 95, 1769–1777. [Google Scholar] [CrossRef]
- Mróz, P.; Białas, S.; Mucha, M.; Kaczmarek, H. Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochim. Acta 2013, 573, 186–192. [Google Scholar] [CrossRef]
- Pratheep Kumar, A.; Pal Singh, R. Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. J. Appl. Polym. Sci. 2007, 104, 2672–2682. [Google Scholar] [CrossRef]
- Blumstein, A. Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J. Polym. Sci. Part A Gen. Pap. 1965, 3, 2665–2672. [Google Scholar] [CrossRef]
- Burnside, S.D.; Giannelis, E.P. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem. Mater. 1995, 7, 1597–1600. [Google Scholar] [CrossRef]
- Tyan, H.-L.; Liu, Y.-C.; Wei, K.-H. Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay. Chem. Mater. 1999, 11, 1942–1947. [Google Scholar] [CrossRef]
- Amash, A. Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites. Polymer 2000, 41, 1589–1596. [Google Scholar] [CrossRef]
- Bharadwaj, R.K.; Mehrabi, A.R.; Hamilton, C.; Trujillo, C.; Murga, M.; Fan, R.; Chavira, A.; Thompson, A.K. Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer 2002, 43, 3699–3705. [Google Scholar] [CrossRef]
- Tidjani, A.; Wald, O.; Pohl, M.-M.; Hentschel, M.P.; Schartel, B. Polypropylene–graft–maleic anhydride-nanocomposites: I—Characterization and thermal stability of nanocomposites produced under nitrogen and in air. Polym. Degrad. Stab. 2003, 82, 133–140. [Google Scholar] [CrossRef]
- Ohkita, T.; Lee, S.-H. Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J. Appl. Polym. Sci. 2006, 100, 3009–3017. [Google Scholar] [CrossRef]
- Jumaidin, R.; Diah, N.A.; Ilyas, R.A.; Alamjuri, R.H.; Yusof, F.A.M. Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites. Polymers 2021, 13, 1420. [Google Scholar] [CrossRef]
- Jumaidin, R.; Khiruddin, M.A.A.; Asyul Sutan Saidi, Z.; Salit, M.S.; Ilyas, R.A. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol. 2020, 146, 746–755. [Google Scholar] [CrossRef]
- Threepopnatkul, P.; Kaerkitcha, N.; Athipongarporn, N. Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos. Part B Eng. 2009, 40, 628–632. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Luyt, A.S.; Tábi, T.; Kovács, J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 2012, 25, 927–948. [Google Scholar] [CrossRef]
- Ahmed, A.; Hidayat, S.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource. Biofuels 2021, 12, 9–20. [Google Scholar] [CrossRef]
- Majeed, K.; Hassan, A.; Bakar, A.A.; Jawaid, M. Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. J. Thermoplast. Compos. Mater. 2016, 29, 1003–1019. [Google Scholar] [CrossRef]
- Bertini, F.; Canetti, M.; Audisio, G.; Costa, G.; Falqui, L. Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Polym. Degrad. Stab. 2006, 91, 600–605. [Google Scholar] [CrossRef]
- Leszczyńska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J.R. Polymer/montmorillonite nanocomposites with improved thermal properties. Part, I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim. Acta 2007, 453, 75–96. [Google Scholar] [CrossRef][Green Version]
- Chow, W.S.; Mohd Ishak, Z.A.; Karger-Kocsis, J.; Apostolov, A.A.; Ishiaku, U.S. Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer 2003, 44, 7427–7440. [Google Scholar] [CrossRef]
- Zaman, H.U.; Hun, P.D.; Khan, R.A.; Yoon, K.-B. Polypropylene/clay nanocomposites. J. Thermoplast. Compos. Mater. 2014, 27, 338–349. [Google Scholar] [CrossRef]
- Rajini, N.; Winowlin Jappes, J.T.; Rajakarunakaran, C.; Siva, I. Tensile and Flexural Properties of MMT-Clay/ Unsaturated Polyester Using Robust Design Concept. Nano Hybrids 2012, 2, 87–101. [Google Scholar] [CrossRef][Green Version]
- Sienkiewicz, A.; Czub, P. Flame retardancy of biobased composites—research development. Materials 2020, 13, 5253. [Google Scholar] [CrossRef]
- Suwanniroj, A.; Suppakarn, N. Enhancement of flame retardancy and mechanical properties of poly(butylene succinate) composites by adding hybrid fillers. AIP Conf. Proc. 2020, 2279, 070004. [Google Scholar] [CrossRef]
- Subasinghe, A.; Das, R.; Bhattacharyya, D. Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites. Int. J. Smart Nano Mater. 2016, 7, 202–220. [Google Scholar] [CrossRef][Green Version]
- Chee, S.S.; Jawaid, M.; Alothman, O.Y.; Yahaya, R. Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Adv. 2020, 10, 21686–21697. [Google Scholar] [CrossRef]
- Dutta, N.; Maji, T.K. Synergic effect of montmorillonite and microcrystalline cellulose on the physicochemical properties of rice husk/PVC composite. SN Appl. Sci. 2020, 2, 439. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.Y.; Shih, Y.F. Flame-retardant recycled bamboo chopstick fiber-reinforced poly(lactic acid) green composites via multifunctional additive system. J. Taiwan Inst. Chem. Eng. 2016, 65, 452–458. [Google Scholar] [CrossRef]
- Mandal, M.; Halim, Z.; Maji, T.K. Mechanical, moisture absorption, biodegradation and physical properties of nanoclay-reinforced wood/plant oil composites. SN Appl. Sci. 2020, 2, 250. [Google Scholar] [CrossRef][Green Version]
- Glaskova-Kuzmina, T.; Starkova, O.; Gaidukovs, S.; Platnieks, O.; Gaidukova, G. Durability of Biodegradable Polymer Nanocomposites. Polymers 2021, 13, 3375. [Google Scholar] [CrossRef]
- Islam, M.S.; Hasbullah, N.A.B.; Hasan, M.; Talib, Z.A.; Jawaid, M.; Haafiz, M.K.M. Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Mater. Today Commun. 2015, 4, 69–76. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S.; Samal, S.K. Recent Developments of Epoxy Nanocomposites Used for Aerospace and Automotive Application. In Diverse Applications of Organic-Inorganic Nanocomposites: Emerging Research and Opportunities; Clarizia, G., Bernardo, P., Eds.; IGI Global: Pittsburgh, PA, USA, 2020; pp. 162–190. [Google Scholar]
- Galimberti, M.; Cipolletti, V.R.; Coombs, M. Applications of clay–polymer nanocomposites. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 539–586. [Google Scholar]
- Lyon, R.E.; Walters, R.N. Flammability of automotive plastics. SAE Tech. Pap. 2006. [Google Scholar] [CrossRef][Green Version]
- Jiang, R.; Michaels, H.; Vlachopoulos, N.; Freitag, M. Beyond the Limitations of Dye-Sensitized Solar Cells. In Dye-Sensitized Solar Cells: Mathematical Modeling, and Materials Design and Optimization; Soroush, M., Lau, K.K.S., Eds.; Academic Press: Cambridge, UK, 2019; pp. 285–323. [Google Scholar]
- Beg, M.D.H.; Pickering, K.L. Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites. Polym. Degrad. Stab. 2008, 93, 1939–1946. [Google Scholar] [CrossRef]
- Searle, N.D.; McGreer, M.; Zielnik, A. Weathering of Polymeric Materials. In Encyclopedia of Polymer Science and Technology; Matyjaszewski, K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Brown, R.P.; Kockott, D.; Trubiroha, P.; Ketola, W.; Shorthouse, J. A Review of Accelerated Durability Tests; National Physical Laboratory Teddington: Middlesex, UK, 1995. [Google Scholar]
- Raji, M.; Zari, N.; Bouhfid, R.; el kacem Qaiss, A. Durability of composite materials during hydrothermal and environmental aging. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing Series: Cambridge, UK, 2019; pp. 83–119. [Google Scholar]
- Kord, B.; Malekian, B.; Ayrilmis, N. Weathering Performance of Montmorillonite/Wood Flour-Based Polypropylene Nanocomposites. Mech. Compos. Mater. 2017, 53, 271–278. [Google Scholar] [CrossRef]
- Eshraghi, A.; Khademieslam, H.; Ghasemi, I.; Talaiepoor, M. Effect of weathering on the properties of hybrid composite based on polyethylene, woodflour, and nanoclay. BioResources 2013, 8, 201–210. [Google Scholar] [CrossRef]
- High Efficiency Plants and Building Integrated Renewable Energy Systems. In Handbook of Energy Efficiency in Buildings: A Life Cycle Approach; Asdrubali, F.; Desideri, U. (Eds.) Butterworth-Heinemann: Oxford, UK, 2019; pp. 441–595. [Google Scholar]
- Nguyen, Q.; Ngo, T.; Mendis, P.; Tran, P. Composite Materials for Next Generation Building Façade Systems. Civ. Eng. Archit. 2013, 1, 88–95. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Tran, P.; Ngo, T.D.; Tran, P.A.; Mendis, P. Experimental and computational investigations on fire resistance of GFRP composite for building façade. Compos. Part B Eng. 2014, 62, 218–229. [Google Scholar] [CrossRef]
- Rajini, N.; Winowlin Jappes, J.T.; Siva, I.; Varada Rajulu, A.; Rajakarunakaran, S. Fire and thermal resistance properties of chemically treated ligno-cellulosic coconut fabric–reinforced polymer eco-nanocomposites. J. Ind. Text. 2017, 47, 104–124. [Google Scholar] [CrossRef]
- Chowdhury, S.R. Some important aspects in designing high molecular weight poly(L-lactic acid)-clay nanocomposites with desired properties. Polym. Int. 2008, 57, 1326–1332. [Google Scholar] [CrossRef]
- Mohan, T.P.; Kanny, K. Sorption studies of few selected raw and nanoclay infused lignocellulosic fibres. Indian J. Fibre Text. Res. 2019, 44, 263–270. [Google Scholar]
- Massaro, M.; Cavallaro, G.; Lazzara, G.; Riela, S. Covalently modified nanoclays: Synthesis, properties and applications. In Clay Nanoparticles: Properties and Applications; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 305–333. [Google Scholar]
- Maisanaba, S.; Hercog, K.; Filipic, M.; Jos, Á.; Zegura, B. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2. J. Hazard. Mater. 2016, 304, 425–433. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X. Nanotechnology in Transportation Vehicles: An Overview of Its Applications, Environmental, Health and Safety Concerns. Materials 2019, 12, 2493. [Google Scholar] [CrossRef][Green Version]
Properties | Description |
---|---|
Physical properties | |
Color | White, grey, beige to buff |
Surface area (m2/g) | 240 |
Bulk density (g/L) | 370 |
Diameter of particles (μm) | 1 |
Length of particles (nm) | 100–150 |
Surface dimensions (nm) | 300–600 |
Crystal system | Monoclinic |
Transparency | Translucent |
Fracture | Irregular |
Aspect ratio | High |
Nature | Hydrophilic |
Chemical properties | |
Chemical composition (%) | |
SiO2 | 73.0 |
Al2O3 | 14.0 |
Fe2O3 | 2.7 |
K2O | 1.9 |
MgO | 1.1 |
Na2O | 0.6 |
CaO | 0.2 |
Natural Fiber | Lignocellulosic Components (%) | Ref. | ||
---|---|---|---|---|
Cellulose | Hemicellulose | Lignin | ||
Sugar Palm | 43.88 | 7.24 | 33.24 | [98] |
Bagasse | 32 to 34 | 19 to 24 | 25 to 32 | [99] |
Bamboo | 73.83 | 12.49 | 10.15 | [100] |
Flax | 60 to 81 | 14 to 20.6 | 2.2 to 5 | [101] |
Hemp | 70 to 92 | 18 to 22 | 3 to 5 | |
Jute | 51 to 84 | 12to 20 | 5 to 13 | |
Kenaf | 44 to 87 | 22 | 15 to 19 | |
Ramie | 68 to 76 | 13 to 15 | 0.6 to 1 | |
Sisal | 65.8 | 12 | 9.9 | [102] |
Pineapple | 66.2 | 19.5 | 4.2 | [103] |
Coir | 32 to 43 | 0.15 to 0.25 | 40 to 45 | [104] |
Type of Material | Matrix | Young’s Modulus (GPa) | Elongation at Break (%) | Tensile Strength (MPa) |
---|---|---|---|---|
Neat Polymers | PP EVA12 EVA28 EVOH38 EVOH44 | 0.96 ± 0.04 0.10 ± 0.05 0.09 ± 0.04 2.32 ± 0.21 1.83 ± 0.23 | 690 ± 10 825 ± 60 900 ± 50 43 ± 21 48 ± 18 | 22.30 ± 4.00 14.88 ± 3.27 16.24 ± 4.21 57.41 ± 3.12 45.05 ± 7.34 |
Polymeric blends | PP/EVA12 PP/EVA28 PP/EVOH38 PP/EVOH44 | 0.65 ± 0.04 0.60 ± 0.01 1.16 ± 0.05 1.13 ± 0.04 | 587 ± 45 310 ± 42 6 ± 2 16 ± 7 | 17.62 ± 0.64 16.85 ± 0.63 20.28 ± 2.51 19.01 ± 1.89 |
Nanocomposites materials | PP/EVA12/MMT PP/EVA28/MMT PP/EVOH38/MMT PP/EVOH44/MMT | 0.76 ± 0.02 0.75 ± 0.01 1.29 ± 0.02 1.15 ± 0.04 | 574 ± 58 353 ± 55 13 ± 8 19 ± 10 | 17.89 ± 0.61 17.42 ± 0.45 19.95 ± 1.05 17.94 ± 0.83 |
Sample | Denotation | Weight Loss, Decomposition Temperature (°C) | |
---|---|---|---|
10% | 75% | ||
PLA | P | 327 | 358 |
PLA-30TAF | A | 295 | 338 |
PLA-30TAF-1MMT | A1 | 296 | 342 |
PLA-30TAF-2MMT | A2 | 299 | 344 |
PLA-30TAF-3MMT | A3 | 299 | 350 |
Sample No. | Neat EP Copolymer (wt.%) | Maleated EP Copolymer (wt.%) | Cellulose (wt.%) | Cloisite® 20A (wt.%) | Code |
---|---|---|---|---|---|
1 | 100 | - | - | - | Neat EP |
2 | - | 100 | - | - | MEP |
3 | 57 | 38 | 5 | - | CC05 |
4 | 54 | 36 | 10 | - | CC10 |
5 | 51 | 34 | 15 | - | CC15 |
6 | 57 | 38 | - | 5 | NC05 |
7 | 54 | 36 | 5 | 5 | TC05 |
8 | 51 | 34 | 10 | 5 | TC10 |
9 | 48 | 32 | 15 | 5 | TC15 |
Samples | Tm (°C) | Td (°C) EP |
---|---|---|
Neat EP | 165.8 | 453.3 |
MEP | 166.5 | 443.2 |
CC05 | 166.7 | 458.1 |
CC10 | 168.2 | 461.1 |
CC15 | 168.7 | 463.1 |
NC05 | 165.7 | 458.9 |
TC05 | 167.6 | 466.4 |
TC10 | 169.3 | 483.3 |
TC15 | 170.0 | 482.1 |
Code | Sample | Weight Loss, Decomposition Temperature (°C) | |
---|---|---|---|
10 (%) | 75 (%) | ||
P | Polylactic acid (PLA) | 327 | 358 |
S | Polylactic acid/treated kenaf fiber (PLA/TKF) | 280 | 337 |
A | Polylactic acid/treated aloe vera fiber PLA/TAF | 295 | 338 |
H | Polylactic acid/ treated kenaf fiber/ treated aloe vera fiber (PLA/TKF/TAF) | 291 | 343 |
H1 | Polylactic acid/treated kenaf fiber/treated aloe vera fiber/1 wt.% MMT (PLA/TKF/TAF/1MMT) | 301 | 346 |
H3 |
Polylactic acid/ treated kenaf fiber/treated aloe vera fiber/3 wt.% (MMT.PLA/TKF/TAF/3MMT) | 307 | 361 |
Sample Designation | Tm (°C) | Tc (°C) | Xc (%) | T10 (°C) | T50 (°C) |
---|---|---|---|---|---|
PP | 163.2 | 117.3 | 27.7 | 474 | 510 |
PR | 162.9 | 120.1 | 29.6 | 311 | 437 |
PRC | 163.1 | 119.2 | 30.1 | 318 | 441 |
PRM | 163.0 | 116.1 | 29.9 | 315 | 440 |
PRMC | 162.8 | 116.5 | 31.5 | 327 | 451 |
Sample | Vertical Burning Test | Horizontal Burning Rate (mm/min) | |||
---|---|---|---|---|---|
t1 (s) | Dripping | Cotton Ignition | Rating | ||
PBS | >30 | Yes | Yes | NC | 16.39 ± 0.34 |
APP/WHF/PBS | <15 | Yes | Yes | V-2 | No burning |
1MMT/APP/WHF/PBS | <30 | Yes | Yes | V-2 | No burning |
3MMT/APP/WHF/PBS | <30 | Yes | Yes | V-2 | No burning |
5MMT/APP/WHF/PBS | <30 | Yes | Yes | V-2 | No burning |
Sample | Ignite the Cotton | Dripping | UL-94 Rating |
---|---|---|---|
Polylactic acid (PLA) | Yes | Yes | NR |
PLA + 13 phr expandable graphite + 4 phr ammonium polyphosphate (PLA/13EG-4APP) | Yes | Yes | NR |
PLA + 13 phr expandable graphite + 4 phr ammonium polyphosphate + modified chopstick fiber + modified montmorillonite (PLA/13EG-4APP/MCF/MOMMT) | No | Yes | V-1 |
PLA + 23 phr expandable graphite + 4 phr ammonium polyphosphate + modified chopstick fiber + modified montmorillonite (PLA/23EG-4APP/MCF/MOMMT) | No | No | V-0 |
PLA + 13 phr expandable graphite + 8 phr ammonium polyphosphate + modified chopstick fiber + modified montmorillonite (PLA/13EG-8APP/MCF/MOMMT) | No | No | V-0 |
Part of Car | Polymer |
---|---|
Timing belt/engine cover | Nylon-6 |
Step-assist, doors, center bridge, sail panel, seat backs and box-rail protector | PP, thermoplastic olefin |
Rear floor | Thermoset polymer matrix (with glass fiber) |
Tire | SBR |
Thread | SBR, NBR, BR |
Inner liner | Isoprene isobutylene copolymer, NBR |
Internal compounds | NBR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alias, A.H.; Norizan, M.N.; Sabaruddin, F.A.; Asyraf, M.R.M.; Norrrahim, M.N.F.; Ilyas, A.R.; Kuzmin, A.M.; Rayung, M.; Shazleen, S.S.; Nazrin, A.; et al. Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review. Coatings 2021, 11, 1355. https://doi.org/10.3390/coatings11111355
Alias AH, Norizan MN, Sabaruddin FA, Asyraf MRM, Norrrahim MNF, Ilyas AR, Kuzmin AM, Rayung M, Shazleen SS, Nazrin A, et al. Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review. Coatings. 2021; 11(11):1355. https://doi.org/10.3390/coatings11111355
Chicago/Turabian StyleAlias, Aisyah Humaira, Mohd Nurazzi Norizan, Fatimah Athiyah Sabaruddin, Muhammad Rizal Muhammad Asyraf, Mohd Nor Faiz Norrrahim, Ahmad Rushdan Ilyas, Anton M. Kuzmin, Marwah Rayung, Siti Shazra Shazleen, Asmawi Nazrin, and et al. 2021. "Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review" Coatings 11, no. 11: 1355. https://doi.org/10.3390/coatings11111355