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Abstract: Hexane-1,6-diammonium pentaiodobismuth (HDA-BiI5) is one of the narrowest bandgap
molecular semiconductor reported in recent years. Through the study of its energy band structure, it
can be identified as an N-type semiconductor and is able to absorb most of the visible light, making
it suitable to fabricate solar cells. In this paper, SnO2 was used as an electron transport layer in
HDA-BiI5-based solar cells, for its higher carrier mobility compared with TiO2, which is the electron
transport layer used in previous researches. In addition, the dilution ratio of SnO2 solution has an
effect on both the morphology and photophysical properties of HDA-BiI5 films. At the dilution ratio
of SnO2:H2O = 3:8, the HDA-BiI5 film has a better morphology and is less defect inside, and the
corresponding device exhibited the best photovoltaic performance.

Keywords: molecular semiconductor; solar cell; SnO2; thin film

1. Introduction

In recent years, solar cells have achieved rapid development, especially the third-
generation solar cells [1–3]. Researchers have also started to experiment with various new
materials to develop solar cells with better performance [4–6]. The molecular semiconduc-
tor with the narrowest bandgap of 1.89 eV, hexane-1,6-diammonium pentaiodobismuth
(HDA-BiI5), was reported by Zhang et al. in 2017 and was concluded to be an indirect
bandgap semiconductor [7]. It was also reported in 2016 as a hybrid organic-inorganic
material by Fabian et al. [8]. They identified HDA-BiI5 as an N-type semiconductor by
its energy band structure. With the narrow bandgap, HDA-BiI5 is able to absorb most
of the ultraviolet-visible (UV-vis) light from sunlight, making it more suitable than other
molecular semiconductors for use as a light absorption layer in solar cells.

Up to now, two types of HDA-BiI5-based photovoltaic devices have been reported.
Fabian et al. [8] used a mesoporous structure with TiO2 and 2,2′,7,7′-tetrakis(N,N′-di-p-
methoxyphenyl-amine)9,9′-spirobifluorene (Spiro-MeOTAD) as the electron transport layer
(ETL) and the hole transport layer (HTL), respectively. A photocurrent of 0.124 mA/cm2

and a power conversion efficiency (PCE) of 0.027% were obtained. Liu et al. [9] prepared
HDA-BiI5-based solar cells with only TiO2 as the ETL and no HTL in 2020. They realized an
open-circuit voltage (Voc) of 0.55 V and a short-circuit current density (Jsc) of 17.5 µA/cm2.
The value of PCE is not given, but according to the current-voltage (J-V) curve, it is an
order of magnitude lower than that of Fabian et al. A comparison revealed that only one
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material, TiO2, had been tried for the electron transport layer, and perhaps the devices
could be optimized from this aspect.

SnO2 has a higher carrier mobility than that of TiO2, [10,11], which may be able to
improve the device performance, forming better interfacial contact and efficient transport
of photo-generated electrons [12,13]. In this paper, the energy band structure of HDA-BiI5
thin films, as well as their film morphology and photophysical properties on ITO/SnO2
substrates, are investigated in detail. In addition, whether the dilution ratio of SnO2 to
H2O during the preparation of the SnO2 layer has any effect on the morphology and
photophysical properties of HDA-BiI5 films was carried out, [14–19] and the corresponding
solar cells were fabricated.

2. Materials and Methods
2.1. Preparation of Device

To start, 100 mL of HI solution was mixed with 5.9 g (10.0 mmol) of BiI3 powder in a
round bottom flask and was stirred for about 1 h at room temperature on a temperature-
controlled digital magnetic stirrer to dissolve it fully. After the internal temperature reached
90 ◦C and stabilized, 1.16 g (10.0 mmol) of 1.6-hexanediamine crystals was added and
stirred magnetically while heating for 12 h to dissolve and react with 1,6-hexanediamine
crystals. After that, the solution in the flask was poured into a clean beaker and placed
on an intelligent temperature-controlled baking table, and the solution in the beaker was
slowly evaporated and crystallized at 90 ◦C until dark red crystals. HDA-BiI5 crystals were
precipitated at the bottom of the beaker. The crystals were scraped from the beaker with a
glass rod, grinded into a powder, and placed into a small glass vial, which was then sealed
with a sealant and kept as a reserve.

Indium tin oxide (ITO) was selected as the substrate and cleaned using detergent,
isopropanol and acetone mixture, ethanol, and deionized water in turn. Regarding the
preparation of SnO2 ETL, 300 µL of SnO2 solution was mixed with 600, 800, 1000, 1200,
and 1400 µL of ultrapure water to make up a solution with dilution ratios of 3:6, 3:8, 3:10,
3:12 and 3:14, respectively. It was then mixed well by ultrasonication. The five different
dilution ratios of SnO2 solutions were spin-coated onto the conductive substrates at a rate
of 4000 rpm for 30 s. Immediately after spin-coating, the films were annealed on a hot plate
at 150 ◦C for 30 min. UV ozonation was performed for 15 min after annealing to provide a
better hydrophilic surface for the spin-coating of the light absorption layer.

In the preparation of HDA-BiI5 films, 500 mg of stored HDA-BiI5 powder was taken
out and poured into a small clean transparent glass vial, followed by 0.4 mL of DMF
solution as solvent. The glass vial with the solution was put into the ultrasonic cleaning
equipment for 3 h until the powder was completely dissolved in the DMF solvent, and then
the solution was filtered with a 0.22-µm-diameter filter nozzle to complete the preparation
of HDA-BiI5 precursor solution. Next, 40 µL of HDA-BiI5 precursor solution was uniformly
coated on the ITO/SnO2 substrate, and spun for 40 s at a rate of 6000 rpm. Immediately
after spin-coating, it was annealed on a hot plate at 150 ◦C for 30 min. After annealing, the
HDA-BiI5 light absorption layer was also prepared.

The HTL was prepared using the directly purchased Spiro-MeOTAD spin-coating
solution. Then, 20 µL of Spiro-MeOTAD spin-coating solution was pipetted and spin-
coated at 3000 rpm for 30 s. After spin-coating, it was annealed on a hot plate at 60 ◦C for
8 min. Finally, an 80-nm-thick gold electrode was thermally evaporated on the HTL. The
effective area of the prepared photovoltaic devices was 0.2 × 0.2 cm2.

2.2. Characterization

The surface morphology of HDA-BiI5 thin films was characterized by scanning elec-
tron microscope (SIGMA, Zeiss, Jena, Germany). The X-ray diffraction (XRD) patterns
were obtained from X-ray diffractometer (D8 focus, Bruker, Dresden, Germany) with Cu
radiation (λ = 1.5418 Å) at 40 kV, 40 mA. Energy dispersive X-ray spectroscopy (EDS)
was used to analyze the elemental composition of the film. Ultraviolet photoemission
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spectroscopy (UPS) was used to determine the electronic band structure of the HDA-BiI5
thin film. A photoluminescence spectrometer (FluoroMax-Plus, HORIBA Scientific, Paris,
France) was applied to obtain the photoluminescence spectra (PL) of light absorption layer
films at 370 nm. The current–voltage (J-V) curve of the solar cells was measured by using
a solar simulator and an electrochemical workstation (Oriel, Newport, RI, USA) under
air-mass (AM) 1.5 sunlight.

3. Results and Discussion

The morphology of HDA-BiI5 films prepared on SnO2 layers spin-coated with five
dilution ratios is shown in Figure 1. As can be seen from the figures, when the SnO2/H2O
dilution ratio is 3:6, there are a lot of cracks and holes on the surface of HDA-BiI5 film,
and the grain boundaries cannot be obviously distinguished. Such cracks and holes may
make contact between the hole transport layer and the electron transport layer in solar
cells, resulting in electrical leakage. When the ratio SnO2:H2O = 3:8 is used to prepare
the SnO2 layer, the grain boundaries of HDA-BiI5 thin film are obvious, and the surface
is smooth with no obvious cracks. Although there are still a few holes, they are relatively
small, illustrating that the film quality is improved. When the SnO2/H2O dilution ratio is
3:10, obvious cracks and large holes appear again on the surface of the HDA-BiI5 film, and
the grain boundaries become blurred. After continuously adjusting the dilution ratio to
3:12 and 3:14, the cracks and holes on the surface of the HDA-BiI5 film continue to increase
and increase, making it difficult to distinguish single crystal particles.
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Figure 1. Scanning electron microscopy of HDA-BiI5 thin films on electron transport layers prepared with different dilu-
tion ratios of SnO2 and H2O: (a) SnO2:H2O = 3:6, (b) SnO2:H2O = 3:8, (c) SnO2:H2O = 3:10, (d) SnO2:H2O = 3:12, (e) SnO2:H2O 
= 3:14. 

Figure 2 shows XRD patterns of HDA-BiI5 thin films deposited on “Glass/ITO/SnO2” 
substrates. The main diffraction peak locations and corresponding crystal planes marked 

Figure 1. Scanning electron microscopy of HDA-BiI5 thin films on electron transport layers prepared with different dilution
ratios of SnO2 and H2O: (a) SnO2:H2O = 3:6, (b) SnO2:H2O = 3:8, (c) SnO2:H2O = 3:10, (d) SnO2:H2O = 3:12, (e) SnO2:H2O = 3:14.

Figure 2 shows XRD patterns of HDA-BiI5 thin films deposited on “Glass/ITO/SnO2”
substrates. The main diffraction peak locations and corresponding crystal planes marked
in the figure are basically consistent with the XRD characteristics of the HDA-BiI5 thin films
reported by Fabian et al. [8] and Zhang et al. [7], constituting a primitive orthorhombic
crystal structure of space group Pna21, a = 15.1729(11), b = 14.3521(13), c = 8.6623(7) Å (at
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296 K) [7]. It can be seen from the figure that the XRD characteristic curves of HDA-BiI5
thin films on SnO2 layers prepared with five dilution ratios are similar, which indicates
that the lattice structure of the thin films was not changed. In addition, with the dilution
ratio of SnO2 to H2O from 3:6 to 3:8, the peak strength slightly increases and reaches the
highest at the ratio of 3:8, and then it slightly decreases as the ratio continues to change to
3:10, 3:12, and 3:14. This indicates that the crystallinity of the HDA-BiI5 thin film prepared
when the dilution ratio of SnO2 to H2O is 3:8 is the best, which is also consistent with the
morphology characteristics of the HDA-BiI5 thin film observed in Figure 1.
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the SnO2 layers are prepared with different dilution ratios.

The best quality film deposited on the “Glass/ITO/SnO2” substrate with SnO2:H2O = 3:8 in
Figure 1b was analyzed by EDS, as shown in Figure 3 below. The presence of each element
of the HDA-BiI5 in the energy spectrum can be seen from the figure, which, together with
the XRD results, verifies the accuracy of the prepared HDA-BiI5 films. In addition, the
presence of Sn elements may be due to the ITO substrate and the SnO2 layer.
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Figure 4 shows the ultraviolet-visible (UV-vis) absorption spectra of the HDA-BiI5
films on SnO2 layers prepared with SnO2 and H2O in five dilution ratios of 3:6, 3:8, 3:10,
3:12, and 3:14, respectively. The photo absorption range of the HDA-BiI5 films prepared on
the five different SnO2 layers is basically the same, and the corresponding Tauc plot shows
that the bandgap of the HDA-BiI5 material in our experiment is about 1.94 eV, which is
close to the previously reported 1.89 eV [7].
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The energy band structure of HDA-BiI5 thin film was measured by UPS, as shown
in Figure 5. The Fermi energy level is corrected to 0 eV using a gold standard sample,
and a bias voltage of −10 eV is applied to test the power function. The power function is
calculated as follows in Equation (1).

ϕs = hv−
(

Ecuto f f − EF

)
= hv− Ecuto f f + EF (1)

where hv is the excitation source energy, the HeII UV source used in this experiment is
21.22 eV; Ecutoff is the cutoff binding energy, as seen in the left figure; the cutoff binding
energy is 16.21 eV; and EF is the Fermi energy level, which was corrected to 0 eV during the
test, so the calculated work function of HDA-BiI5 is 5.01 eV. In order to further determine
the valence band maximum (VBM) position of the material, tangent lines are made in the
right figure, as shown in the red line, and the binding energy at the intersection point
is 1.57 eV. Therefore, the VBM of the material is −6.58 eV. Based on the band gap of
the material obtained from the absorption spectrum, the conduction band bottom of the
material can be calculated as −4.64 eV, and its Fermi energy level is −5.01 eV which is
closer to the CBM, indicating that the material is an N-type semiconductor. Although both
are identified as N-type semiconductors, the VBM of HDA-BiI5 in this paper differs from
the data reported in 2016 by nearly 1 eV. The measured optical bandgap of the material
also differs from the 2.1 eV reported in 2016 and the 1.89 eV in 2017. In particular, the CBM
of HDA-BiI5 in Fabian et al.’s research is higher than that of TiO2 so that electrons can
smoothly transport from HDA-BiI5 to TiO2; however, in this experiment, the calculated
CBM of HDA-BiI5 is lower than that of SnO2, so there can be a potential barrier for electron
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transport from the light absorption layer to the ETL. Furthermore, among the commonly
used materials for electron transport, there are none that can match the −4.64 eV CBM.
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Figure 6 shows the photoluminescence spectra of HDA-BiI5 films prepared on “Glass/
ITO/SnO2” substrates at the different dilution ratio of SnO2 to H2O. The excitation wave-
length of the test is 370 nm and the scanning wavelength is between 450 and 850 nm. The
main emission peaks of the films can be seen in the range of 500 to 700 nm, mainly due
to the semiconductor bandgap luminescence, while other reasons, such as surface defects,
may be responsible for the other lower emission peaks. When the dilution ratio of SnO2 to
H2O is 3:8, the PL peaks of the prepared HDA-BiI5 films are the lowest. Combined with
the SEM morphology of the HDA-BiI5 films at SnO2: H2O = 3:8, the morphology of the
film is the best among the five species, and the defects in the film are correspondingly less,
so the recombination of the photogenerated carriers in the PL test are the least, illustrating
the forming of a better charge transportation between the HDA-BiI5 film and the SnO2
layer among the five cases. After that, with the increase in the proportion of H2O in the
SnO2 solution, the PL peak of the HDA-BiI5 film becomes higher again. Combined with
the analysis of the SEM diagram in Figure 1, it may be that the lower the concentration
of the SnO2 solution diluted, the poorer the quality of the formed SnO2 layer, the sparser
the crystal growth, and the rougher the surface, which in turn leads to the poor quality of
the HDA-BiI5 film and the increase in the internal defects, making the exciton radiation
recombination increase, and the electron generated in HDA-BiI5 layer cannot be effectively
transferred into the SnO2 electron transport layer.
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The corresponding solar cells were fabricated using different SnO2 precursor solution
concentrations; their J-V curves are shown in Figure 7. Consistent with the studies on
the film quality and photophysical properties above, the photovoltaic performance of the
devices also reached the maximum at SnO2:H2O = 3:8; the photovoltaic parameters are
shown in detail in Table 1. The distribution of the performance parameters of the other
devices we prepared with a dilution ratio of SnO2:H2O = 3:8 is shown in Figure 8, where
the parameters are relatively close to each other, as seen in Table 2, proving the reliability
and reproducibility of the study results. Further work can be carried out to improve the
device performance by reducing energy level mismatches, such as using composite ETL
and other preparation methods of SnO2 [20–22].
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Table 1. Photovoltaic performance parameters of solar cells fabricated with different dilution ratio of
SnO2 to H2O.

SnO2:H2O PCE (%) Voc (V) Jsc (µA/cm2) FF (%)

3:6 0.0002 0.04 15.02 30.52

3:8 0.0024 0.30 23.03 34.82

3:10 0.0013 0.18 19.40 37.26

3:12 0.0008 0.14 19.84 30.46

3:14 0.0001 0.03 13.44 32.01
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Table 2. Photovoltaic parameters for the five devices fabricated at 3:8 dilution ratios.

PCE (%) Voc (V) Jsc (µA/cm2) FF (%)

0.0024 0.3 23.03 34.82

0.0021 0.2889 21.2 33.8468

0.0023 0.4395 18.5 28.6934

0.002 0.4407 17.7 25.4019

0.0022 0.3242 21.8 30.6429

4. Conclusions

In this paper, HDA-BiI5 thin films were prepared on ITO/SnO2 substrates, and the film
quality, energy band structure, and photophysical properties of the films were investigated
in detail. It was found that its conduction band minimum was −4.64 eV, which does not
match well with any of the widely used electron transport materials, which is a problem to
be solved in the application of HDA-BiI5 in photovoltaic field. In addition, the dilution
ratio of SnO2 to H2O in the preparation of SnO2 layers can affect the morphology and
photophysical properties of HDA-BiI5 films. The corresponding solar cells also exhibited
the best performance at the 3:8 dilution ratio, showing a PCE of 0.0022 ± 0.0002%. This
work can provide references and ideas for the selection and optimization of ETL in the
fabrication of HDA-BiI5-based solar cells.
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