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Abstract: Mn-Co Spinel is considered as one of the most promising materials for the interconnect
protection of solid oxide fuel cells; however, its conductivity is too low to maintain a high cell
performance as compared with cathode materials. Element doping is an effective method to improve
the spinel conductivity. In this work, we proposed doping Mn-Co spinel powder with Cu via a
solid phase reaction. CusMn; 5_xCo15-yO4 with 5 =0.1,0.2, 0.3, and x + y =  was obtained. X-ray
diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) were used
to evaluate the Cu-doping effect. After sintering at 1000 °C for 12 h, the yield exhibited the best
crystallinity, density, and element distribution, with a phase composition of MnCo,;04/CuxMn3_,Oy
(x=1, 1.2, 1.4 or 1.5). X-ray photoelectron spectroscopy (XPS) was used to semi-quantitatively
characterize the content changes in element valence states. The areal fraction of Mn?* and Co®* was
found to decrease when the sintering duration increased, which was attributed to the decomposition
of the MnCo,04 phase. Finally, coatings were prepared by atmospheric plasma spraying with doped
spinel powders and the raw powder Mn; 5Co1 504. It was found that Cu doping can effectively
increase the conductivity of Mn-Co spinel coatings from 23 S/cm to 51 S/cm. Although the dopant
Cu was found to be enriched on the surface of the coatings after the conductivity measurement,
which restrained the doping effect, Cu doping remains a convenient method to significantly promote
the conductivity of spinel coatings for SOFC applications.

Keywords: Mn-Co spinel; Cu doping; conductivity; SOFC; interconnect

1. Introduction

Solid oxide fuel cells (SOFC) are high-temperature energy conversion devices that
can directly convert the chemical energy of fuel into electrical energy. They mainly consist
of a porous anode/cathode, a dense electrolyte, and an interconnect. As an important
part, the interconnect provides electrical contact between cells while isolating fuel gas from
air. Ferritic stainless steel (FSS) has been widely used as interconnect material due to its
outstanding oxidation resistance and suitable thermal expansion coefficient [1-3]. However,
at elevated temperature, the Cr of FSS is oxidized to form Cr;O3, CrO3, or even CrO,(OH)s.
These substances can accumulate at the cathode and react with cathode materials, forming
a low active phase and deteriorating cell performance. At present, the above problems are
mainly solved by introducing protective coatings [4,5].

(Mn,Co)304 spinel coating is often used to diminish the evaporation of Cr and thus
reduce the performance degradation and prolong the service life of the stack. However,
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the theoretical conductivity of (Mn,Co)30y spinel at elevated temperature is only 60 S/cm,
which is much lower than that of the cathode material, such as LSCF > 200 S/cm at
600-800 °C [6-9]. Many efforts have been made to improve the conductivity of Mn-Co
spinel coating. Fe doping can reduce the growth of CryOj3 film and improve the oxidation
resistance, but this reduces the conductivity of spinel coatings [10-13]. Ce doping can
enhance the adhesion and improve the interfacial stability of oxide film, but the effects
depend on the substrate materials [14-16]. Cu doping can improve the conductivity and
adjust the thermal expansion coefficient of spinel coatings [17-19].

For promoting the conductivity of Mn-Co spinel coatings, in this work, we prepared
Cu-doped Mn-Co spinel powder via the solid-phase reaction method. The doped powder
was denoted as CusMn; 5 Co15-yO4 (6 =0.1,0.2, 0.3, x + y = §). The first part of this
work was to study the optimal doping amount of Cu, and then the doping conditions
were studied to improve the doping effect. Finally, the doped powder was used to prepare
coatings on FSS substrate to evaluate the doping effect using a plasma spray.

2. Experiment
2.1. Powder Preparation and Characterization

The raw materials, as shown in Figure 1, were Cu powders (Tijo, Changsha, China)
with D5 =21.58 pm, and Mn; 5Co; 504 powder with D5 = 19.2 um (Terio, Qingdao, China).
Three groups of doping powder were prepared with controlled Cu-doping as shown in
Table 1. The raw powders were mechanically mixed in a roller mixer at a speed of 600 r/min
for 20 h. After mixing, the powders were transferred into a muff furnace for solid-phase
reaction sintering, and then the sintered powders were sieved to maintain the particle size
below 50 um. The phase structure of the sieved powders was checked by X-ray diffraction
(XRD, Bruker D8 Advance, Bruker Cop., Karlsruhe, Germany) in the range of 10-90°
(0.01° /step, 0.167 s/step). The micromorphology and element distribution of the sieved
powders were characterized by a scanning electron microscope (SEM, Nova-Nano-450, FEI,
Hillsboro, OR, USA) and energy dispersive spectrometer (EDS, XLT TEM-SDD, AMETEK
EDAX, Philadelphia, PA, USA). The solid-phase sintering process was investigated using
a thermogravimetry-differential scanning calorimetry (TG-DSC, STA-449-F5, NETZSCH,
Selb, Germany) test with a heating rate of 5 °C/min in air. The valence states of the
sintered powders were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher
Scientific Nexsa, Thermo Fisher Scientific Inc., Waltham, MA, USA), and then the content
changes in the element valence states were characterized semi-quantitatively. The XPS
spectra were obtained with monochromatized Al K« radiation. All spectra were recorded
at a take-off angle of 90°. The carbon C 1s peak with a binding energy of 284.5 eV was used
for calibration.

Figure 1. The morphology of Cu powder (a) and Mn; 5Co; 504 powder (b).
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Table 1. The raw material ratio to prepare CusMnj 5_xCo15-yO4 powders.

Mass Percentage (wt%) 5=01 §=0.2 §=0.3
Cu Powder 2.7 5.4 8.0
Mn; 5Coq 504 Power 97.3 94.6 92.0

2.2. Coating Preparation

Al,Oj3 sheets (¢ 18.55 mm x 1.65 mm) were used as substrates. Mn; 5Co1504 and
doped Cug3Mn; 5-xCo15-yO4 powders were used as spraying feedstocks. Atmospheric
plasma spraying equipment (model CLWI-091, GTV, Luckenbach, Germany) was used
to prepare the spinel coating. The spraying process parameters are shown in Table 2.
Before spraying, substrates were ultrasonically cleaned with alcohol to remove any oil and
impurities on the surface.

Table 2. Spray parameters to prepare Cu-doped Mn-Co spinel coatings.

Gas Flow (NL/min)

Current (A) Gun Speed (mm/s) Powder Feeding Rate (g/min)  Spray Distance (mm)

Ar/72 Hy/8

620 800 15 110

2.3. Coating Characterization

The sectional morphology, density, and element distribution of the spinel coating
were analyzed by SEM and EDS. The phase composition of the coating was characterized
by XRD. The conductivity of coatings was determined by the four-probe method. The
conductivity test setup is shown in Figure 2. Testing samples were placed in a tubular
furnace, which was heated up to 800 °C at a rate of 5 °C/min. A constant current of
0.2 A was provided between I'* and I™ through silver lines, and the corresponding voltage
between U* and U~ was recorded. The coating conductivity (¢, S/cm) was obtained as
e =1+ (C x R x W), where C denotes the wiring coefficient, R denotes the calculated
resistance ((2), and W denotes the thickness of the coating (cm).

—_ thermal couple
= N quartz tube

/

I+ o

U-

silver paste

Figure 2. Illustration of the conductivity measurements setup.

3. Results and Discussion
3.1. Phases and Structures

Figure 3 shows the XRD patterns of CusMnj 5 xCo15-yO4 (6 =0,0.1,0.2,0.3, x + y = 0)
powders sintered at 900 °C for 12 h. CusMny 5_xCo15-yOy4 (8 =0.1, 0.2, 0.3) powders were
composed of CuO, MnCo,04, CuMn3_,O4 (x=1,1.2,1.4, or 1.5), and (Co,Mn)(Co,Mn),O4.
(Co,Mn)(Co,Mn),0y is a mixture of MnCo0,04 and CoMn,0,. Cu-doping can promote
the formation of the cubic spinel phase. After increasing the amount of Cu-doping, the
diffraction peaks were found to shift slightly toward the right because of the replacement of
Co?* (0.074 nm) with Cu?* (0.073 nm), and the diffraction intensity of (Co,Mn)(Co,Mn),O,
and CuO was found to decrease, which indicates the doping reactions had taken place.
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When both CuO and CoMn; 0O, were present in the coating, the uniformity and conductivity
of the powder were reduced [18]. It was found that the (Co,Mn)(Co,Mn),04 and CuO
of Cug3Mny 5-xCo15-yO4 powder exhibited the lowest diffraction intensity and the best
crystallinity of the spinel phase.

900 'C/12 h
¢: MnCo,0, /CuMn, 0,

*: CuQ a: (Co,Mn)(Co,Mn),0,

Intensity

[t A
8=0 Cunsintered) 5

W@b et et s

0 20 10 60 80 100
20/°

Figure 3. XRD patterns of Mn; 5Co1 504 powder and CusMn;j 5 5¢C01.5_05¢O4 powder.

3.2. Solid Phase Reactions

CusMn; 5 xCo15-yO4 (6 =0, 0.1, 0.2, 0.3) powders were tested by TG-DSC to eval-
uate the physical and chemical changes during sintering. According to the TG curve in
Figure 4a and the subsequent XRD analysis (Figure 5), it was found that the powders
gained some weight at 500-800 °C, which was mainly attributed to the oxidization of Cu to
CuO. However, at 800-1000 °C, the powder weights were found to decrease slightly and the
CuO had disappeared. At 1034 °C, the powder weight was slightly decreased again, which
might be related to the decomposition of the spinel phase. Then, the powder was found
to lose weight violently between 1200-1300 °C, which indicates that the spinel phases
were decomposed. As shown in Figure 4b, the commercial Mn; 5Co; 504 powder had no
endothermic peak at 1034 °C, while CusMny 5_xCo15-yO4 (8 =0.1,0.2, 0.3) powder had an
endothermic peak. According to public reports [9,13,20,21], the formation of CuxMnj3.,Oy4
and MnCo,0; is an exothermic process. Since the MnCo,0O4 phase of the commercial
Mn; 5Co1 504 powder showed no significant decomposition at 1034 °C, it was inferred
that the endothermic peak at 1034 °C was the result of the decomposition of CuxMn;z.,Oj.
Furthermore, in the range 1100-1300 °C, after increasing the amount of Cu, the TG curve
shifted toward the left, and the stable temperature of the spinel phases decreased. The
DSC curves were found to gradually flatten and continuously exhausted heat. As shown
in Figure 4c,d, the Cug3Mn; 5-xCo15-yO4 powder exhibited the best crystallization. In
conclusion, CuxMnj3_,Oy spinel was successfully synthesized between 900 °C and 1034 °C.
The powders with & = 0.3 had the best crystallinity of spinel phases and consisted of more
conductive spinel phase.
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Figure 4. (a) TG curves of CusMn; 5_5Co15-yO4 powders; (b) DSC curve; (c) XRD patterns of
powder sintered at 1100 °C for 4 h with § = 0.1 and 0.3; (d) XRD patterns of powder sintered at

1300 °C for 4 h with 6 = 0.1 and 0.3.
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Figure 5. XRD patterns of doped powders sintered under different conditions: (a,b) 500-1300 °C for
4 h; (c,d) 1000 °C for 2-24 h.
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3.3. Sintering Conditions

Cup3Mn; 5-xCo15-yO4 powders were prepared at controlled sintering temperatures
and durations. Cu was introduced into the spinel lattice by sintering. The more Cu that
entered the spinel lattice, the better the conductivity of the coating. The phase composition,
crystallization, and surface morphology of the prepared Cug3Mn; 5-xCo15-yO4 powders
were specifically investigated. According to the XRD patterns of the powders sintered
at 500-1300 °C for 4 h, it was found that, with the increase in sintering temperature, the
abundance of CuO and (Co,Mn)(Co,Mn),04 phases reduced, while the abundance of
MnCo,04/CuxMn;3_, Oy spinel phases increased. The crystallinity of the spinel phases
increased firstly and then decreased as the temperature increased; thus, the best crystal-
lization temperature was between 1000-1100 °C, as shown in Figure 5. According to the
morphology of the sintered powders, the powder density was found to increase when the
temperature increased from 900 °C to 1300 °C. After sintering between 1100-1300 °C, the
powder was found to be severely agglomerated, as shown in Figure 6, while at 1000 °C,
the powder porosity was reduced.

Figure 6. The morphology of Cu0.3Mn1_5,XC0145,yO4 powders sintered at: (a) 900 °C for 12 h;
(b) 1000 °C for 12 h; (c) 1000 °C for 12 h (cross-sectional); (d) 1100 °C for 4 h; (e) 1300 °C for 4 h;
(f) 1100 °C for 4 h (cross-sectional).

After sintering at 1000 °C for 2 h, 4 h, 8 h, 12 h, 16 h, and 24 h, the intensity of the
diffraction peak and crystallinity of spinel were found to firstly increase and then decrease
after 12 h. The change in diffraction peaks was related to the amount of spinel phases. The
diffraction intensity of powder sintered for 12 h was the highest and the crystallinity was
the best, as shown in Figure 5¢,d. In Figure 7, EDS analysis showed a uniform distribution
of Cu, which indicates that the Cu has been sucessfully doped into Mn; 5Co; 504 spinel
powders. In conclusion, 1000 °C/12 h was the best condition for Cu doping.

Mn KGO Co KGO

' —l Ju
-.

Figure 7. The morphology and elements distribution of Cup3Mn; 5-xCo15-yO4 powders sintered at

1000 °C for 12 h (a—d) low magnification; (e—h) high magnification.
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3.4. Stability of Doped Powders

As Cu-Mn spinel is less stable than Mn-Co spinel at elevated temperature, when
doping Mn-Co spinel with Cu to improve the conductivity, the stability of the obtained
spinel is reduced. After being sintered at 1000 °C for 4 h, 12 h, and 24 h to allow the
doping, the Cup3Mn; 5-xCo15-yO4 powder was heated to 800 °C and maintained in that
state for 12 h to evaluate the stability. In Figure 8a, the XRD patterns before and after the
heat treatment are presented. The MnCo,04/CuxMnj3_,O4 phase was detected after the
heat treatment, but the diffraction intensity was significantly diminished. TG and DSC
tests were performed from room temperature to 800 °C with a ramping rate of 5 °C/min,
and a preservation stage of 12 h, in order to study the stability of the doped powders.
It was found that during ramping, the DSC plots showed evident exothermic behavior.
However, during the following preservation stage, both the TG and DSC curves exhibited
a linear behavior in which no endothermic and exothermic peak was visible, as shown
in Figure 8b—d. This indicates that the doped powder had a good stability during the
preservation process. For the Cu,Mn3_,O4 powder, when x = 1.2, 1.4, 1.5, the CuO and
spinel phase coexisted at 800 °C. However, according to the XRD and DSC patterns, it can
be seen that the decomposition of CuxMnz_,Oy spinel did not occur and CuO was not
formed. Therefore, the Cu,Mn3_4O4 phase was mainly composed of the CuMn,O;, phase.
In conclusion, the MnCo,04/CuMn,O4 phase in the powder can exist stably at 800 °C.

108

(a) a: MnCo,0,/CuMn, O, (b) W
" — 1000 T/12h
Meat treatment at 800 C for 12 h 106 4 —— 1000 °C/24 h
. N f . 105 1
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Figure 8. (a) XRD patterns before and after heating at 800 °C of powder sintered at 1000 °C for 12 h;
(b,c) TG-DSC curves of powders sintered at 1000 °C for 4 h, 12 h, and 24 h; (d) DSC curves during
the heating process.

3.5. Elemental Composition

To determine the elemental composition and valence states of Cug3Mn 5 xCo15-yO4
powders, XPS tests were carried out. As shown in Figure 9a, Co, Mn, Cu, O, and C were
identified in the coating. According to the Co 2p spectrum in Figure 9b, the low-energy
peaks (780.6 and 796.1 eV) and high-energy peaks (781.6 and 797.4 eV) in the Co 2P/,
and 2Py /, regions were ascribed to Co** and Co?*, respectively. In addition, the peaks
with binding energies of 786.6 eV and 803.6 eV were identified as the satellite peaks of
Co?* and Co®* [22-24]. As illustrated in Figure 9c, the peaks at 641.5, 642.3, and 642.8 eV
corresponded to Mn?*, Mn®*, and Mn**, respectively [25-27]. In Figure 9d, the peaks at
945 eV were attributed to Cu?* satellites, while those at 930.8 and 933.4 eV were evidence
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of the presence of Cu* and Cu?* in the Cu 2P3, orbital peaks. Peaks at 953.5 and 950.6 eV
can be assigned to the existence of Cu?* and Cu*, which were observed in the Cu 2P; /2
orbital [28-30]. The peaks at 530.4 eV and 531.9 eV, as shown in Figure 9e, corresponded to
the oxygen-metal bond (metal = Mn, Co) and O-H bond in the spinel phase, respectively [3].
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Figure 9. XPS spectra of Cug3Mny 5_xCo1.5-,O4 powders sintered at 1000 °C: (a) survey; (b) Co 2P of 1000 °C/12 h sample;
(c) Mn 2P of 1000 °C/12 h sample; (d) Cu 2P of 1000 °C/12 h sample; (e) O 1s of 1000 °C/12 h sample.

According to public reports [10,31,32], various valences exist in Mn-Co-Cu spinel.
By performing a deconvolution of the XPS spectra, the relative proportion of different
valence states of elements can be obtained. The relative proportion is listed in Table 3. It
was found that the relative proportion of Mn®* increased to 41.3% when sintered for 12 h
and then decreased 33.6% after 24 h of preservation. The areal fraction of Mn?* and Co®*
increased first and then decreased when the sintering duration increased. The increase in
Mn?* indicated an increase in the CuMn,O, phase, and the decrease in Mn?* and Co®*
was related to the decomposition of the MnCo,0, phase. Moreover, the increase in Mn**
indicated an increase in MnO,, which diminished the conductivity of the prepared powders

or coatings. According to Table 3 the powder prepared at 1000 °C and sintered for 12 h
gave the most MnCo,0, and CuMn;Oy.

Table 3. Areal fractions of Mn and Co in the powders prepared under different conditions.

Areal Fraction (%)

Element State
1000 °C/4 h 1000 °C/8 h 1000 °C/12 h 1000 °C/24 h
Mn?2* 32.3 46.2 36.7 342
Mn3* 31.7 33.2 41.3 33.6
Mn** 36.0 20.6 22.0 322
Co?+ 23.6 20.9 17.7 26.3
Cot 76.4 79.1 82.3 73.7

3.6. Coatings Conductivity

To evaluate the doping effect, commercial Mn; 5C01.504 and Cug3Mn; 5 xCo15-yO4

powder (sintered at 1000 °C and maintained for 8 h, 12 h, and 24 h, respectively) were
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sprayed on Al,Oj sheets with an atmospheric plasma spray; the parameters are provided
in Table 1. During spraying, the spinel powder was injected into the plasma plume, the
temperature of which was as high as 15,000 °C, then the injected powder was heated,
melted, accelerated, and impacted on the substrate to form coatings. Deoxidization and
decomposition of the spinel powder occurred during spraying; therefore, low active phases
such as MnO, and CoO were generated and left in the coating. As a result of the very
short spraying time, only a small part of the powder was decomposed, and most of the
powder retained the spinel structure. Before the conductivity measurement, the sample
was heated to 800 °C and maintained for 12 h to allow the densification of the coating and
cure the decomposed phases. As shown in Figure 10, after the heat treatment, significant
signals of MnCo,04/CuMn,0O4 were detected, which indicates a transference of low
conductive phases to the spinel phase. For this reason, the measured coating conductivity
increased with the temperature during preservation with a duration up to 50 h, as shown in
Figure 11. The conductivity of the coating prepared with powder sintered for 12 h was
about 51 S/cm after 47 h of preservation. For the coating prepared with powder sintered at
1000 °C for 8 h and 24 h, the conductivity was 45 S/cm and 49.2 S/cm, respectively, which
are more than double that of the Mn; 5Co; 504 coating, 23 S/cm after 50 h of preservation.
Therefore, by applying Cu doping, the conductivity of Mn-Co spinel coatings can be
significantly improved. Moreover, according to Figures 10 and 11, the coating prepared
with powder sintered at 1000 °C for 8 h exhibited lower crystallinity and less spinel content,
resulting in a coating conductivity lower than that of the 1000 °C/12 h and 24 h samples.

(a) Spray coating ALO, »: CoO ®: CoMn,0, 4 : CuMn,0, (b) Coatings/800 'C-50 h ¢: ALO;*: CuO &: Co;0,
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Figure 10. XRD patterns of coatings prepared with sintering powder for different times: (a) spray state; (b) coatings at

800 °C for 50 h.
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Figure 11. Coatings conductivity prepared from commercial spinel powder and CupsMny 5-xCo15-yO4.
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The sectional morphology and element distribution before and after the conductivity
measurement of the best coating (1000 °C for 12 h) are provided in Figure 12. After the
conductivity measurement, the coating was significantly densified, and no large pores
or cracks were visible on the cross-section. The distribution of Mn and Co exhibited no
evident variation, while Cu was found to be enriched on the coating surface. The enriched
Cu on the surface was then oxidized to CuO at 800 °C, which limited the conductivity of
the coatings. Despite the existence of CuO on the surface restraining the doping effect, Cu
doping remains a convenient method to significantly promote the conductivity of spinel
coatings for SOFC applications.

—n s

Figure 12. Morphologies and compositions of Cug3Mny 5 xCo15 3Oy coating: (a-d) before the conductivity measurement;
(e-h) after the conductivity measurement.

4. Conclusions

The powder CusMn; 5 xCo15-yOy4 (x +y = 8) with & = 0.3 showed a better perfor-
mance than the powder with = 0.1 or 0.2. The results of XRD and TG-DSC indicated that
increasing the dopant amount resulted in an enhanced doping effect. With 5 = 0.3, the
powder had a better crystallinity and a more conductive spinel phase.

The best doping condition for Cug3Mn; 5-xCo15-yO4 powders was 1000 °C for 12 h.
Under this condition, the crystallization of the spinel phase (MnCo,0, and CuxMnz_,O4)
was the best and the powder was moderately dense. The dopant Cu was found to be evenly
distributed in the powders. The CuxMn3_4O4 (x =1, 1.2, 1.4 or 1.5) was found to be mainly
composed of CuMn;0O4 and was sufficiently stable at elevated temperatures. According to
the XPS results, the powder prepared at 1000 °C for 12 h consisted of the most MnCo,0y4
and CuMn,Oy4. When the preservation stage was conducted at 1000 °C with a duration of
less than 12 h or more than 12 h, less MnCo,0, and CuxMnj3_,O4 phases were detected.

Coatings were prepared with doped powders using an atmospheric plasma spray.
After preservation at 800 °C for a duration of up to 50 h, the measured conductivity of the
prepared coatings reached 45 S/cm, 51 S/cm, and 49.2 S/ cm, respectively, i.e., two times
more than that of the Mn; 5Co 504 coating (23 S/cm). Although Cu was enriched on the
coating surface after the conductivity measurement, Cu-doping is still an effective method
to improve the conductivity of spinel coatings used for interconnect protection in SOFC.
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