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Abstract: We present a non-invasive approach for monitoring plasma parameters such as the electron
temperature and density inside a radio-frequency (RF) plasma nitridation device using optical
emission spectroscopy (OES) in conjunction with multivariate data analysis. Instead of relying on a
theoretical model of the plasma emission to extract plasma parameters from the OES, an empirical
correlation was established on the basis of simultaneous OES and other diagnostics. Additionally, we
developed a machine learning (ML)-based virtual metrology model for real-time Te and ne monitoring
in plasma nitridation processes using an in situ OES sensor. The results showed that the prediction
accuracy of electron density was 97% and that of electron temperature was 90%. This method is
especially useful in plasma processing because it provides in-situ and real-time analysis without
disturbing the plasma or interfering with the process.

Keywords: optical emission spectroscopy; plasma nitridation; plasma parameters; machine learning;
virtual metrology

1. Introduction

Recently, plasma processing technology has played a crucial role in the surface modi-
fication of different materials, such as electronics, energy storage, automotive, health, or
environmental applications [1,2]. Control of plasma processing methodologies can only
occur by obtaining a thorough understanding of the physical and chemical properties
of plasmas. However, most plasma processes that are currently used in the industry re-
flect an incomplete understanding of the reactive nature of plasma Thus, they are often
non-predictive, and hence it is not possible to alter the manufacturing process without
the risk of considerable product loss [3,4]. Basic plasma parameters, such as electron
density, electron temperature, are useful information to understand the plasma process,
to determine the proper recipe for plasma processes (etching, deposition, etc.), and also
for the development of further fundamental understanding of the process. Thus, direct
and quantitative real-time diagnostic sensors or techniques of industrial plasma processes
generally pose a significant challenge [5].

Generally, there are two types of plasma diagnostic sensors, called invasive and non-
invasive sensors. The invasive sensor is immersed directly into the plasma and can provide
direct information on ion flux, electron density, temperature, and other properties in the
early stage of the device’s development. However, invasive sensors perturb the state of
plasma and impossible to apply in mass production. Non-invasive sensors are limited in
obtaining direct information of plasmas, but they are preferred in manufacturing because
they do not perturb plasmas. Due to the abundant information that can be extracted from
the data and the direct relationship of the data to the plasma process, optical emission
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spectroscopy (OES) is widely applied to IC fabrication as a non-invasive diagnostic sensor.
OES provides useful information about plasma properties and can be used to identify
specific excited species generated by plasmas. Although the richness of OES data is also a
potential hindrance to effective interpretation and utility of the data, it allows for qualitative
and quantitative analyses of the plasma and enables real-time and non-invasive monitoring
of processes for various applications.

Previous research on OES measurements of plasma processes has largely focused on
plasma monitoring, species identification, and determination of the electron temperature
(Te) and density (ne). In order to use the OES method to determine the Te and ne, one
usually applies the so-called line intensity ratio method, which requires a relative intensity
calibrated spectroscopic system and a suitable physics-based model for excited species in
the plasmas to be investigated, such as the coronal model or the collisional radiative model
(CRM) [6–8]. The emphasis of these models is the identification of major production and
depopulation processes under different plasma discharge conditions and for different kinds
of excited species. The quality of the modelling results, which determines the accuracy of
diagnostic results by the line intensity ratio method, depends on the existence and quality
of the cross-section and reaction rate coefficient data for the collisional radiative processes.
Due to the tremendous efforts in this area [9], the line intensity ratio method is expected to
be further developed in the future. However, this physics-based model approach is still
limited in industrial application to plasma processes that use mixture gases [3].

In recent years, many studies have demonstrated the effectiveness of machine learning
(ML) for OES. The fundamental idea in ML is that, for many applications, training a
computer algorithm for predicting or finding patterns in the behavior of a complex system
by observing many input–output samples of its behavior can be significantly simpler than
developing physics-based models. Many of the ideas underlying this data-driven approach
to understanding complex systems have been known for years, but only recently has it
become more practical to obtain and analyze the enormous quantities of data needed for the
schemes to work. LeCun et al. [10] performed multivariate analysis of spectra and extract
valuable predictive information from large datasets through data mining. Choi et al. [11]
developed a machine learning-based virtual metrology (VM) model on film thickness in
amorphous carbon layer deposition process using in situ OES sensor data. Additionally,
Yue et al. [12], Han et al. [13], and Kim et al. [14] proposed principal component analysis
(PCA) of OES spectrum data for endpoint detection of plasma etching processes in the
semiconductor industry. Even though OES has the advantage of non-invasiveness, it
provides a huge amount of information. Thus, it requires time consuming data analysis and
feature extraction from data, based on expert domain knowledge. Thus, effective implicit
feature extraction is of paramount importance, especially in semiconductor manufacturing
VM. As a result, the analysis of the data is a big challenge.

Thus, in this study, we propose a non-invasive approach for monitoring plasma pa-
rameters such as electron temperature and density inside a radio-frequency (RF) plasma
nitridation device using optical emission spectroscopy (OES) in conjunction with multi-
variate data analysis. Instead of relying on a theoretical model of the plasma emission to
extract plasma parameters from the OES, an empirical correlation was established on the
basis of simultaneous OES and other diagnostics. Additionally, we developed a machine
learning (ML)-based virtual metrology model for real-time Te and ne monitoring in plasma
nitridation process using an in-situ OES sensor.

This paper is organized as follows: in Section 2, the experimental settings and OES
spectrum data characteristics are given. In Section 3, we introduce the multivariate data
analysis approach for monitoring Te and ne during the plasma nitriding process using
OES sensing data with other plasma parameters. The prediction results are presented in
Section 4, and, finally, Section 5 summarizes the work with future research directions.
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2. Experimental Setup and Plasma Characteristics

An inductively coupled plasma (ICP) system (Figure 1) for the plasma nitriding
process (PN- ICP, homemade) was used to diagnose plasma properties during the plasma
nitriding process. The process reactor for nitriding silicon oxide film was 450 mm in
diameter, and an impedance-adjustable antenna was used. The antenna was mounted on
top of the exterior of the reactor using ceramic insulation. The distance between the ceramic
insulator and the substrate was 100 mm, and the substrate diameter was 300 mm. The
radio frequency (RF) power supply used for plasma generation was Cito Plus (13.56 MHz,
1 kW) from Comet (Wünewil-Flamatt, Switzerland), and the impedance matching network
used was AGS (13.56 MHz, 1 kW) from Comet. The process gas was N2 (N2, 99.999%), and
the flow rate and pressure were controlled using a mass flow controller (MFC, Mass-Flo®,
1000 sccm, MKS, Andover, MA, USA). The base pressure of the reactor was 10−6 Torr, and
this was maintained using a turbomolecular pump (STP-1303C, Edwards, Burgess Hill, UK)
and a dry pump (GX100N, Edwards, Burgess Hill, UK).
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Figure 1. Schematic of the experimental device. VI probe (VI1, VI2), mass/energy analyzer (MEA1,
MEA2), optical emission spectroscopy (OES), self-plasma OES (SP-OES), cutoff probe (CP), and
Langmuir probe (LP).

To diagnose the plasma, the following diagnostic devices were installed in the PN-
ICP reactor (Figure 1). A cutoff probe (CP, homemade) [15] and Langmuir probe (LP,
homemade) were used to measure the plasma electron density (ne) and other plasma
properties such as electron temperature (Te), floating potential (Vf), plasma potential
(Vp), and ion saturation current (Iisat). Optical emission spectroscopy (OES, HR4000,
Ocean optics, Dunedin, FL, USA) was used to measure the wavelength and intensity. The
wavelength range of the OES was 200–1100 nm. To measure the RF power harmonic
properties at the antenna, the VI probe (VI1, OCTIV POLY, Impedans, Dublin, Ireland) was
installed, and the VI probe (VI2, OCTIV SUITE, Impedans, Dublin, Ireland) was installed
on the substrate. The VI1 and VI2 measures the first to 15th harmonic components. The
components measured in harmonics are the four values of voltage, current, phase, and
harmonic phase, which are recorded as time-series data. For gas species analysis, a residual
gas analyzer (RGA, Prisma Pro QMG 250, Pfeiffer Vacuum, Ablar, Germany) and self-
plasma OES (SP-OES, AEGIS-7W, Nanotech, Yongin, Korea) were installed in the pump
exhaust. Two mass/energy analyzers were installed at the bottom of the substrate and on
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the reactor wall to measure the mass and energy of the ionic species (MEA1: PSM, MEA2:
EQP, Hiden, Warrington, UK).

Plasma parameters were measured at the RF powers of 400, 600, and 800 W, and the
pressures of 10, 20, and 30 mTorr. The characteristics of PN-ICP plasmas are shown in
Figure 2. The data analysis used 54 experimental datasets, and Figure 2 depicts the average
value and standard deviation of each plasma parameter.
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Figure 2. Plasma characteristics of PN-ICP system. (a) Electron density (ne), (b) electron temperature (Te), (c) floating
potential (Vf), (d) plasma potential (Vp), (e) acceleration potential (Va =

(
Vp −Vf)

)
, (f) ion saturation current (Iisat), and

N+, N+
2 ion number (#) density of MEA1(wall) (g,h) and MEA2 (substrate) (i,j). N2 gas flow rate: 66 sccm (10 nTorr),

119 sccm (20 mTorr), and 174 sccm (30 mTorr).

The plasma electron density range of PN-ICP is 6× 109 cm−3–1.5× 1010 cm−3, which
increases with increasing RF power and decreasing gas pressure. The plasma electron
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temperature range is 2–3.4 eV, which slightly increases with increasing RF power and
decreasing gas pressure. Figure 2g–j represents the number density of the N+ and N+

2 ionic
species measured with MEA1 (wall) and MEA2 (substrate). Here, the ion energy distribu-
tions (IEDs) of four ionic species (N+, N+

2 , H2O+, and O+
2 ) were measured, according to

the experimental conditions, to obtain the relative ratio values.
The OES data were collected at 0.1 s intervals, and we detected a 200–1100 nm wave-

length, divided by 3,648 wavelengths with 0.5 nm spectral resolution. To perform the
wavelength calibration, a helium (He) and mercury (Hg) lamp were used [16]. The Atomic
Spectral Database by the National Institute of Standards and Technology [17] was used as
reference for the wavelength values of the atomic spectral line.

Figure 3 presents the optical emission spectrum of PN-ICP system operated in 10,
20, and 30 mTorr at the applied power of 400, 600, and 800 W. The main emission peaks
correspond to several transition lines of atomic nitrogen, N (746 nm), and molecular nitro-
gen. The spectrum is characterized by the first positive system (FPS) (N2, B3Πg → A3Σ+

u
transitions), which is in the range of 478–1100 nm, and the second positive system (SPS)
(N2, C3Πu → B3Σ+

g transitions), which is in the range of 268–546 nm. The characteristic
spectrum of the first negative system (FNS) (N+

2 , B2Σ+
u → X2Σ+

g transitions) is shown in
the 286–587 nm range. These wavelength classifications are given in [18].
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Figure 3. The OES spectrum measured for the exciting RF frequency of 13.56 MHz at 10, 20, 30 mTorr and 400, 600, 800 W.  Figure 3. The OES spectrum measured for the exciting RF frequency of 13.56 MHz at 10, 20, 30 mTorr and 400, 600, 800 W.

The spectra are dominated by strong molecular features, which peak around 300–400 nm
(SPS, FNS) and 500–800 nm (FPS). The FPS intensity increases with applied power and
slightly increases with gas pressure. However, the SPS and FNS intensity slightly increases
with applied power and decreases with gas pressure. In nitrogen plasmas, the atomic
nitrogen species are mainly produced by electron-impact processes such as the dissociative
collisions between electrons and nitrogen molecules or between electrons and nitrogen
molecular ions (dissociative recombination) [8]. The most complete studies on the dissocia-
tive recombination of the nitrogen molecular cations can be found in Little et al. [19] and
Abdoulanziz et al. [20]. Thus, the SPS and FNS depend on the electron temperature, and
this trend is in good agreement with the electron temperature of the PN-ICP system (in
Figure 2b).
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3. Data Correlation Analysis

In this section, we introduce a multivariate data analysis approach for monitoring
Te and ne during the plasma nitriding process using OES. Usually, assessing plasma
parameters, such as Te, and ne, by OES requires complex theoretical modeling of the
electronic states of the atoms and ions of the plasma. Additionally, in order to derive this
theoretical spectrum which may be compared with the experiment, various scattering cross
sections and reaction rate coefficients are required. To overcome the involved difficulties,
we applied a data-driven approach which avoided the microscopic plasma model for
extracting the plasma parameters from and optical emission spectrum. We measured the
emission spectra simultaneously with the plasma parameters in the PN-ICP system and
analyzed the correlation using principal component analysis (PCA).

This section is divided into subsections, providing a concise description of the plasma
parameters correlations, their interpretation, and the PCA approaches.

3.1. Correlation between Diagnostic Data

The regression analysis by the coefficient of determination (R2) method was used to find
the correlation between the plasma parameter data (ne, Te, Vp, Vf, Va

(
= Vp −Vf

)
, Iisat, N+,

and N+
2 ), which were measured from the PN-ICP system. The data used for the regression

analysis were obtained from 54 sets of measured data from different diagnostic system.
Figure 4 shows the result of the correlation regression between the plasma parameters. The
results with an R2 value of 0.8 or higher out of a total 45 analysis results are summarized in
Table 1.
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Table 1. Regression results between the plasma parameters for an R2 > 0.8.

Ranking Parameters R2 Score

1 Te vs. Va
(
= Vp −Vf

)
0.97

2 ne vs. N+
2 0.87

3 Te vs. Vf 0.81
4 Vf vs. Vp 0.80
5 ne vs. N+ 0.80
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The Va value is defined as the acceleration potential, and it is the difference between the
plasma potential and floating potential

(
Vp −Vf

)
. A PN-ICP system in non-bias substrates,

usually the energy of the particles incident on the substrates was determined by Va. Te is
strongly correlated with Va. Figure 5 shows the strongly correlated Te and Va in nine sets
of data for experiment numbers 30–38. However, the R2 for Te vs. Vf was 0.81, but Te vs.
Vp was 0.4; the correlation was low.
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PN-ICP system.

In general, the ion density variation depended on the ne, and as a result, the Iisat
measured on the LP also changed. Thus, ne and Iisat are expected to be closely related,
with a regression analysis showing an R2 of 0.79. The ne value was also strongly correlated
with the N+, and N+

2 densities measured in MEA, and the R2 was ≥ 0.8. The results of the
correlation between the plasma parameters indicate that Va was closely related to Te, and
ne was highly correlated to the ionic species N+, and N+

2 .

3.2. Principal Component Analysis (PCA) for OES Data vs. Plasma Parameters

The correlation between the plasma parameters and OES was also analyzed. Instead
of using a physics-based model for the analysis of individual lines, here, we used all the
spectral information in terms of relative intensities available in a spectrum of a given
operational condition by applying the PCA method [21]. The PCA method can simplify the
complex correlations between several measured lines and the resulting plasma parameters
by reducing the dimensions of the datasets. Thus, PCA has been suggested as a method for
analyzing large amounts of OES data [14,22]. PCA transforms the input variables to a set of
orthogonal variables known as principal components (PCs), which are linear combinations
of the original variables. Since the covariance matrix of the original input matrix X is
symmetric, it can be decomposed into XTX = VΩVT , where the diagonal elements of the
Ω are the eigenvalues and the columns of V are the eigenvectors of XTX, the coefficients of
the original variable are the eigen vectors V. The PCA transformation is thus

Z = VT (
X− X

)
(1)

where X is the vector of average values of each variable X, and Z is the coordinate in the
transformed space. Once the PCA is complete, the reduced PC variables can be used as the
input matrix for modeling.
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In this study, the raw OES data were three-dimensional (3-D), where the three dimen-
sions were operation condition, wavelength, and time. Plasma parameters were measured
at the RF powers of 400, 600, and 800 W, and the pressures of 10, 20, and 30 mTorr, meaning
a total of nine experimental runs were conducted, and each experiment lasted 30 s while the
PN-ICP system was monitored by the OES system. Emission intensity was recorded every
0.1 s, and the collected data were stored in a local computer as ASCII files. The OES system
collected 3600 data points in the wavelength range of 200–1100 nm. When plasma was
stabilized under each experimental condition, the time dimension was reduced because the
plasma state was the same during operation. Thus, the OES data had a two-dimensional
matrix structure. Before the PCA, we performed a standardization process. The main
purpose of the standardization was to adjust the range of variables so that each variable
contributed equally to the PCA. Here we used open source (scikit-learn PCA) from Python,
and the overall accuracy was around 80% [23].

The plasma parameters used in this analysis were ne, Te, Vp, Vf, Va
(
= Vp −Vf

)
, Iisat, N+,

and N+
2 , which were measured from the PN-ICP system. The results with an R2 value

compared with OES data are given in Table 2. The OES data highly correlated with the ne
and N+; however, the correlation with Te, Vp, Vf, and Va was low. This result implied the
possibility of inferring ne through the OES data.

Table 2. Regression results between the OES data and nine plasma parameters measured in the
PN-ICP system.

ne Te Vf Vp Va
N+

(MEA1)
N+

2
(MEA1)

N+

(MEA2)
N+

2
(MEA2)

R2

Score
0.92 0.05 0.20 0.41 0.02 0.90 0.62 0.96 0.65

Here, we further investigated the relationship between OES data and ne, Te. The
regression analysis was performed using Pearson’s correlation coefficient on the entire
wavelength of OES data for more accurate correlation analysis. Pearson’s correlation
coefficient is a test that measures the statistical relationship, or association, between two
continuous variables. It is known as the best method of measuring the association between
variables of interest because it is based on the method of covariance. It gives informa-
tion about magnitude of the association, or correlation, as well as the direction of the
relationship [24].

As a result, Table 3 shows the Pearson correlation coefficient (R) values of 20 highly
correlated wavelengths out of a total wavelength range (200–1100 nm). Since the OES
spectrum in the PN-ICP system was dominated by strong molecular features (in Figure 3),
20 highly related wavelengths with plasma parameters were divided into two groups. One
was in the range of 295.55–399.59 nm where SPS and FNS were mixed. The other group was
in the range of 582.71–770.74 nm where FPS appeared. Here, only the SPS and FNS mixed
wavelength range had higher relation with Te, and it showed a higher relation with N+

2 ion
number density, which was measured by MEA1 and MEA2. The FPS wavelength range
had a low relation with Te, but a higher relation with N+ ion number density, which was
measured by MEA1 and MEA2. As discussed in Section 2 (in Figure 3), these results show
the characteristics of the PN-ICP spectrum, where the FPS intensity increases with applied
power and slightly increases with gas pressure, and the SPS and FNS intensity slightly
increases with applied power and decreases with gas pressure. Thus, this shows that SPS
and FNS mixed ranges are mainly correlated with the electron temperature, and the FPS
range is correlated with electron density. This trend is in good agreement with electron
temperature and density of the PN-ICP system (Figure 2a,b), showing the possibility of
monitoring plasma parameters by utilizing specific wavelengths of OES spectrum.
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Table 3. Pearson correlation coefficient R value between OES intensity at 20 wavelengths and
plasma parameters.

Wavelength
(nm) ne Te Vf Vp Va

N+

(MEA1)
N+

2
(MEA1)

N+

(MEA2)
N+

2
(MEA2)

295.55 0.92 0.70 −0.84 −0.86 0.64 0.62 1.00 0.66 0.98
315.98 0.87 0.78 −0.90 −0.88 0.73 0.53 1.00 0.57 0.98
337.15 0.82 0.84 −0.93 −0.88 0.79 0.46 0.99 0.49 0.96
357.49 0.85 0.82 −0.91 −0.88 0.76 0.50 0.99 0.54 0.97
370.93 0.89 0.75 −0.88 −0.87 0.70 0.57 1.00 0.61 0.98
375.40 0.86 0.79 −0.90 −0.88 0.74 0.52 0.99 0.55 0.98
380.14 0.84 0.82 −0.92 −0.88 0.77 0.48 0.99 0.51 0.97
389.34 0.96 0.60 −0.77 −0.82 0.54 0.71 0.98 0.76 0.97
394.07 0.89 0.76 −0.88 −0.87 0.71 0.56 1.00 0.60 0.98
399.59 0.85 0.80 −0.91 −0.88 0.75 0.50 0.99 0.54 0.97
582.71 0.93 0.10 −0.36 −0.56 0.02 0.90 0.72 0.99 0.75
589.39 0.93 0.08 −0.34 −0.55 0.00 0.90 0.70 0.99 0.74
645.18 0.91 0.03 −0.30 −0.52 −0.05 0.90 0.67 0.99 0.70
652.83 0.91 0.04 −0.30 −0.52 −0.04 0.90 0.67 0.99 0.70
660.73 0.91 0.05 −0.31 −0.52 −0.04 0.90 0.68 0.99 0.71
668.87 0.88 −0.02 −0.24 −0.47 −0.10 0.91 0.62 1.00 0.66
675.23 0.87 −0.04 −0.22 −0.46 −0.12 0.91 0.61 0.99 0.64
746.09 0.88 −0.03 −0.24 −0.46 −0.11 0.91 0.62 1.00 0.65
760.69 0.85 −0.09 −0.18 −0.42 −0.17 0.91 0.57 0.99 0.61
770.74 0.80 −0.18 −0.09 −0.34 −0.26 0.90 0.49 0.98 0.53

4. Machine Learning Prediction Method

In the previous section, in order to develop a predictive VM model to predict the
plasma electron density and temperature, we performed a correlation analysis for the data
characterization to better understand the PN-ICP system. Data characterization defines the
relation between the operation condition data, plasma parameters, and OES spectrum data.
Next, in this section, we provide a concise description of the machine learning prediction
method for OES as a real-time VM plasma monitoring sensor.

Electron density and temperature measured by CP and LP were used as a target
data for machine learning prediction. Since OES intensity has a linear correlation with RF
power and gas pressure, a multi-linear regression method (MLR) [25] was used that can
express the functional dependence relationship between input data and predictive data
in a mathematical form. When considering the relationship between the k independent
variables (X1, X2, X3, · · · , Xk) and the dependent variable Y, a regression equation is
established: Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βkXik + εi, where β0, β1, β2, · · · , βk are
the regression coefficients to be estimated; i = 1, 2, · · · , n (n is the sample size); εi is
the random error. In this study, the dependent variable was Te and ne; the independent
variable was the intensity of 20 selected wavelengths, as shown in Table 3.

The input variable X1, X2, X3, · · · , Xk selection was important for correct MLR devel-
opment. There were three selection methods: forward selection, backward elimination, and
stepwise selection [24,25]. The forward selection is a variable selection method that begins
with a model that contains no variables. Then, it starts adding the most significant variables
one after the other until a pre-specified stopping rule is reached or until all the variables
under consideration are included in the model. The backward elimination method is the
opposite of the forward selection method. The backward elimination method is a method
of creating a model with all variables, and then deleting variables that do not contribute
to model performance. The stepwise selection method is similar to the forward selection
method, but the process of removing unimportant variables by examining the importance
is added.

The importance is determined by the p-value of the variable [26]. The p-value is
defined as the probability that a result (observed result) will be more extreme than the
result obtained when the null hypothesis is true. It is usually based on a p-value less than
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0.05 or 0.01. In this statistic, if the null hypothesis is true, it means that the probability that
the sample actually corresponds to the statistic is less than 5% (or 1%). In other words, it
can be said that the statistic has a much higher probability that the alternative hypothesis
will be true with a 95% probability.

In this paper, the null hypothesis was that the selected wavelength was not related to
electron temperature and electron density. Thus, the alternative hypothesis was that the
wavelength chosen was related to electron temperature and electron density. Table 4 shows
the most optimized wavelengths for predicting electron density and electron temperature
with MLR as a result of selecting three variable selection methods.

Table 4. The optimized wavelengths for predicting electron density and electron temperature in the
MLR method.

Wavelength
(nm)

ne Te

Use p-Value Use p-Value

295.55 Yes 0.000 Yes 0.000
315.98 Yes 0.000 Yes 0.000
337.15 No 0.141 Yes 0.000
357.49 Yes 0.003 Yes 0.000
370.93 Yes 0.000 Yes 0.000
375.40 Yes 0.000 Yes 0.000
380.14 No 0.227 Yes 0.000
389.34 Yes 0.000 Yes 0.000
394.07 Yes 0.001 Yes 0.000
399.59 No 0.238 Yes 0.035
582.71 Yes 0.000 - -
589.39 Yes 0.000 - -
645.18 Yes 0.000 - -
652.83 Yes 0.000 - -
660.73 Yes 0.000 - -
668.87 Yes 0.002 - -
675.23 Yes 0.000 - -
746.09 No 0.886 - -
760.69 Yes 0.000 - -
770.74 No 0.117 - -

Figure 6 shows the results of comparing the electron temperature and density pre-
dicted by the MLR method using the selected wavelength with the electron temperature
and density measured by the Langmuir probe as described in Section 2, which were mea-
sured at the RF powers of 400, 600, and 800 W and the pressures of 10, 20, and 30 mTorr.
As can be seen in Figure 5, although 15 wavelengths were selected to predict the electron
density, and 5 wavelengths were selected to predict the electron temperature, the MLR
prediction results are good agreement with the measured data; the prediction accuracy
of electron density was 97%, and the electron temperature was 90%. This shows that
the electron density and electron temperature can be predicted by selecting meaningful
regression coefficients from the wavelength measured by OES.
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5. Summary and Discussions

A method for the non-invasive extraction of plasma parameters from an OES using
a correlation based on a diagnostic data set of simultaneously measured OES and other
diagnostics has been presented and validated. Instead of relying on a theoretical model of
the plasma emission to extract plasma parameters from the OES, an empirical correlation
was established on the basis of simultaneous OES and other diagnostics; various diagnostic
tools were constructed; and plasma parameters were measured and analyzed. The correla-
tion between the measured data was investigated using regression analysis. The correlation
analysis between the plasma parameters and OES spectrum indicated that 20 wavelengths
out of a total wavelength range (200–1100 nm) were significantly closely related to the
plasma parameters, including the ionic species density. This result indicates the possibility
of inferring the plasma parameters and ionic species density from the OES data.

Additionally, we developed a machine learning-based virtual metrology model for
real-time Te and ne monitoring in plasma nitridation process using an in situ OES sensor.
Electron density and temperature measured by CP and LP were used as a target data for
machine learning prediction. Since OES intensity has a linear correlation with RF power
and gas pressure, a multi-linear regression method (MLR) was used that can express the
functional dependence relationship between input data and predictive data in a mathemati-
cal form. The result show that the prediction accuracy of electron density was 97% and that
of electron temperature was 90%. This method is potentially powerful in real-time control
and monitoring because it uses non-invasive and in situ sensor readings for prediction
while the wafer is processing.
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