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Abstract: Apart from the Buongiorno model, no effort was ably accomplished in the literature
to investigate the effect of nanomaterials on the Oldroyd-B fluid model caused by an extendable
sheet. This article introduces an innovative idea regarding the enforcement of the Tiwari and
Das fluid model on the Oldroyd-B fluid (OBF) model by considering engine oil as a conventional
base fluid. Tiwari and Das’s model takes into account the volume fraction of nanoparticles for
heat transport enhancement compared to the Buongiorno model that depends significantly on
thermophoresis and Brownian diffusion impacts for heat transport analysis. In this paper, the thermal
characteristics of an Oldroyd-B nanofluid are reported. Firstly, the transformation technique is
applied on partial differential equations from boundary-layer formulas to produce nonlinear ordinary
differential equations. Subsequently, the Keller-box numerical system is utilized to obtain final
numerical solutions. Copper engine oil (Cu–EO) and molybdenum disulfide engine oil (MoS2–EO)
nanofluids are considered. From the whole numerical findings and under the same condition, the
thermodynamic performance of MoS2–EO nanofluid is higher than that of Cu–EO nanofluid. The
thermal efficiency of Cu–EO over MoS2–EO is observed between 1.9% and 43%. In addition, the
role of the porous media parameter is to reduce the heat transport rate and to enhance the velocity
variation. Finally, the impact of the numbers of Reynolds and Brinkman is to increase the entropy.
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1. Introduction

In 1995, Choi [1] first presented the idea of nanofluid. Their main observation was
that the thermal conductivity increased when a low rate of copper nanoparticles was
immersed in water. Consequently, numerous mixtures of nanoparticles and liquids have
been investigated for improving transport phenomena and thermophysical properties,
such as thermal conductivity. Characteristic materials utilized for synthesizing nanofluids
include metals, inorganic oxides, carbon-based resources, and other porcelains. Meanwhile,
a popular selection of cleaners contains aquatic, ionic liquids, glycols, biological liquids,
and refrigerants. Other fluids discovered in research works contain oils, biofluids, mixtures,
fuels, alcohols, melted salt eutectics, etc. The preferred fluid properties are important for
the selected process, to facilitate the optimal combination procedure for a specific nanofluid.
Consequently, it is critical to develop a collection of mixture procedures for the nanofluids’
choice group, when subjected to objective properties and processes [2–6].

Another significant issue in nanofluids preparation is long-term stability. Therefore,
the nanomanufacturing field was established, producing nanoparticles with various scopes,
forms, and construction. Nonetheless, protecting nanoparticle suspension homogeneously
in the base fluid for a sufficient long time is a challenging task. Therefore, many methods
have been developed to grow the suspensions’ stability, and they have fundamentally
produced short-range stability. However, no specific investigations have been conducted
to confirm long-range stability. The strategic reason for keeping nanoparticle suspensions
stable for extended periods of time is to avoid nanoparticle agglomeration. For instance,
high thermal conductivity is desirable in heat transmission processes. At the same time,
non-Newtonian rheological performance and load-carrying capacity are carefully selected
in lubrication processes to vanish heat rapidly.

One significant consideration in a nanofluid composition is the cost and practicability
of scaling up to a combination of outsized capacities. Unfortunately, such engineering
considerations are usually ignored in critical investigations. Still, they are fundamental to
the commercial achievement of nanofluids, if this technology were to enter conservative
and novel manufacturing processes [7–10].

Accordingly, it is imperative to recognize, model, and maximize the combination
environments to allow superior control over the transport instruments, such as similar or
dissimilar nucleation of the nanoparticles compared to the originators or the development
and monitoring of the accumulation of the nanoparticles generated. Recently, an increased
number of studies on non-Newtonian fluids has been introduced by numerous researchers,
because of their excellent reputation in many industrial and chemical activities, nuclear
production, bioengineering, geophysics, and material processing. Therefore, the impor-
tance of non-Newtonian fluids is still puzzling, and thus, many non-Newtonian designs are
being investigated to demonstrate their composite rheological perspective. Among these
non-Newtonian fluids, the Oldroyd-B fluid (OBF) releases with synchronized relaxation
and retardation times. Furthermore, OBF allows clarifying the creep and standard stress
changes, which are related to simple shear flow. Nevertheless, the OBF does not define
the shear condensing and shear withdrawing structures, unlike other polymeric materials.
The OBF contains viscoelastic applications for Maxwell and viscous fluids for example.
Based on such remarkable properties, the flow of OBF was thoroughly investigated in
the literature [11–18]. Moreover, researchers have explained the effect of slip boundary
conditions in nanofluids past the extending slip [19,20].

Entropy computes the amount of chaos in a system and its environment, which de-
scribes the impact of heat transfer on the alterations in kinetic energy and potential energy.
The analysis of entropy generation can describe the heat losing progression of a fluid wave.
Researchers have utilized the entropy generation analysis in fluid flow, aiming at two rotat-
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ing disks moving with different rotation rates. It indicated that because of every thermal
progression, the entropy measures the quantity of irreversibility. Therefore, conserving
and warming are the most critical issues in numerous industrial fields of engineering
investigations, which are utilized primarily on energy and electronic devices [21–28].

Based on the abovementioned literature, none of the published research works in-
dependently considered a Tiwari–Das nanofluid scheme [29] over the stretching sheet,
together with the impacts of controlling parameters such as penetrable materials, variant
thermal conductance, radiation heat flux, and slip conditions. Hence, the current study
emphasizes the mentioned controlling parameters and entropy on an OBF using a specific
numerical method, namely, the Keller-box method.

2. Mathematical Formulation

This analysis considers a steady, laminar two-dimensional heat transfer flow of the
incompressible Oldroyd-B nanofluid through an extending sheet with first-order slip,
convective endpoint conditions, and passive control of different nanoparticles. Equation (1)
characterizes the moving flat horizontal surface with the nonuniform expanding velocity
Uw, where b is a positive constant. (Figure 1).

Uw(x, 0) = bx (1)
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Figure 1. Schematic diagram of the flow model.

2.1. Model Equations

The basic time-independent governing equations of mass, momentum, and thermal
energy of a viscous Oldroyd-B nanofluid flow employing customary boundary-layer
approximations, subjected to a porous media, and variable thermal conductivity with
radiation heat flux are [30]:

∂v1

∂x
+

∂v2

∂y
= 0, (2)

v1
∂v1
∂x + v2

∂v1
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[
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[
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(
κ∗n f (U)

∂U
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∂qr

∂y
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The relevant boundary conditions are [31]:

v1(x, 0) = Uw + Nν
(

∂v1
∂y

)
, v2(x, 0) = Vw,−k0

(
∂U
∂y

)
= h f (Uw −U), at y = 0

v1 → 0, ∂v1
∂y → 0, U → U∞ as y→ ∞.

 (5)

where Vw signifies suction (injection) parameter.

2.2. Thermophysical Features of the Oldroyd-B Nanofluid

Thermophysical characteristics are increased by the dispersion of nanoparticles into
an aqueous fluid. The material parameters for the Oldroyd-B nanofluid are offered in
Table 1 [32,33]:

Table 1. Thermophysical features of the Oldroyd-B nanofluid.

Features Nanofluid

Viscosity (µ) µn f = µ f (1− φ)−2.5

Density (ρ) ρn f = (1− φ)ρ f + φρs
Heat capacity

(
ρCp

)
(ρCp)n f = (1− φ)(ρCp) f + φ(ρCp)s

Thermal conductivity (κ) κn f
κ f

=

[
(κs+2κ f )−2φ(κ f−κs)
(κs+2κ f )+φ(κ f−κs)

]

In Table 1, µ f , ρ f , (Cp) f , and κ f are defined as the nanoparticle volumetric fraction
coefficient, dynamic viscosity, intensity, effective heat capacitance, and thermal conductance
of the base fluid, respectively. The other properties ρs, (Cp)s, and κs are denoted as
the density, effective heat capacitance, and thermal conductance of the nanoparticles,
respectively. The variable thermal conductance is defined as [33,34]:

κ∗n f (U) = kn f

[
1 + ε

U−U∞

Uw −U∞

]
(6)

2.3. Nanosolid-Particles and Base Fluid Attributes

The physical characteristics of the base fluid engine oil and various nanosolid particles
are tabulated in Table 2 below [35,36].

Table 2. Material characteristics of base fluid and nanosolid particles at 293 K.

Thermophysical ρ (kg/m3) cp (J/kg·K) k (W/mK)

Copper (Cu) 8933 385.0 401.00
Engine Oil (EO) 884 1910 0.144

Molybdenum disulfide (MoS2) 5060 397.21 904.4

2.4. Rosseland Approximations

Using the Roseland approximation [37], one can write:

qr = −
4σ∗

3k∗
∂U4

∂y
, (7)

Here, σ∗ is the Stefan–Boltzmann number and k∗ is the absorption coefficient.

3. The Solution to the Problem

The boundary value problem in Equations (2)–(5) is in the form of PDEs, which are
converted into ODEs with the assistance of the similarity technique. The first step of this
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technique is to introduce stream functions ψ and subsequently, ψ is used to express the
velocity components in the x and y axes.

v1 =
∂ψ

∂y
, v2 = −∂ψ

∂x
. (8)

Then, similarity variables are formed as:

Y(x, y) =

√
b
ν f

y, ψ(x, y) =
√

ν f bx f (Y), θ(Y) =
U−U∞

Uw −U∞
. (9)

When Equation (9) is substituted into Equations (2)–(5), then the following ODEs
are obtained:

f ′′′ + φaφb

[
f f ′′ − f ′2 + β1

(
2 f f ′ − f 2 f ′′′

)]
+ β2

(
f
′′2 − f f iv

)
− 1

φa
K f ′ = 0, (10)

θ′′
(

1 + εθ +
1

φd
PrNr

)
+ εθ′2 + Pr

φc

φd

(
f θ′ − f ′θ

)
= 0, (11)

with
f (0) = S, f ′(0) = 1 + Λ f ′′ (0), θ′(0) = −Bς(1− θ(0))
f ′(∞)→ 0, f ′′ (∞)→ 0, θ(∞)→ 0,

}
(12)

where the φ′ is with a ≤ i ≤ d in Equations (10)–(12) represent the following thermophysical
properties for the Oldroyd-B nanofluid

φa = (1− φ)2.5, φb =
(

1− φ + φ
ρs
ρ f

)
, φc =

(
1− φ + φ

(ρCp)s
(ρCp) f

)
φd =

(
(ks+2k f )−2φ(k f−ks)
(ks+2k f )+φ(k f−ks)

)
.

 (13)

As Equation (2) satisfies identity, the notation (′) is used for representing the deriva-
tives for Y. Here, β1 = bλ1 (Deborah number-I), β2 = bλ2 (Deborah number-II) defined
along with K =

ν f
bk (porous medium) parameter and Pr =

ν f
α f

(Prandtl number), α f =
κ f

(ρCp) f

(thermal diffusivity), S = −Vw
√

1
ν f b (mass transfer), Nr = 16

3
σ∗Y=3

∞
κ∗ν f (ρCp) f

(thermal radiation),

Λ =
√

b
ν f

Nν (velocity slip), and Bς =
h f
k0

√
ν f
b (Biot number) parameters, respectively.

3.1. Nusselt Number

The local Nusselt number (Nux) is the physical parameter that controls the flow and
can be expressed as [38,39]:

Nux =
xqw

k f (Uw −U∞)
(14)

wherein qw indicates the heat flux, which is presented in Equation (15):

qw = −kn f

(
1 +

16
3

σ∗U3
∞

κ∗ν f (ρCp) f

)(
∂U
∂y

)
y=0

(15)

Applying the nondimensional transformations (9), one obtains:

NuxRe−
1
2

x = −
kn f

k f
(1 + Nr)θ′(0), (16)

where Nux and C f denote the Nusselt number and reduced skin friction, respectively. In
addition, Rex = Uwx

ν f
is the local Re which relies on the stretching velocity Uw(x).
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3.2. Entropy Generation Analysis

Researchers in science and technology are always considering the amount of energy
used and trying to minimize the wasted energy. Therefore, the reduction of entropy
generation is a good decision, since entropy generation is one of the main factors that
cause the irreversibility of convenient energy. A nonideal factor that contributes to an
increment in the entropy of the system is the presence of penetrable materials. When
penetrable materials affect the density of a nanofluid, the following effects arise: First, the
medium’s permeability decreases, and then the thermal boundary layer and the system
entropy increase. Therefore, the real entropy production in the nanofluids can be expressed
by [38–41]:

EG =
kn f

U2
∞

{(
∂U
∂y

)2
+

16
3

σ∗U3
∞

κ∗ν f (ρCp) f

(
∂U
∂y

)2
}
+

µn f

U∞

(
∂v1

∂y

)2
+

µn f v1
2

kU∞
. (17)

Equation (17) is formed by three terms: the transfer of heat irreversibility, the fluid
friction, and the porous media effect. The dimensionless entropy generation NG [42–46] is
expressed as:

NG =
U∞

2b2EG

k f (Uw − T∞)2 . (18)

By substituting Equation (9) into Equation (18), the final equation of dimensionless
entropy generation is:

NG = Re
[

φ4(1 + Nr)θ′2 + 1
φ1

Br
Ω

(
f
′′2 + K f ′2

)]
. (19)

4. Numerical Implementation

To tackle the nonlinear ordinary differential Equations (10) and (11) concerning the
endpoint condition (12), we applied the Keller-box method [47] with the help of algebraic
software MATLAB for various values of the involved parameters. The stepwise procedure
of the Keller-box method is expressed in the flow chart from Figure 2.
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Conversion of ODEs

We have introduced the subsequent substitutions for converting the higher-order
ODEs to first-order ODEs. We introduce dependent variables Gv1, Gv2, Gv3, Gv4, Gv5, and
Gv6 such that:

Gv1 = f , Gv2 = f ′, Gv3 = f ′′ , Gv4 = f ′′′ , Gv5 = θ, Gv6 = θ′. (20)

dGv1

dY
= Gv2, (21)

dGv2

dY
= Gv3, (22)
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dGv3

dY
= Gv4, (23)

dGv5

dY
= Gv6, (24)

− β2Gv1
dGv4

dY
+ β2Gv2

3 + φaφbGv1Gv3 − φaφbGv2
2 + 2φaφbβ1Gv1Gv2 − φaφbβ1Gv2

1Gv4 −
1
φa

KGv2 + Gv4 = 0, (25)

dGv6

dY
+ εGv5

dGv6

dY
+

1
φd

PrNr
dGv6

dY
+ εGv2

6 + Pr
φc

φd
Gv1Gv6 − Pr

φc

φd
Gv2Gv5 = 0, (26)

Gv1(0) = S, Gv2(0) = 1 + ΛGv3(0), Gv6(0) = −Bς(1− Gv5(0)),
Gv2(Y)→ 0, Gv3(Y)→ 0, Gv5(Y)→ 0, as Y → ∞.

}
(27)

The domain [0, 1] has been converted into sub-domains utilizing a regular mesh with
the subsequent grid points (Figure 3):
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Y0 = 0, Yj = Yj−1 + ∆hj, j = 0, 1, 2, 3 . . . , J, YJ = 1 where, ∆hj is the step-size (for
further details, see Appendix A). For mathematical assessment, a mesh size of ∆hj = 0.01
was figured out to be appropriate and the results are acquired with an error tolerance
of 10−6.

5. Code Validation

In this section, our numerical results are validated by comparing with the findings
from the literature [48–51]. The comparison of consistencies is tabulated in Table 3. It is
shown that the present study displayed highly accurate outcomes for −θ′(0) with various
values of Pr in the limiting cases.

Table 3. Comparison of −θ′(0) with various values of Pr when φ = 0, ε = 0, Λ = 0, Nr = 0, S = 0, and Bς = 0.

Pr Ref. [48] Ref. [49] Ref. [50] Ref. [51] Present

72 × 10−2 08086 × 10−4 08086 × 10−4 080863135 × 10−8 080876122 × 10−8 080876181 × 10−8

1 × 100 1 × 100 1 × 100 1 × 100 1 × 100 1 × 100

3 × 100 19237 × 10−4 19236 × 10−4 192368259 × 10−8 192357431 × 10−8 192357420 × 10−8

7 × 100 30723 × 10−4 30722 × 10−4 307225021 × 10−8 307314679 × 10−8 307314651 × 10−8

10 × 100 37207 × 10−4 37006 × 10−4 372067390 × 10−8 372055436 × 10−8 372055429 × 10−8

6. Results and Discussion

This study aimed to analyze the thermal efficacy of OBF flowing over a stretching
surface. The Keller-box numerical approach was applied to calculate numerical and
graphical results. The impacts of physical parameters on the two-dimensional model of
OBF are reported. These parameters are listed as the boundary layer thickness Y, Deborah
number β1 and β2, porous media parameter K, nanoparticle volume fraction parameter φ,
velocity slip parameter Λ, variable thermal conductivity parameter thermal ε, radiation
parameter Nr, Biot number Bς, suction parameter S > 0, injection parameter S < 0, Re,
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and Br. The characteristics of fluid swiftness, temperature, and entropy production are
displayed in Figures 4–31. The results are obtained for the Cu–EO– and MoS2–EO–based
non-Newtonian Oldroyd-B nanofluid. This numerical investigation was accomplished
by setting up the following values for the related factors: β1 = 0.1, β2 = 0.1, K = 0.1,
φ = 0.1, Λ = 0.2, Pr = 6450, ε = 0.2, Nr = 0.3, Bς = 0.1, S = 0.1, Re = 5, and Br = 5.
The numerical measurements are presented in the form of tables and figures for two
components of Oldroyd-B-nanofluid: Cu–EO and MoS2–EO.
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Figure 5. The effect of β2 on velocity variation f ′(Y).

Figures 4–9 describe a dimensionless number, known as Deborah number, on the
variations of velocity, temperature, and entropy generation. Deborah number is defined
as the relaxation time of non-Newtonian fluid, divided by the scale of time flow. The
special effects of the Deborah numbers, which are denoted by β1 and β2 on velocity
component f ′(Y) are presented in Figures 4 and 5, respectively. It is detected that f ′(Y)
profiles decrease with an increasing value of β1, and it shows an opposite pattern when
it is controlled by parameter β2. Figures 6 and 7 represent the effect of β1 and β2 on
temperature profile θ(Y), respectively. From Figure 6, it is observed that the values of
θ(Y) and their associated thermal boundary layer thicknesses are increased when β1 rises.
A rise in the value of β1 leads to an increase in reduction time. However, the effect of
β2 causes the temperature profile to drop, as shown in Figure 8. The results of entropy
generation NG are presented in Figures 8 and 9 for different values of β1 and β2, respectively.
From these figures, the impact of the Deborah number β1 and β2 is to reduce the entropy
generation profile.
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The impact of nanosolid particle size factor 𝜙 on the variations of velocity (Figure 
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boundary layer thickness 𝛶. The parameter 𝜙 causes an increase in the variations of tem-
perature 𝜃(𝛶) and entropy generation 𝑁  because an increment in 𝜙 causes the density 
of the nanofluid to increase. As a result, two effects co-occur: (a) a decreasing simultane-
ous velocity and (b) an increasing thermal conductivity and simultaneous temperature.  

Figure 10. Velocity variation f ′(Y) under the influence of K.
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dimensionless number related to the convective boundary condition. Therefore, Figure 19 
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due to the effect of the Biot number. Moreover, the Biot number causes an enhancement 
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The representation of the suction parameter and injection parameter is demonstrated 
in Figures 24–26, and Figures 27–29, respectively. The velocity profile under the influence 
of the suction parameter is depicted in Figure 24. Meanwhile, the same profile with the 
effect of the injection parameter is presented in Figure 27. Moreover, the temperature pro-
files due to the suction and injection parameters are depicted in Figures 25 and 28, respec-
tively. Figures 26 and 29 show the entropy generation profiles against the variations of 
suction and injection parameters, respectively. The swiftness and temperature outlines are 
suppressed by the increment of the suction parameter, whereas the same parameter 
causes the entropy generation parameter to rise. This situation can be explained by the 
presence of suction causing the heated fluid to flow towards the sheet. Consequently, the 
buoyancy force slows down the fluid velocity due to the high viscosity. Instantaneously, 
the temperature is reduced, and the entropy generation increases. However, the opposite 
pattern has been observed for the same profiles when increasing the injection parameter. 
The role of the injection parameter is to give an opposite effect on the direction of heated 
fluid and buoyancy force. Hence, the effect of the injection parameter on all the outlines 
shows the reverse trend compared to the suction parameter. 
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Figures 10–12 show the impact of porous media parameter K on the variations of
velocity, temperature, and entropy generation. The porous media parameter indicates the
absorption rate of the fluid when passing through pores. Since a hybrid nanofluid contains
more than one type of nanometer-sized particles, the absorption rate becomes slower, as
shown in Figure 10. However, the role of porous media parameter K is to increase the
values of temperature (Figure 11) and entropy generation (Figure 12).

The impact of nanosolid particle size factor φ on the variations of velocity (Figure 13),
temperature (Figure 14), and entropy generation (Figure 15) are depicted against boundary
layer thickness Y. The parameter φ causes an increase in the variations of temperature θ(Y)
and entropy generation NG because an increment in φ causes the density of the nanofluid
to increase. As a result, two effects co-occur: (a) a decreasing simultaneous velocity and
(b) an increasing thermal conductivity and simultaneous temperature.
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The graphical representations of velocity slip parameter Λ can be seen in Figures 16–18.
These three figures display the variations of velocity, temperature, and entropy generation.
The effect of the velocity slip factor is to decrease the values of velocity and entropy
generation profiles. However, this parameter causes the temperature profile to increase
because an increase in the slip factor produces frictional force, and the fluid velocity is
reduced. Nevertheless, this slip parameter causes the temperature to shift upward.

Figures 19 and 20 show that the effect of the Biot number Bς is to increase the vari-
ations of temperature θ(Y) and entropy generation NG. The Biot number is defined as a
dimensionless number related to the convective boundary condition. Therefore, Figure 19
shows that the temperature profile and thermal boundary layer thickness are increased
due to the effect of the Biot number. Moreover, the Biot number causes an enhancement in
heat transfer rate. Thus, the entropy generation is also increased (Figure 20). The impact of
variable thermal conductivity ε on temperature profiles can be seen in Figure 21. When
the thermal conductivity increases, the thermal boundary layer thickness increases, and
the hybrid nanofluid’s temperature rises. Meanwhile, the radiation parameter Nr causes
the temperature and entropy generation variations to be improved (Figures 22 and 23,
respectively). The radiation parameter is defined as the thermal radiation transfer divided
by the conduction heat transfer. A higher amount of heat energy flows into the system is
indicated by higher values of Nr. As a result, the temperature profile shifts upward.

The representation of the suction parameter and injection parameter is demonstrated
in Figures 24–26, and Figures 27–29, respectively. The velocity profile under the influence
of the suction parameter is depicted in Figure 24. Meanwhile, the same profile with the
effect of the injection parameter is presented in Figure 27. Moreover, the temperature
profiles due to the suction and injection parameters are depicted in Figures 25 and 28,
respectively. Figures 26 and 29 show the entropy generation profiles against the variations
of suction and injection parameters, respectively. The swiftness and temperature outlines
are suppressed by the increment of the suction parameter, whereas the same parameter
causes the entropy generation parameter to rise. This situation can be explained by the
presence of suction causing the heated fluid to flow towards the sheet. Consequently, the
buoyancy force slows down the fluid velocity due to the high viscosity. Instantaneously,
the temperature is reduced, and the entropy generation increases. However, the opposite
pattern has been observed for the same profiles when increasing the injection parameter.
The role of the injection parameter is to give an opposite effect on the direction of heated
fluid and buoyancy force. Hence, the effect of the injection parameter on all the outlines
shows the reverse trend compared to the suction parameter.

The impact of the Reynolds number Re and the Brinkman number Br on entropy
production NG are offered in Figures 30 and 31, respectively. These figures show that
NG increases as Re and Br increase. The Reynolds number is defined as the ratio of
inertial forces (frictional forces) to viscous forces. The augmentation of the Reynolds
number causes the enhancement of the following: frictional force at the fluid, heat, and
mass transfer. Consequently, entropy production is produced. In addition, the increase
of Br causes an increase in the rate of viscous dissipation. The Brinkman number Br is
defined as the ratio between heat produced by viscous dissipation and heat transported
by molecular conduction. This number is also known as a ratio of viscous heat generation
to external heating. As a result, entropy generation NG is enhanced due to the change in
viscous dissipation.

The numerical results of the local Nusselt number = NuRe
−1
2

x for various values of Bς,
Λ, S > 0, φ, Nr, and Pr are observed in Table 4. From this table, it is shown that the effect

of Bς, S > 0, Nr, and Pr are to enhance the wall heat flux NuRe
−1
2

x for both Cu–EO and

MoS2–EO nanofluids. In addition, NuRe
−1
2

x for both Cu–EO and MoS2–EO is reduced due

to the increment of Λ. However, the effect of φ is to reduce the rate of NuRe
−1
2

x for Cu–EO

and to increase the local Nusselt number NuRe
−1
2

x for MoS2–EO.
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Table 4. Calculations of the Nusselt number = NuRe
−1
2

x for Pr = 6450.

Bς Λ S φ Nr Pr NuRe
−1
2

x
Cu–EO

NuRe
−1
2

x
MoS2–EO

Relative%
Nu(Cu)−Nu(MoS2 )

Nu(Cu)
×100

0.1 0.2 0.1 0.1 0.3 0.2 0.0907 0.1209 25%
0.2 0.1735 0.2302 26%
0.3 0.2492 0.3291 27%

0.1 0.0909 0.1212 24%
0.2 0.0907 0.1209 23%
0.3 0.0905 0.1207 22%

0.1 0.0911 0.6010 29%
0.2 0.0915 0.1219 28%
0.3 0.0920 0.1225 27%

0.01 0.1100 0.1079 1.9%
0.05 0.0980 0.1209 20%
0.1 0.0852 0.1388 40%

0.1 0.0857 0.1400 38%
0.2 0.0920 0.1513 39%
0.3 0.0982 0.1625 39%

10 0.0857 0.1513 41%
15 0.0859 0.1519 42%
20 0.0860 0.1523 43%

7. Final Outcomes

The numerical solutions are controlled by the following parameters: the first com-
ponent of Deborah number β1, second component of Deborah number β2, porous media
parameter K, volume friction parameter φ, velocity slip parameter Λ, Biot number Bς,
variable thermal conductivity ε, radiation parameter Nr, suction parameter S > 0, injection
parameter S < 0, Reynolds number Re, and Brinkman number Br. The previous section
showed that the effect of the related parameters on the variations of velocity, temperature,
and entropy generation was valid for both Cu–EO and MoS2–EO. As a result, the main
findings of this paper are summarized below:

(a) An increase in velocity distribution was observed, under the influence of β2 and
S > 0. Otherwise, this profile decreased due to the increase of β1, K, φ, Λ and S > 0.

(b) The velocity of molybdenum disulfide engine oil (MoS2–EO) nanofluid was found to
be higher than copper engine oil (Cu–EO) nanofluid. This comparison was depicted
under the impact of the Deborah number, porous media parameter, nanoparticle
volume fraction parameter, velocity slip parameter, suction, and injection.

(c) The fluid temperature increased due to increasing values of β1, K, φ, Λ, Bς, ε, Nr, and
S < 0. However, the same profile decreased due to β2 and S > 0.

(d) Temperature profiles showed that the graphs for MoS2–EO were above those for
the Cu–EO nanofluid. These two lines can be observed when varying controlling
parameters such as the Deborah number, porous media parameter, velocity slip pa-
rameter, Biot number, variable thermal conductivity, radiation parameter, suction, and
injection. However, the temperature measured for the Cu–EO nanofluid was greater
than for MoS2–EO, for various values of the nanoparticle volume fraction parameter.

(e) The roles of Deborah number (β1 and β2), velocity slip parameter, and injection
parameter were to lessen the values of entropy generation. At the same time, this
profile was enhanced when the following parameters increased: porous media param-
eter, volume friction parameter, Biot number, radiation parameter, suction parameter,
Reynolds number, and Brinkman number.

(f) At the small thickness boundary layer, the entropy generation of MoS2–EO was higher
than that of Cu–EO when this profile was affected by Deborah number. Moreover,
Cu–EO entropy generation was greatest for increasing series of porous media param-
eter, nanoparticle volume fraction parameter, velocity slip parameter, Biot number,
radiation parameter, suction, injection, Reynolds number, and Brinkman number.
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(g) The local Nusselt number was an ascending function of Bς, S > 0, Nr, and Pr.
Moreover, the local Nusselt number was a decreasing function of Λ. The effects of Bς,
S > 0, Nr, Pr, and Λ are valid for both Cu–EO and MoS2–EO. However, the effect
of φ on the local Nusselt number was described as follows: (i) decrease for Cu–EO;
(ii) increase for MoS2–EO.

8. Future Direction

In this work, we have employed the concept of entropy generation analysis and
the effects of slip conditions on fluid flow. One can replace Equation (21) with another
formula of entropy. For example, we suggest considering a fractional entropy such as the
Tsallis entropy.
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Nomenclatures

b initial stretching rate Greek Symbols
Bς Biot number U fluid temperature (K)
Br Brinkman number Uw fluid temperature of the surface (K)
C f skin friction coefficient U∞ ambient temperature (K)

Cp specific heat
(

J kg−1 K−1
)

φ volume fraction of the nanoparticles

EG dimensional entropy (J/K) ρ density
(

kg m−3
)

h Heat transfer coefficient σ∗ Stefan–Boltzmann constant

κ thermal conductivity
(

W m−1 K−1
)

ψ stream function

K porous medium γ independent similarity variable
k∗ absorption coefficient θ dimensionless temperature
ε variable thermal conductivity Λ velocity slip
Nr radiation parameter µ dynamic viscosity (kg m−1s−1)
NG dimensionless entropy generation ν kinematic viscosity (m2s−1)
Nux local Nusselt number α thermal diffusivity

(
m2 s−1)

Pr Prandtl number (ν/α) β1 Deborah number-I
qr radiative heat flux β2 Deborah number-II
qw wall heat flux Ω dimensionless temperature gradient
Re Reynolds number Subscripts
S suction/injection parameter f base fluid
v1, v2 velocity component

(
m s−1) s particles

Uw stretching velocity
(
m s−1) n f nanofluid

Vw vertical velocity
(
m s−1)

x, y dimensional space coordinates (m)
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Appendix A. In This Part, We Give the Details of the Numerical Procedure for the
Keller-Box Method

Appendix A.1. Difference Equations

The domain [0, 1] has been converted into subdomains utilizing a regular mesh with
the subsequent grid points:

Y0 = 0, Yj = Yj−1 + ∆hj, j = 0, 1, 2, 3 . . . , J, YJ = 1, where ∆hj is the step-size.
First-order ODES (21)–(26) have been estimated with the aid of central differences at the
midpoint Yj−1/2, as follows:

(Gv1)j − (Gv1)j−1 = 0.5∆hj((Gv2)j +
(
Gv2)j−1

)
, (A1)

(Gv2)j − (Gv2)j−1 = 0.5∆hj((Gv3)j +
(
Gv3)j−1

)
, (A2)

(Gv3)j − (Gv3)j−1 = 0.5∆hj((Gv4)j +
(
Gv4)j−1

)
, (A3)

(Gv5)j − (Gv5)j−1 = 0.5∆hj((Gv6)j +
(
Gv6)j−1

)
, (A4)

−β2
((Gv1)j+(Gv1)j−1)

2 ((Gv4)j − (Gv4)j−1) + ∆hjβ2
((Gv3)j+(Gv3)j−1)

2

4

+∆hjφaφb
((Gv1)j+(Gv1)j−1)

2
((Gv3)j+(Gv3)j−1)

2 − φaφb
((Gv2)j+(Gv2)j−1)

2

4

+2∆hjφaφbβ1
((Gv1)j+(Gv1)j−1)

2
((Gv2)j+(Gv2)j−1)

2 − ∆hjφaφbβ1
((Gv1)j+(Gv1)j−1)

2

4
((Gv4)j+(Gv4)j−1)

2 − ∆hj
φa

K
((Gv2)j+(Gv2)j−1)

2 + ∆hj
((Gv4)j+(Gv4)j−1)

2 = 0,


, (A5)

((Gv6)j − (Gv6)j−1) + ε
((Gv5)j+(Gv5)j−1)

2 ((Gv6)j − (Gv6)j−1)

+ 1
φd

PrNr((Gv6)j − (Gv6)j−1) + ∆hjε
((Gv6)j+(Gv6)j−1)

2

4

+∆hjPr φc
φd

((Gv1)j+(Gv1)j−1)

2
((Gv6)j+(Gv6)j−1)

2

−∆hjPr φc
φd

((Gv2)j+(Gv2)j−1)

2
((Gv5)j+(Gv5)j−1)

2 = 0,


, (A6)

Appendix A.2. Newton Linearization

The above system of Equations (A1)–(A6) is linearized by Newton’s linearization
method using the following substitution:

(Gv1)
n+1
j = (Gv1)

n
j + (δG1)

n
j , (Gv2)

n+1
j = (Gv2)

n
j + (δG2)

n
j ,

(Gv3)
n+1
j = (Gv3)

n
j + (δGv3)

n
j , (Gv4)

n+1
j = (Gv4)

n
j + (δGv4)

n
j ,

(Gv5)
n+1
j = (Gv5)

n
j + (δGv5)

n
j , (Gv6)

n+1
j = (Gv6)

n
j + (δGv6)

n
j .

 (A7)

Substituting the expressions obtained in (A1)–(A6) and dropping the square and
higher powers of δ, the following set of equations is achieved:

((δG1)j −
(
δG1)j−1

)
− 0.5∆hj((δG2)j +

(
δG2)j−1

)
= (r1)j, (A8)

((δG2)j −
(
δG2)j−1

)
− 0.5∆hj((δGv3)j +

(
δGv3)j−1

)
= (r2)j, (A9)

((δGv3)j −
(
δGv3)j−1

)
− 0.5∆hj((δGv4)j +

(
δGv4)j−1

)
= (r3)j, (A10)

((δGv5)j −
(
δGv5)j−1

)
− 0.5∆hj((δGv6)j +

(
δGv6)j−1

)
= (r4)j, (A11)

(π1)j(δG1)j + (π2)j(δG1)j−1 + (π3)j(δG2)j + (π4)j(δG2)j−1 + (π5)j(δGv3)j + (π6)j(δGv3)j−1 + (π7)j(δGv4)j + (π8)j(δGv4)j−1 = (r5)j, (A12)

(m1)j(δG1)j + (m2)j(δG1)j−1 + (m3)j(δG2)j + (m4)j(δG2)j−1 + (m5)j(δGv5)j + (m6)j(δGv5)j−1 + (m7)j(δGv6)j + (m8)j(δGv6)j−1 = (r6)j, (A13)
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where:

(π1)j = −∆hjφaφbβ1
((Gv1)j+(Gv1)j−1)((Gv4)j+(Gv4)j−1)

4 = (π2)j,

(π3)j = −
K∆hj
2φa

+ 2∆hjφaφbβ1
((Gv1)j+(Gv1)j−1)

4 + ∆hjφaφb
((Gv2)j+(Gv2)j−1)

2 = (π4)j,

(π5)j = ∆hjφaφb
((Gv1)j+(Gv1)j−1)

4 + ∆hjβ2
((Gv3)j+(Gv3)j−1)

2 = (π6)j,

(π7)j =
∆hj

2 − β2
((Gv1)j+(Gv1)j−1)

2 − 8∆hjφaφbβ1((Gv1)j + (Gv1)j−1)
2 = (π8)j,

(r5)j = β2
((Gv1)j+(Gv1)j−1)

2 ((Gv4)j − (Gv4)j−1)− ∆hjβ2
((Gv3)j+(Gv3)j−1)

2

4

−∆hjφaφb
((Gv1)j+(Gv1)j−1)

2
((Gv3)j+(Gv3)j−1)

2 − φaφb
((Gv2)j+(Gv2)j−1)

2

4

−2∆hjφaφbβ1
((Gv1)j+(Gv1)j−1)

2
((Gv2)j+(Gv2)j−1)

2 − ∆hjφaφbβ1
((Gv1)j+(Gv1)j−1)

2

4
((Gv4)j+(Gv4)j−1)

2 +
∆hj
φa

K
((Gv2)j+(Gv2)j−1)

2 − ∆hj
((Gv4)j+(Gv4)j−1)

2 ,



(A14)

(m1)j = ∆hj
Prφc
φd

((Gv6)j+(Gv6)j−1)

4 = (m2)j,

(m3)j = −∆hj
Prφc
φd

((Gv6)j+(Gv6)j−1)

4 = (m4)j,

(m5)j = ∆hj
Prφc
φd

((Gv2)j+(Gv2)j−1)

4 + ε
((Gv6)j−(Gv6)j−1)

2 = (m6)j,

(m7)j = 1 + NrPr
φd

+ ∆hj
Prφc
φd

((Gv1)j+(Gv1)j−1)

4 + ε
((Gv5)j−(Gv5)j−1)

2

+∆hjε
((Gv6)j−(Gv6)j−1)

2 ,

(m8)j = −1− NrPr
φd

+ ∆hj
Prφc
φd

((Gv1)j+(Gv1)j−1)

4 + ε
((Gv5)j−(Gv5)j−1)

2

+∆hjε
((Gv6)j−(Gv6)j−1)

2 ,

(r6)j = −((Gv6)j − (Gv6)j−1)− ε
((Gv5)j+(Gv5)j−1)

2 ((Gv6)j − (Gv6)j−1)

− 1
φd

PrNr((Gv6)j − (Gv6)j−1) + ∆hjε
((Gv6)j+(Gv6)j−1)

2

4

+∆hjPr φc
φd

((Gv1)j+(Gv1)j−1)

2
((Gv6)j+(Gv6)j−1)

2

+∆hjPr φc
φd

((Gv2)j+(Gv2)j−1)

2
((Gv5)j+(Gv5)j−1)

2 ,



(A15)

Appendix A.3. Block Tridiagonal Structure

Next, the linearized system has the following block-tridiagonal structure:

A∆ = S, (A16)

where:

A =



[L1 ] [N1 ]
[L2 ] [N2 ]

. . .

. . .

. . . [
MJ−1

] [
LJ−1

] [
NJ−1

][
MJ

] [
LJ
]


, ∆ =



[∆1]
[∆2]
...
...
...[
∆J−1

][
∆J
]


and S =



[S1]
[S2]
...
...
...[
SJ−1

][
SJ
]


(A17)

where the elements defined in Equation (A17) are:

[
L1

]
=



0 0 0 1 0 0
−0.5∆h1 0 0 0 0 0
−1 0 −0.5∆h1 0 −0.5∆h1 0
0 −1 0 0 0 −0.5∆h1
(π6)1 0 (π8)1 (π1)1 (π7)1 0
0 (m6)1 0 (m1)1 0 (m7)1


,

[
Lj
]
=



−0.5∆hj 0 0 1 0 0
−1 −0.5∆hj 0 0 0 0
0 −1 0 0 −0.5∆hj 0
0 0 −1 0 0 −0.5∆hj
(π4)j (π6)j 0 (π1)j (π7)j 0
(m4)j 0 (m6)j (m1)j 0 (m7)j


, 2 ≤ j ≤ J
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[
Mj

]
=



0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 −0.5∆hj 0
0 0 0 0 0 −0.5∆h1
0 0 0 (π2)j (π8)j 0
0 0 0 (m2)j 0 (m8)j


, 2 ≤ j ≤ J

[
Nj

]
=



−0.5∆hj 0 0 0 0 0
1 −0.5∆hj 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
(π3)j (π5)j 0 0 0 0
(m3)j 0 (m5)j 0 0 0


, 1 ≤ j ≤ J − 1.

Now we factorize A as:
A = LU, (A18)

where:

L =



[Γ1 ]
[Γ2 ]

. . .

. . .
[
ΓJ−1

][
QJ
] [

ΓJ
]


, U =


[I] [α1 ]

[I] [α2 ]

. . .
. . .
[I]

[
αJ−1

]
[I]

,

where the total size of the block-tridiagonal matrix A is J × J with each block size of super vectors is 6× 6 and [I],
[Γi ] and [αi ] are the matrices of order 6. Implementing an LU decomposition algorithm for the solution of ∆.
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