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Abstract: The method of detecting deep defects in photovoltaic materials by Fourier-Transform
Photocurrent Spectroscopy has gone through continuous development during the last two decades.
Still, giving quantitative predictions of photovoltaic device performance is a challenging task. As new
materials appear, a prediction of potentially achievable open-circuit voltage with respect to bandgap
is highly desirable. From thermodynamics, a prediction can be made based on the radiative limit,
neglecting non-radiative recombination and carrier transport effects. Beyond this, more accurate
analysis has to be done. First, the absolute defect density has to be calculated, taking into account
optical effects, such as absorption enhancement, due to scattering. Secondly, the electrical effect
of thickness variation has to be addressed. We analyzed a series of state-of-the-art hydrogenated
amorphous silicon solar cells of different thicknesses at different states of light soaking degradation.
Based on a combination of empirical results with optical, electrical and thermodynamic simulations,
we provide a predictive model of the open-circuit voltage of a device with a given defect density and
absorber thickness. We observed that, rather than the defect density or thickness alone, it is their
product or the total number of defects, that matters. Alternatively, including defect absorption into
the thermodynamic radiative limit gives close upper bounds to the open-circuit voltage with the
advantage of a much easier evaluation.

Keywords: solar cells; photocurrent spectroscopy; defect density; amorphous silicon; open-circuit
voltage; radiative limit

1. Introduction

Sub-bandgap absorptance spectroscopy is a relatively simple defect quantification method, which is
well established in the material science of thin-film photovoltaic (PV) materials, such as microcrystalline
silicon [1], hydrogenated amorphous silicon (a-Si:H) [2], organic semiconductors [3] and also recently
hybrid perovskite materials [4–7]. Whereas other methods, such as conductivity or photoluminescence,
are difficult to interpret and may give results affected by transient effects, sub-bandgap absorptance
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spectroscopy can already provide a relatively universal indication of semiconductor quality by looking
at the sub-bandgap absorptance and the steepness of the absorption edge. At the beginning of
the era of a-Si:H, two low-absorptance techniques were established as benchmarks: Photothermal
Deflection Spectroscopy (PDS) [2] and the Constant Photocurrent Method (CPM) [3]. To make the
CPM faster, more compact and simpler for maintenance, Fourier-Transform Photocurrent Spectroscopy
(FTPS) [8,9] was introduced later, replacing the monochromator with a Fourier-Transform Infrared
(FTIR) spectrophotometer. While PDS measures all absorbed light that is converted to heat, FTPS is
sensitive only to light contributing to the photocurrent. In rare cases, these methods give equivalent
results, but more often the combination of both methods is necessary to give accurate absorptance
values. The advantage of FTPS compared to PDS is the ability to measure the defect density of
absorber layers in complete solar cells. In hybrid perovskites, the main difference might be the lead
iodide phase that exhibits differently [4,6,7], while in the case of a-Si:H the main difference is the
sensitivity to the surface defects, that is higher in PDS, but can also distort FTPS spectra (see Figure 1a).
Surface defect absorption may lead to erroneous features on the apparent (as evaluated) absorption
coefficient. Therefore, methods of surface defect determination were proposed [10,11], allowing the
determination of true (surface corrected) absorption coefficient. The measurement of thickness series is
one such way of determining bulk and surface defect absorptance in the case of solar cells [12].
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Figure 1. (a) Examples of erroneous features due to surface defects (thick grey lines) on “apparent”
absorption coefficient obtained from FTPS by a method described in [13]; (b) Defect densities of
state-of-the-art laboratory-grade samples of a-Si:H obtained from different laboratories within the FP7
Fast-Track project. Empty symbols indicate the initial state; full symbols indicate light-soaked (300 h,
1 sun, 50 ◦C) state.

Traditionally, absorptance is not considered to be a good reference value, and the absorption
coefficient, being the true material constant, has to be evaluated instead. Many methods can
be applied [13–15] to obtain the absolute absorption coefficient for layers on glass. Once the
absorption coefficient of the bulk is obtained, the volume defect density of amorphous silicon
can be evaluated by taking the value α (1.2 eV) and multiplying it with 2.4 × 1016–5 × 1016 cm−2

for FTPS (or 1.2 × 1016 cm−2–2.5 × 1016 cm−2 for PDS) according to [16]. Since the volume density
of atoms in amorphous Si is around 4 × 1022 cm−2, we may approximately attribute the α (1.2 eV)
roughly to the defect ppm (parts per million). The level of 1 ppm is a benchmark for a state-of-the-art
laboratory-grade material prepared by capacitively-coupled diode plasma-enhanced chemical vapor
deposition (PE-CVD) in a light-soaked state (1000 h, 1 sun, 50 ◦C) (see Figure 1b) [2,17].

Unfortunately, in the case of optical scattering due to rough surfaces [18], or in the case of solar
cells, it is not possible to simply evaluate the absorption coefficient due to light absorption enhancement.
Recently, the absorptance at 1.2 eV has been scaled as the internal quantum efficiency and a relation
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to the fill factor (FF) has been shown [12]. In this approach, the defect density is multiplied by an
effective absorber thickness—i.e., the effective length of the photon path in the absorber. A difficulty in
this measurement is the determination of the (energy-dependent) effective thickness. This prevents a
simple relation to the absorption coefficient and defect density. In this contribution, we follow two
different strategies applied for solar cells. We either take the unscaled FTPS spectrum and calculate the
radiative limit, or we scale the FTPS spectrum according to an absorptance of a flat reference layer
deposited on glass—in this work, this is measured by the PDS.

Finally, for PV device development, it is important to predict the relationship between defect
density and device performance. Many laboratories have shown that making the intrinsic absorber
layer thicker (to generate a higher current density) decreases the electrical performance—quantified by
open-circuit voltage (VOC) and FF. The drop becomes especially pronounced after light soaking [19–23].
In our approach, light soaking or annealing is used as a simple way to vary the defect density due to
the Staebler–Wronski effect [24]. Therefore, by measuring FTPS and performing light soaking, it is
possible to obtain a quantitative relation between the VOC and the defect density. In this contribution,
we demonstrate this on a set of cells with different thicknesses and compare the results with electrical
and thermodynamic calculations.

2. Materials and Methods

A set of high-efficiency a-Si:H p-i-n solar cells with i-layer thicknesses of 120, 200, 300, 500 and
1000 nm were deposited on rough ZnO substrates grown by low-pressure chemical vapor deposition
(LPCVD). Further details of the sample preparation are given in [22,25]. In addition to the solar cells,
a 240 nm thick layer of intrinsic a-Si:H absorber material was deposited on glass, using the same
deposition conditions as in the solar cells. Prior to the analysis, cells underwent different light soaking
treatments, under approximately 200 mW/cm2 of orange light (cut-off filter passing energies below
2.1 eV) at 40 ◦C for up to a few days. This procedure guaranteed comparable starting states of the solar
cells (after initial irreproducible performance changes) and allowed us to access the effect of metastable
defects in the absorber layer. Devices were subsequently annealed in an inert atmosphere at 150 ◦C to
gradually reduce the active defect concentration. During the annealing steps, the VOC was measured
under a metal halide lamp with intensity adjusted by a reference a-Si:H cell so that the same current
was obtained as with standard AM1.5G (1000 W/m2) illumination. At the same time, the defect density
was evaluated by FTPS.

The FTPS setup was based on a Thermo Nicolet 8700 FTIR (used for light modulation) equipped
with an external 100 W tungsten lamp, Stanford Research SR570 preamplifier, and a set of color
glass filters. Using an optical ray tracing model [26], we demonstrate in Figure 2a (ii) that the shape
of the absorptance, that is attributed to FTPS signal, is very close to the shape of the absorption
coefficient in the low absorption region, especially between 1.2 eV and the beginning of absorption
edge (Urbach slope)—in our case at 1.55 eV. Additionally, we show in Figure 2a (i) that the effect
of absorption in the LPCVD ZnO leads to an error of no more than 10%. Therefore, the problem of
absolute absorption-coefficient evaluation at 1.2 eV can be transferred to a problem of proper absolute
scaling of a point at 1.55 eV. At this point, the true absorption coefficient can be obtained from the
PDS measurement of a layer on glass. More accurate scaling is obtained when the steepest part of the
FTPS curve is extended (indicated by the thick grey line in Figure 2b before stitching to the PDS data.
This approach is valid when assuming that the absorption coefficient—especially the bandgap of the
material—is substrate independent. Exceptions from this assumption are discussed in [27].
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Figure 2. (a) (i) High TCO transmittance, which allows for minimal impact on evaluation,
and (ii) simulated absorptance in solar cells rescaled to best fit the absorption coefficient between 1.2
and 1.55 eV. Simulations included a variety of absorber thicknesses (from 120 to 1000 nm) and interface
RMS roughness values (0 to 100 nm); (b) Absorption coefficient obtained from a combination of PDS
measurements on a layer on glass (black symbols above 1.7 eV), and FTPS measurements on cells
(color lines below 1.9 eV) rescaled in order to fit in the region of the Urbach slope (thick grey line).
The high-energy end of FTPS spectra indicates different saturation levels given by different thicknesses.

Alternatively, if an absolute value of the absorption coefficient is not available for scaling the FTPS
data, the thermodynamic limit is used. A limit to the device’s VOC using the same calculations as for the
so-called radiative limit can be found [28–31]. FTPS data correspond directly to the (arbitrarily scaled)
external quantum efficiency (EQE). With this we can calculate the radiative limit to VOC for such a
device, VOC,rad, using Equations (1)–(4), in which k is Boltzmann constant, T is the temperature, e is the
electron charge, J0,rad is the saturation current due to radiative recombination and Φ(AM1.5G) is the
tabulated reference solar spectrum. Usually, the exponential (Urbach) slope is used to extrapolate the
absorption below the bandgap and no defect-related sub-bandgap absorption is considered. However,
because the sub-bandgap absorption is in the range which overlaps with Φbb(300 K), the defect-related
absorption may strongly increase the radiative recombination and J0,rad, and therefore decrease VOC,rad.
This motivates us to use the same radiative limit while including defect-related absorption.

VOC,rad =
kT
e

ln
{

1 +
JSC

J0,rad

}
(1)

JSC =

∫
EQE·Φ(AM1.5G) (2)

J0,rad =

∫
EQE·Φbb(300 K) (3)

Thanks to reciprocity, the term EQE can be used directly in Equation (3) at the place of emissivity.
The blackbody radiation Φbb is calculated according to Equation (4), where h is the Planck constant, c
is the speed of light and λ is the wavelength.

Φbb =
2πhc2

λ4E2
1

exp(E/kT) − 1
(4)

In Figure 3, we show the spectra that are inputs to Equation (1). We also show Φbb at 5800 K
as this is used to extrapolate Φ(AM1.5G) in the infrared beyond the tabulated values. Similarly,
the FTPS signal was extrapolated by an exponential below 0.9 eV. The exponential slope used for
extrapolation corresponds to Urbach energy 30 meV. This value was guessed based on previous reports
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on measurements of this slope [32]. This extrapolation of the low-energy part of the spectrum is critical
and strongly dependent on the slope used. On the other hand, in the high energy part, the extrapolation
has a much lower impact on the results of Equation (1), as Φbb(300 K) is negligible in this range
(Figure 3).
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Figure 3. Spectra input into Equation (1). Blackbody spectra were calculated with Equation (2) and for
comparison corrected to the flux measured from the distance of the sun using a factor of 2.17 × 10−5.
An example of an extrapolated FTPS spectrum is given in an arbitrary scale.

3. Results

In order to provide more universal values—independent of the bandgap of the a-Si:H material—we
plot so-called voltage deficit (sometimes labelled as WOC)—i.e., the difference between bandgap Egap

and VOC. The bandgap value Egap = 1.69 eV was obtained from the Tauc plot of (αE)0.5 versus E,
where E is photon energy, in the range where (αE)0.5 is between 150 and 300 (eV/cm)0.5.

The Egap − VOC values are correlated with the defect density and the absorber thickness in
the contour plot in Figure 4a. For a given defect density and thickness, the attainable voltage can
be assessed. It is also useful to plot the VOC (or Egap − VOC) as a function of the total number of
defects—i.e., defect density times absorber thickness. The data follow a linear trend, as shown in
Figure 4b. Interestingly, the linear trends for different thicknesses are related. We observed that, after
multiplying defect density by thickness (i.e., taking the total amount of defects) the datasets lie on
the same straight line. This demonstrates that it is indeed the total number of defects rather than the
defect density, independent of thickness, that actually matters.
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Interestingly, the radiative limit (with including defect absorption) yields almost the same trend
with only a relatively small margin in the voltage (~0.16 V) that is attributed to non-radiative losses.
Additionally, the actual defect density itself is responsible for a relatively small portion of voltage drop.
This confirms that amorphous silicon fundamentally cannot achieve high efficiencies, as predicted
already by Tiedje [28].

4. Discussion

To corroborate and expand upon experimental results, numerical simulations were performed
in AFORS-HET [33]. A simplified structure was investigated, with an intrinsic a-Si:H absorber and
ideal contacts, realized through highly asymmetric hole and electron surface recombination velocities
(107 cm/s vs. 1 cm/s). The same absorber layer thicknesses were used as in the experiment, and the
total defect density in a Gaussian distribution within the energy gap was varied from 3 × 1016 to
1.2× 1017 cm−3 (0.75–3.0 ppm) for all thicknesses. The Urbach energy was set to 48 meV. Current–voltage
curves under AM1.5g (1000 W/m2) illumination were simulated to find the VOC.

The AFORS-HET simulations show the same trend in VOC with defect density and absorber
thickness as the experimental results, albeit with a higher VOC (see Figure 5). The total number of
defects continues to be the crucial factor in determining VOC, with the results of all thicknesses lying
on the same curve, as shown in Figure 5b. The extension of the regions by the simulated data points
reveals that this curve is better characterized by a logarithmic trend. However, logarithmic relation
may suggest an infinite voltage for zero defect density, but this does not happen because, at lower
defect densities (below ~0.5 ppm), VOC becomes limited by radiative recombination through tails
states (see again blue star in Figure 4b). Therefore, more points were simulated close to zero defect
density, where the trend changes to linear. Conversely, at the highest defect densities in the thickest
devices, the datapoints also deviate from the trend due to current-collection losses.
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Figure 5. (a) Contour plot of simulated Egap − VOC for different defect densities and thicknesses;
(b) Logarithmic (horizontal-axis) plot of experimental VOC data compared to the simulation. Grey lines
are guides for eye, represented by equation VOC = b + 48mV ln x.

The higher VOC seen in simulations compared to the experiment likely arise from the imperfect
representation of the solar cells by the model. However, developing a more complex or carefully
calibrated model is beyond our scope, as we aimed to test the general trend of the VOC dependence
on the total number of defects. This trend was observed by both our simulations and experiment as
well as by the approximation using the radiative limit including defect absorption. The radiative limit
including defect density clearly does not include the non-radiative recombination also caused by the
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defects that are also present. This is the reason why the experimental values are lower and why the
experimental trend is dropping faster, compared to the thermodynamic limit.

5. Conclusions

We have demonstrated that FTPS spectra used in conjunction with the absorption coefficient
obtained from PDS on a separately deposited layer on glass can be used to determine the absolute
defect density in a-Si:H and potentially other thin-film solar cells. Within the range of state-of-the-art
a-Si:H solar cells, the total number of defects (the defect density multiplied by the device thickness)
rather than the volume defect concentration was found to determine the maximum achievable VOC.
This was confirmed by computer simulations of the semiconductor device. Without the need for any
scaling of FTPS spectra (therefore, without the need for reference layers on glass) the radiative limit,
including defect absorption, can be determined. This limit describes the vast majority of all voltage
losses in the amorphous silicon device, leaving only around 0.16 V to non-radiative losses. This limit
follows the same trends in the dependence of the VOC on the total number of defects and can, therefore,
be a useful parameter, also serving as an upper bound of VOC potential.
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