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Abstract: Having established that sulphur presence in the mould materials appears to have an
important contribution in graphite degeneration at least in the casting surface layer, a research
program is undertaken to explore the possible beneficial effect of sulphur diffusion blocking at the
metal–mould interface. Test samples, with and without a thin steel sheet (up to 3 mm thickness)
application on the inner surface of the mould cavity, before iron melt pouring, are considered for
structure analysis. A higher nodulizing potential (0.048% Mgres, 0.015% Ceres, and 0.006% Lares)
decreases the occurrence of surface graphite degeneration in castings obtained in rigid chemically
bonded resin sand moulds, using P-toluol sulfonic acid (PTSA) hardener (S-including), but it is not
enough to avoid this phenomenon (200–400 µm skin in present experimental conditions). The casting
skin appears to have different values, depending on the evaluation technique (un- and Nital-etching
direct measurement, or graphite parameters variation on the casting section). In the presence of a
thin steel sheet at the metal–mould interface, the casting skin thickness decreases or is just excluded.
It is supposed that it acts as a barrier, blocking S-diffusion from the mould media into the iron melt.
Without this S-diffusion, the graphite degeneration in the casting surface layer could be avoided, or at
least diminished. For industrial application, the increasing of residual content of nodulizing elements
is a limited solution, and it is recommended to use barriers to block S transfer on the mould/metal
surface, such as dense coatings or coatings with desulphurization capacity.

Keywords: solidification; casting; casting skin; surface layer casting; ductile iron; resin sand mould;
metal-mould interaction; graphite degeneration; sulphur diffusion blocking

1. Introduction

According to Modern Casting Journal census [1], the world casting production in 2018 was over
than 112 million metric tons, including around 70% cast iron, 10% cast steel, and 20% non-ferrous
(17% Al) castings, respectively. The global iron cast production rose from 54.5 million metric tons in
the year 2000 to over 85 million tons in 2017. Between 2000 and 2017, the output of grey iron cast
rose by around 40%, while the production volume of ductile iron cast doubled worldwide to around
27 million tons [2]. A total of 16.8 M tons of the world production was casted in CAEF (The European
Foundry Association). The iron, steel, and malleable foundries of the CAEF member states produce
approximately 12.3 M tons of castings per year. The share of cast iron with lamellar graphite in the
output total of iron and steel castings is 50%, correspondingly, the share of ductile cast iron is slightly
higher (43.7%). The steel sector logs a share of 6.4% [3].

In automotive power-train trends and the market opportunity for cast iron for the automotive
industry analysis, S. Dawson concluded that the cast iron foundry industry could play an active role in
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guiding legislators and educating consumers on the need to consider the entire life cycle production of
the vehicle, and production, delivery, and consumption of the fuel. In this way, cast iron position in the
automotive industry has to be revised, compared with apparently more attractive, light Al alloys [4].

A solution for the cast iron industry to be competitive with aluminium alloys is to produce thin
wall ductile iron (TWDI) castings, generally less than 5 mm section size. TWDI castings can be lighter
than their substitute made of aluminium alloys and characterize similar or better mechanical properties,
and definitely better dumping capacity. Economically, the costs involved in producing ductile iron
are much lower than those corresponding to Al alloys. All the technological aspects involved in the
production of thin wall ductile iron castings should have been worked out before considering the
development aluminium alloys castings as cast iron substitutes [5].

The properties of the ductile/compacted graphite iron castings generally, and of the thin wall
ductile/compacted graphite iron castings especially, are affected by graphite degradation layer formation,
with fatigue properties being more sensitive to surface condition than the static properties [6–10].
It is found that compacted graphite cast iron is more susceptible to the casting skin effect than grey and
ductile cast irons [6–9,11–14].

Green sand moulds, as less rigid moulds, compared with resin sand moulds, encourage the
formation of contraction defects, not only because of high initial expansion values, but also because
of a higher cooling rate during solidification, and increasing undercooling below the metastable
equilibrium temperature up to the end of solidification [15,16].

Consequently, in the world foundry industry, ductile iron castings are usually produced in rigid
moulds, typically as chemically bonded sand moulds (self-set, no-bake, cold box) using P-toluol
sulfonic acid (PTSA) hardener (including sulphur). Furan acid and phenolic catalyst systems are
particularly attractive to ductile iron producers as these binder systems produce very strong, rigid
moulds. Strong moulds are a prerequisite for directly applied and/or riser-less design feeding systems,
being less sensitiveness to shrinkage and micro-shrinkage formation. Although resin mould technology
is popular for ductile iron casting production, it can also contribute to graphite degeneration at the
surface of spheroidal graphite cast iron.

2. Background

The degenerated graphite layer (skin) formation at the surface of the Mg-treated iron castings
is generally accepted to be produced by chemical reactions between nodulizing elements from the
iron melt (Mg, Ce, La) and active elements supplied by mould and core materials (sulphur, oxygen,
nitrogen, moisture), mould and core coatings, and gaseous atmosphere in the mould cavity [6–17].

Sulphur appears to be the most important contributor in graphite degeneration in the casting
surface layer, originating in the mould and core materials or in the applied coatings on the mould
or/and core, in order to improve the quality of the casting surface, avoiding adherence and reducing
the iron casting roughness.

Previous research programs pointed out the major role of sulphur, supposed to be supplied
by mould materials or mould coatings, before Mg-treated iron casting solidification [13–15,17–20].
Figure 1 [13] summarizes the effect of final residual magnesium in the Mg-treated iron castings,
solidified in ceramic mould without sulphur contribution (Novolak resin sand mould—NRS mould)
or with sulphur content (resin sand with P-toluol sulfonic acid (PTSA) hardener, Furan Resin Sand
(FRS)-PTSA mould). For the both mould media, un-coating and mould coating moulds are tested.
The applied coatings include sulphur bearing materials or MgO bearing material.
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Figure 1. General view on the surface casting layer (skin) graphite structure (un-etching) at different 
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Figure 1. General view on the surface casting layer (skin) graphite structure (un-etching) at different
Mgres content, in the mould without (a) and with sulphur content (b) and un-coated and FeS2 or MgO
bearing coatings.
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The most important conclusions of these research programs are as follows:

(a) Uncoated FRS-PTSA moulds with sulphur in the binder promoted degenerate graphite in the
surface layer of the test castings, with the thickness of this layer increasing more than five
times compared with NRS moulds (no mould sulphur), but also strongly depending on residual
magnesium content.

(b) With lower Mg content, more graphite degeneration is apparent in the cast surface layer,
especially at less than 0.03% Mgres (typical Mg content for vermicular/compacted graphite cast
irons) with increasing differences between FRS-PTSA and NRS moulds, and uncoated and coated
moulds results.

(c) The graphite characteristics (nodularity, shape factor, aspect ratio) in the centre of the analysed
samples evolved in a clear relationship with the changes in the degenerate graphite surface layer,
for the prevailing solidification conditions: higher surface layer thickness, lower is the graphite
nodularity in the casting body.

(d) Comparing the graphite morphologies in irons solidified against different mould coatings,
it appears that application of the coatings mainly controlled the chemical interactions between S
and Mg and rare earth elements (REE), rather than affecting heat transfer.

(e) Sulphur bearing coatings increase the surface layer thickness by up to five times in NRS
moulds and by 50% in FRS-PTSA moulds, by augmenting the sulphur already present in the
FRS-PTSA moulds.

(f) The coatings based on desulphurizer type materials, such as MgO, provide some protection at
the metal–mould interface. It is assumed that this coating behaves as a desulphurizer locally and
counters the negative effect of sulphur released by the mould.

(g) An effective coating designed to protect Mg-treated iron casting must go beyond the role of
desulphurizing with supplementary Mg to preserve graphite nodularity. This dual activity is
achieved with coatings containing active Mg, derived from (Mg) FeSi materials [17–20].

Xiaogan [21] suggested that graphite degeneration is caused at the surface by SO2 from the
combustion of PTSA in the resin-bonded sand at casting temperatures. SO2 is absorbed at the metal
surface, where it dissociates into atoms allowing diffusion into the molten metal, to form sulphides of
the reactive elements, Mg, rare earth elements (REEs), and Mn.

On the basis of technical literature and appropriate experiments, the following policies are
recommended for FRS-PTSA moulding lines to control the abnormal surface layer formation [14]:
the sulphur content should be less than 0.15 wt.% S in the mould (or even <0.07 wt.% S); reduce the
PTSA content, ideally to less than 50 wt.% of the resin; reduce reclaimed sand usage, usually less than
70 wt.%; use well maintained and calibrated mixers; use effective size classification in reclaimed sand
systems; blend phosphoric acid with the PTSA, but be aware this may lead to P pick-up; increase the
nodulizer addition (with attendant risk to the casting quality), and this usually will not eliminate
the defects; lower the pouring temperature, usually less than 1350 ◦C (depending on casting weight
and predominant section size); and use mould coatings with a desulphurization capability, such as a
CaO/MgO/Talc composition, and especially similar coatings with Mg-bearing FeSi in the mix.

Having established that sulphur presence in the mould materials appears to have an important
contribution in graphite degeneration at least in the casting surface layer, a research program
is undertaken to explore the possible beneficial effect of sulphur diffusion blocking at the
metal–mould interface.

3. Materials and Methods

The experimental heat is melted in an acidic refractory lined, coreless induction furnace (100 kg,
2400 Hz). The base cast iron melt is heated to 1500–1520 ◦C and then tapped into a 30 kg nodulizing
ladle. A Tundish Cover Mg-treatment technique, with tundish cover removable type, is used along
with a 2.0 wt.% Mg-bearing FeSi master alloy (Table 1). A pocket is made in the bottom of the ladle,
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to receive Mg-bearing FeSi, while the liquid base iron is delivered from the tundish through a calibrated
hole, in a ladle with 2:1 ratio between height and diameter. This nodulizing technique is selected
to reduce smoke and flare, improve Mg-recovery, reduce temperature losses, and obtain a better
consistency of final Mg. After Mg-treatment, an inoculation during the transfer of Mg-treated iron into
the pouring ladle (0.5 wt.% FeSiCaBaAl alloy addition) is employed.

All the test castings are poured at 1450 ◦C in furan resin moulds. A furan resin (3.0 wt.%) and
P-toluol sulfonic acid (PTSA) (6.53 wt.% S content and 1.5 wt.% addition) bonded silica sand (95.5 wt.%)
(FRS-PTSA) moulding system is used. Four pyramid trunk with square section test samples are cast in
this mould according to Figure 2a presentation: 34 mm × 22 mm × 40 mm, 6.24 mm cooling modulus,
0.52 kg weight.

Table 1. FeSi-based alloys for nodularization and inoculation (wt.%).

Role Alloy Si Ca Al Mg Ba Ce La Fe

Nodularization FeSiCaMgRE 43.5 0.98 0.47 6.25 0.035 0.84 0.56 Balanced

Inoculation FeSiCaBaAl 75.0 1.0 1.1 - 1.0 - - Balanced
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One sample is used as a reference, while for the other three samples, on the inner surface of the
mould cavity (in the opposite position with the gate), a thin steel sheet is applied, before Mg-treated
and inoculated iron melt pouring. Here, 0.5, 1.0, and 3.0 mm steel sheet thickness is used.

Test samples, with and without steel sheet application, are considered for structure analysis, at
a section of 26 mm thickness and at 10 mm distance from the top of the pyramid trunk. Un-etched
samples are used for graphite characteristics evaluation (nodularity and shape factors) and Nital 2%
etched samples for metal matrix analysis (ferrite, pearlite, carbides), respectively.

The structure analysis in the casting body is recorded on the three parallel directions on 3 mm
casting thickness, starting at 3 mm distance from the casting surface (Figure 2b). The average value of
the 15 analyses is considered. Five analysis points at 0.66 mm distance between them in each direction
are used.

Figure 2c shows the procedure of structure analysis on the section of the surface layer. In order to
avoid the end (corner) effect, the structure analysis is recorded at a distance of 16 mm, with five analysis
points at 1.0 mm distance between them on each side of the pyramid. Surface layer (skin) is defined
by graphite degeneration area compared with nodular (spheroidal) morphology. It is measured by
metallographic microscope analysis (100:1 magnification) as a visible layer thickness up to prevalent
nodular graphite morphology presence, in un-etched (only graphite is visible) (Figure 3a) and Nital
etched (also metal matrix is visible) (Figure 3b) conditions [22]. The measurement points of the surface
layer thickness are at 100 µm between them, with the average value consideration. Graphite nodularity
and representative shape factors variation on the casting section, starting from the casting surface,
are also used to evaluate the skin thickness, for each test condition.
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4. Results and Discussion

4.1. Chemical Composition

The evolution of the chemical composition from the base iron, tapped from the electric furnace,
through Mg-treatment (nodularization), and finally subjected to inoculation, is illustrated by Table 2
and Figure 4. Mg-treatment master alloy has a visible contribution in silicon, an element that is also
increased by FeSi based inoculation alloy. As a result, carbon equivalent (CE) also increases up to the
final content in iron cast in the test mould.

The active elements, known to contribute to graphite nodularization (spheroidising) process,
such as Mg, Ce, La, and Ca, are less than 0.002% in base iron, resulting lamellar graphite morphology.
FeSiCaMgRE-treatment alloy has an important contribution in these active elements, which reached
the maximum level, specifically for each element.

After Mg-treatment, iron melt will loss a part of nodulizing elements (Mg, Ce, La), as Mg is in the
vapour state and other elements in micro-inclusions floating in the liquid iron. Inoculation contributes
to restoring the level of Ca.
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Double treated cast irons, solidified in the present experimental conditions, are characterized
by high graphite nodulizing potential, expressed by a high content of residual nodulizing elements:
0.048% Mgres, 0.015% Ceres, and 0.006% Lares. Al and Ca, as active elements in nodular graphite
formation, are also at a normal content in this respect.

Elements with known antinodulizing influence, such as Al, Ti, As, Sn, Sb, Pb, and Bi, are at a
lower level, so Thielemann antinodulizing factor (K, Equation (1)) [23] is less than 0.5. According to
Thielemann, in magnesium-treated irons, the complex antinodulizing factor K should not exceed 1.0.

As the same elements also have a major effect on pearlite formation (Px, Equation (2)) [23], their
low content has a limited contribution to pearlite formation, mainly affected by manganese and silicon
contents, resulting in Px less than 1.5, typically for a mixture structure (ferrite and pearlite).

K = 4.4 (%Ti) + 2.0 (%As) + 2.4 (%Sn) + 5.0 (%Sb) + 290 (%Pb) + 370 (%Bi) + 1.6 (%Al) (1)

Px = 3.0 (%Mn) − 2.65 (%Si − 2.0) + 7.75 (%Cu) + 90 (%Sn) + 357 (%Pb) + 333 (%Bi) +

20.1(%As) + 9.6(%Cr) + 71.7(%Sb)
(2)

Table 2. Chemical composition of the test cast irons (wt.%) *.

Iron C Si Mn S Mg Ce La Ca Al Ti CE **

Base 3.37 1.42 0.54 0.021 0.0005 0.0021 <0.0001 <0.0002 0.006 0.005 3.83

Mg-treated 3.44 2.56 0.62 0.013 0.059 0.020 0.0086 >0.006 0.012 0.006 4.24

Inoculated 3.37 2.93 0.62 0.015 0.048 0.015 0.006 >0.006 0.012 0.006 4.29

* Other elements (wt.%): 0.05–0.08 P, 0.045–0.05 Cr, 0.036–0.037 Ni, 0.04–0.05 Cu, 0.008–0.009 Mo, 0.005–0.006 Co,
0.002–0.003 V, 0.0002–0.0004 Pb, 0004–0.005 Sn, 0.0055–0.006 As, <0.001 Sb, <0.001 Te, 0.0009–0.001 B, 0.0002–0.0005
Zn, 0.008–0.01 N, <0.0005 Bi. ** CE—carbon equivalent (CE = %C + 0.3 (%Si + %P) − 0.03% Mn + 0.4% S).
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CE—carbon equivalent.

In these conditions, it is expected to obtain a stable, nodular (spheroidal) graphite phase, less
affected by detrimental factors. As the major contribution of carbon and silicon of the base iron and
silicon contribution of Mg-treatment and inoculation, the final test iron is placed in the eutectic range,
as carbon equivalent CE = 4.29%.

4.2. Structure Characteristics in the Casting Body

Figure 5 shows the typical micro-structures in the casting body (at 1/2 of half section) as graphite
(un-etched samples) and metal matrix and graphite (Nital 2% etching), as reference (without steel sheet
at the liquid metal–mould interface) and with different steel sheet thicknesses (0.5, 1.0, and 3.0 mm).
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In all these cases, a typical nodular (spheroidal) graphite morphology is obtained, according to V–VI
classes ISO 945.
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The presence of the thin steel sheet on the inner face of the mould cavity appears to decrease the
nodules’ size and to increase the nodule count, while the compactness degree of graphite nodules is
improved. As graphite phase is affected, the metal matrix also makes up changes, resulting a higher
amount of ferrite (less pearlite).

The graphite characteristics are evaluated with Automatic Image Analysis (OMNIMET
ENTERPRISE and analySIS® FIVE Digital Imaging Solutions software, Lake Bluff, IL, USA). For a
graphite nodularity (N), this software uses Equation (3):

N = [(
∑

ANG+1/2
∑

AIG)/
∑

Atot]·100 (%) (3)

where
ANG—area of particles classified as nodules (RSF = 0.625–1.0);
AIG—area of particles classified as intermediates (RSF = 0.525–0.625);
Atot—area of all of graphite particles;
RSF—roundness shape factor = 4·A/π·lm2;
A—area of the graphite particle in question;
lm—maximum axis length of the graphite particle in question (maximum distance between two

points on the graphite particle perimeter).
As Figure 6 shows, the presence of the thin steel sheet favours the increasing of graphite nodularity

(N), roundness shape factor (RSF), and ferrite amount (F). The higher the steel sheet thickness, the
higher the level of these structure parameters. These positive effects are clearly up to 1.0 mm sheet
thickness; nodularity increases from 81.7% to 86.6%, RSF from 0.618 up to 0.645, and ferrite from 30%
up to 45%. A thicker sheet does not affect the roundness shape factor, and limits increased nodularity
(up to 81%) and ferrite amount (up to 55%).
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Figure 6. Influence of the steel sheet thickness on the graphite nodularity (N) and graphite roundness
shape factor (RSF) (a) and ferrite amount (b) in the casting body (see Figure 2b).

The applied steel sheet acts as a chill agent. A higher thermal conductivity of the steel sheet
compared with to the mould material will increase the heat extraction, resulting a higher solidification
cooling rate, with a beneficial effect on the graphite phase characteristics; that is, nodule count increasing
and their size decreasing, at higher fine nodules (maximum 30 µm, Size 7, ISO 945) class incidence.
Size 6-ISO 945 (30–60 µm) rate decreases, without the formation of larger nodules (Figure 7).
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body: (a) nodules’ count and average size; (b) nodules size class rate, ISO 945.

4.3. Structure Characteristics in the Casting Surface Layer

An important structural change is found in the casting surface layer (skin) as an effect of the
presence of the thin steel sheet at the metal–mould interface (Figure 8). Figure 9 presents in detail
the structure at the surface of Mg-treated iron castings, at the resin mould (including sulphur) and
metal interface.

Normal solidification, without steel sheet protection, has a distinct casting surface layer, including
complex graphite morphologies:

(a) lamellar graphite (50–150 m size) and a pearlitic metal matrix at the surface;
(b) followed by a very fine lamellar graphite (5–40 m size) sub-layer, in a ferritic matrix;
(c) vermicular/compacted graphite sub-layer, in a ferritic matrix;
(d) and, finally, a normal nodular (spheroidal) graphite morphology, in a dual metal matrix (ferrite

and pearlite) structure, typically for the casting body.

Metal matrix is strongly dependent on the prevalent graphite morphology in the casting surface
layer. An outer pearlitic rim associated with type A/E (ASTM) graphite is formed at the casting
surface, followed by a ferritic rim associated with fine type graphite (like coral or type D-ASTM),
and finally a ferritic rim associated with vermicular/compacted graphite, before the sound body
casting base structure, mainly as ferritic-pearlitic with nodular (spheroidal) graphite (Figures 8 and 9).
If the graphite degeneration at the casting surface is avoided, nodular graphite in a ferritic–pearlitic
matrix characterizes the structure in this area.

Previous works [6–20] identified this type of surface degenerated structure as an effect of sulphur
diffusion from the mould into the Mg-treated iron melt, consuming the nodulizing elements (Mg, Ce,
La), before their action in the graphite spheroidization process. As a result, non-spheroidal graphite
morphologies are formed, depending on the remanent content of these elements.

It is expected to record the highest active elements consumption just at the metal–mould interface,
resulting in normal lamellar graphite, typical for base iron, untreated to form nodular graphite.
As a result of the supposed diffusion of sulphur from the metal–mould interface through the liquid
casting body, the graphite degeneration will continue, but step-by-step at a lower level, and the content
of diffused sulphur also decreases. From the lowest level at the metal–mould interface (the result of
the strong interaction with sulphur delivered by the mould), the final residual Mg, Ce, and La contents
increase up to the casting body, unaffected by mould sulphur influence.
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Figure 9. Graphite morphologies and metal matrix make-up at the metal–resin sand mould interface.

Despite the high nodulizing potential of the present experimental cast irons, expressed by the
high content of nodulizing elements in final cast iron (0.048% Mgres, 0.015% Ceres, and 0.006% Lares),
the generated graphite surface casting layer is present in the complete solidification conditions,
at 200–400 µm average level. This is visible in both un-etching (graphite morphology evaluation) and
Nital etching (metal matrix consideration) analysis conditions.

The casting skin (degenerated graphite surface layer) is visibly reduced or just avoided on the
casting side, which is protected by thin steel sheet. This sheet, interposed between mould, as a possible
supplier of sulphur and liquid metal, as receiver of sulphur with possible interaction with nodulizing
elements, appears to block S-diffusion. As a result, the mould contribution in graphite degeneration in
the surface casting layer is avoided, despite its position as a sulphur supplier.

The chill effect of the steel sheets is also visible in the casting, just below the surface layer, as nodule
count increases and their size decreases, especially at thicker sheets (1.0 mm and 3.0 mm). In these
cases, the obtained Nital etched samples illustrate the presence of oriented structures, including free
carbides in this layer.

In order to evaluate the thickness of the casting surface layer (casting skin), there are considered
direct measurement in un-etching and Nital etching conditions (see Figure 3) and graphite phase.

Parameters’ evolution on the casting section. The influence of the steel sheet thickness on the
degenerated graphite surface layer (skin) thickness is shown in Figure 10.
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An unprotected mould–metal interface leads to the largest measured surface layer thickness,
larger in Nital etched analysis conditions (graphite and metal matrix consideration) than in un-etching
samples conditions, as only graphite evaluation. Another possibility to evaluate the surface thickness
is using the evolution through the casting size of different graphite characteristics (Figure 11).
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The presence of the thin steel sheet on the inner mould cavity surface leads to drastically decreasing
the thickness of the degenerated graphite surface layer for 0.5 mm thickness sheet, and avoiding it for
thicker sheets.

It is supposed that 0.5 mm thickness steel sheet blocked the sulphur diffusion from the mould
just after the mould cavity filling. Later, it melted at least partially owing to the heat extraction before
casting solidification, allowing a limited sulphur diffusion into the casting surface layer. As a result,
the graphite degeneration process was visibly limited, but not totally avoided. Steel sheets at 1.0–3.0 mm
thickness did not melt, being a protective barrier to sulphur diffusion from the mould into the iron
melt, so no graphite casting skin formed.

Similar results are obtained by the use of graphite shape factors variation, such as roundness
shape factor (RSF) (Figure 11b), defined by Equation (3).

As the same mould is used, including four samples, with the same sulphur potential for each one,
the maximum detrimental contribution of this element at the metal–mould interface is reached for the
unprotected sample. It is supposed that, in this case, the maximum sulphur diffusion into liquid iron is
recorded. If sulphur diffusion is blocked in the present experiments by the presence of the thin steel
sheet on the metal–mould interface, the mould contribution in casting skin formation is reduced or
just avoided.

It is expected that the sulphur diffusion blocking by other ways, such as by dense coatings or
coatings with de-oxidation or/and desulphurization capacity, for example, will have a similar beneficial
effect. Recently [24], it was found that carbonic material or iron powder supplementary addition to
the mould coating decreases the incidence of the casting skin formation, with carbonic material being
more efficient as limiting oxygen and iron powder to limit the negative effect of sulphur on the casting
skin thickness.

The control of the graphite morphology, especially in heavy ductile iron castings, very sensitive
to nodular graphite degeneration, owing to a longer solidification time, is essential especially as a
dynamic tensile process evolution [25]. On the other hand, alloying of the ductile cast irons with
some elements could improve the castings’ quality, such as tensile properties and hardness, as well as
resistance to oxidation and corrosion, but could also affect the graphite phase quality.
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It is found that high silicon ductile cast irons are sensitive to lower nodules’ compactness
formation, such as type V instead of type VI (ISO 945) graphite, also with a high sensitivity to casting
skin formation [17,24].

Aluminium is found as a good replacement of silicon in ductile cast irons, with real benefits such
as higher strength and hardness, as well as better wear and oxidation resistance [26,27], but its
anti-nodularising effect in Mg-treated cast irons must be considered. A high sensitivity must
also be expected to cause graphite degeneration in the casting surface layer. In all of these cases,
a supplementary contribution of sulphur, supplied by mould or/and mould coatings, will increase the
casting skin formation process, resulting in the benefits of sulphur diffusion blocking into the iron
melt, before solidification.

5. Conclusions

A research program is undertaken to explore the possible beneficial effect of sulphur diffusion
blocking at the metal–mould interface, on graphite degeneration at in Mg-treated iron castings. On the
basis of this work, the following main conclusions can be drawn.

(1) The world foundry practice shows that rigid mould, furan resin, and P-toluol sulfonic acid (PTSA)
bonded silica sand moulding system is attractive for ductile iron castings production, but it is an
important supplier of sulphur for iron melt, before its solidification.

(2) It is confirmed that, without protection, the supposed sulphur diffusion from the mould material
through iron melt is an important contributor for graphite degeneration at the surface casting layer.

(3) In the present experimental solidification, it is found that the free sulphur diffusion could also
contribute to this phenomenon inside of the casting body, expressed by decreasing graphite
nodularity and graphite compactness degree.

(4) A higher nodulizing (spheroidising) potential of Mg-treated cast iron, expressed by a high content
of known nodulizing elements (0.048% Mgres, 0.015% Ceres, and 0.006% Lares), could decrease
the occurrence of surface graphite degeneration, but it is not enough to avoid this phenomenon
(200–400 µm skin thickness in the present experiments).

(5) The thickness of the surface graphite degenerated layer appears to have different values, depending
on the evaluation technique; that is, it is thicker by measurement in the presence of metal matrix
(Nital 2% etching), compared with the only graphite phase consideration (un-etching), with
the highest values obtained using graphite parameters, such as nodularity and shape factors’
variation on the casting section.

(6) In the presence of a thin steel sheet at the metal–mould interface, the thickness of the surface layer
decreases or is just avoided. It is supposed that it acts as a barrier, blocking sulphur diffusion into
the iron melt.

(7) If the sulphur contribution of the mould is diminished, such as by blocking its transfer to
the iron melt, the graphite degeneration in the casting surface layer could be avoided or,
at least, diminished.

(8) For industrial application, it is recommended to use such barriers on the mould surface, such as
dense coatings or coatings with desulphurization capacity.
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11. Holtzer, M.; Górny, M.; Dańko, R. Microstructure and Properties of Ductile Iron and Compacted Graphite Iron
Castings: The Effects of Mold Sand/Metal Interface Phenomena; Springer: Berlin, Germany, 2015.
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