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Olegas Černašėjus 1, Jelena Škamat 2 , Vladislav Markovič 1, Nikolaj Višniakov 3,*
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Abstract: In the present work, the experimental study on laser processing of additively manufactured
(AM) maraging steel part surface was conducted. Nanosecond pulsed laser at ablation mode was
used for surface modification in oxidizing atmosphere. The morphology, roughness, elemental
and phase composition, microhardness and tribological properties of the processed surfaces were
investigated. The obtained results revealed that pulsed laser processing under the ablation mode in air
allows obtaining modified surface with uniform micro-texture and insignificant residual undulation,
providing 3 times lower roughness as compared with the as-manufactured AM part. The intensive
oxidation of surface during laser processing results in formation of the significant oxides amount,
which can be controlled by scanning speed. Due to the presence of the oxide phase (such as Fe2CoO4

and Ti0.11Co0.89O0.99), the hardness and wear resistance of the surface were significantly improved,
up to 40% and 17 times, respectively. The strong correlation between the roughness parameter Ra

and mass loss during the tribological test testifies the significant role of the obtained morphology for
the wear resistance of the surface.

Keywords: laser surface processing; additive manufacturing; maraging steel; surface modification;
hardness; morphology; wear

1. Introduction

Additive manufacturing (AM) is the general name for technologies that forms 3D parts from
the digital model by adding of materials (plastic, metals, etc.) layer-by-layer. Initially AM was
developed for rapid prototyping of new products. Great improvement was reached in AM technologies
over the last thirty years and now AM is already used for direct production of end-use parts [1].
For metal parts production by AM, two major technologies were developed—powder bed fusion
based technologies (PBF) and directed energy deposition (DED) based technologies [2]. Selective
laser melting (SLM) is one of the main representative processes of PBF based technologies. SLM uses
laser energy for selective melting of the powder to produce three-dimensional object. Part of it is
produced “cross-section by cross-section”. Each laser-scanned cross-section is generated from a 3-D
digital description of the part [3]. The current level of metal SLM technologies allows producing dense
metallic parts with geometric tolerance between 50 and 100 µm [2]. Due to the possibility to produce
the parts with complex internal and external geometries, SLM attracts growing interest in various fields
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of engineering including aircraft, aerospace, biomedical, automotive, marine industries and tooling,
where maraging steels find broad application [4–9]. Using the SLM technology allows one to realize
difficult geometry of cooling channels within the tooling (die, mold, forging and cutting tools).

Maraging steels are a special class of high-strength steels possessing high yield strength (up to
2420 MPa for commercial grades) combined with high fracture toughness and ease of fabrication [4,10].
The specific alloying system provides highly alloyed low-carbon iron-nickel quite soft (30 HRC) lath
martensite matrix, which is aged (annealed) to obtain hardening by intermetallic precipitation [4,11].
The hardness of intermetallic compounds is not extremely high, as compared with borides, carbides
and some oxides; therefore, maraging steels possess moderate hardness (58 HRC max.) and, as
a result, insufficient wear resistance. As was found as far back as the 60s, gas nitriding is a suitable
process enabling considerable surface hardening of maraging steel [6,12–16]. The typical steel nitriding
temperatures (450–500 ◦C) are close to those required for aging of maraging steels; therefore, both
the nitriding and aging processes can be accomplished simultaneously [4]. The main disadvantage of
the gas nitriding process is long duration of the process—approximately 10 h for obtaining 0.1 mm
layer employing one step process or 1.5–2 times shorter duration when two-step nitriding process is
applied. Respectively, the energy consumption and production cost are comparatively high.

At the same time, laser surface processing of metals is known as a very flexible method enabling
melting and oblation of surface [17] (pp. 295–347). Melting of surface results in its smoothening
due to relocation of molten metal under gravity and surface tension. Laser remelting process based
polishing of the SLM part could be valuable technique in the cases when mechanical finishing of parts
is limited due to complex part geometry. Successful application of laser processing for polishing of
SLM parts produced from various alloys (Fe–Co, CoCr, Ti–6Al–4V, TiC11, Inconel 718 and AISI 420
steel) is reported in a number of works [18–23]. It is revealed that laser processing not only reduces
significantly the roughness of AM parts surfaces and seals porosity, but also refines microstructure,
increases their microhardness and wear resistance. According to [24] decreasing the surface roughness
improved fatigue performance of SLM steels. When the ablation mode is applied, metal evaporates,
sublimates, or is converted to plasma. The interaction of heated surface materials with surrounding
atmosphere results in formation of the new compound, for example, oxides (at the presence of oxygen)
or nitrides (in nitrogen containing atmospheres) [25,26]. Thus, the surface composition can be modified
(therefore, the process is also called “laser gas alloying”) to obtain, for example, higher hardness.
From this point of view, the development of laser surface modification methods for maraging steel
parts seems to be very promising. Unlike laser polishing, laser alloying of AM surfaces has not been
studied extensively. To the best of authors’ knowledge, at the moment, there are no data on the laser
modification of as-manufactured maraging steel AM parts.

The present work attempted to evaluate the possibility to obtain surface hardening effect of
18-percent nickel maraging steel (300) SLM part by laser processing at air atmosphere. For this research,
SLM samples were produced in a same manner and using the same process parameters as for producing
the real end-use products for industry. The laser processing of SLM parts’ surface was performed in
air—the cheapest process, which does not require additional vacuum equipment and gas supplying.
To intensify the surface material interaction with air oxygen, the ablation mode was chosen. In our
earlier publication [27] we presented results obtained on lateral surfaces of SLM specimens. As was
found, the roughness had tendency to diminish and hardness had tendency to increase when rising
the laser power and slowing the scanning speed. Resulting effect of these properties predetermined
visible improvement in wear resistance. The XRD analysis revealed formation of oxides. It was
determined as well that the morphology and roughness parameters of lateral and top surfaces of
as-manufactured SLM parts differed significantly (for example, Ra parameter was 9.2 and 17.9 µm,
respectively). This peculiarity of the SLM process is well known and reported in a number of other
works as well. The interaction of a laser beam with the material surface in a large degree predetermined
by the part surface condition including surface chemical composition and topography [17] (pp. 91–93).
Therefore, it was expectable that the final effect of the laser processing of lateral and top surfaces
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could differ visibly as well, especially in term of obtained surface topography. Thus, the study was
continued with aim to evaluate the effect of laser processing on top-surfaces and the obtained results
extended the findings regarding possible effects of applied surface modification technique on the surface
properties of maraging steel SLM details. This part of study was focused on the investigation of
top-surfaces of SLM specimens and presents the results on obtained surface composition, hardness
and tribological properties. Since obtained dependencies differed from that presented in our previous
publication, especially in term of morphology, the expanded data on results of morphological analysis
and roughness is presented here as well.

2. Materials and Methods

2.1. Materials for Samples Manufacturing

For a formation of the specimens, 1.2709 steel powder was used (0.03% C; <0.1% Si; <0.1% Mn;
(17–19)% Ni; 4.8% Mo; <0.8% Ti; (8.5–9.5)% Co and <0.1% Al; Fe-balance). This steel also known as
18Ni300 maraging steel is one of the most widely used and commercially available maraging steels.
The morphological analysis (from scanning electron microscope micrographs made using magnification
from ×500 to ×3000, see cl. 2.4.) of the powder for selective laser melting showed that the size of
particles varies between 7 and 30 µm. Particles of the powder are of near-spherical shape (Figure 1).
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Figure 1. SEM micrograph of morphology of the powder for selective laser melting (SLM).

2.2. SLM Process Details

For the production of specimens by the SLM process, Concept Laser M3 equipment (Concept Laser,
Lichtenfels, Germany) was used. The main characteristics of the equipment and process parameters
are listed in Table 1. The square prism specimens with dimensions 15 mm × 15 mm × 10 mm were
manufactured. The produced volumes were separated from the substrate (made of the same steel
grade) by electric discharge cutting method using the wire spark erosion machine Charmilles Cut 200
(GF Machining Solutions, Geneva, Switzerland). Separated specimens were cleaned in an ultrasonic
bath in C3H8O solution for a 15 min at 40 ◦C temperature.

Table 1. Characteristics of SLM laser and process parameters.

Laser
Thickness of

Layer, mm
Laser Operating

Rate, mm/s

Shielding Gas

Wave
Length, nm Power, W Spot

Size, mm Type Consumption,
l/h

1064 100 Ø 0.2 0.03 0.2 Ar 0.75

2.3. Surface Laser Processing Details

For laser processing of the SLM specimens surfaces, a nanosecond pulse laser Baltic HP was used
(crystal matrix YVO4; Nd; wave length—1064 nm; power—up to 20 W; pulse frequency—5–100 kHz
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and pulse duration—10 ns). The minimum power density required to reach melting or evaporation
temperature of the material surface by a laser in the pulse mode can be calculated according to
the following Equation (1) [28]:

Pd =
k(Te − T0)

√
π

2A
√

a tp
(1)

where Pd is the critical power density (W·m−2); k is the thermal conductivity (W·m−2
·K−2); Te

is the material melting or evaporation temperature; T0 is the initial material temperature; A is
the absorptivity; a is the thermal diffusivity (m2

·s−1; can be calculated by formulae a = k/ρ cp; cp is
the specific heat (J·kg−1

·K−1)); ρ is the density (kg·m−3)); tp is the duration of laser pulse (s). For 18Ni300
steel, the value of Pd, calculated by Equation (1), is equal to 5.98 × 1011 W·m−2. The following
material physical properties and other parameters were used for calculation: k = 21 W·m−2

·K−2 at room
temperature [5]; Te = 3134 K (taken value for pure iron); T0 = 291 K (room temperature); A = 0.37 [29];
a = 5.71·10−6 m2

·s−1; cp = 460 J·kg−1
·K−1 [30]; ρ = 8000 kg·m−3 [5] and tp = 10−8 s.

At the constant other processing parameters, the power density will decrease with increasing
laser spot size because of the less energy concentration; the penetration depth will decrease as well.
Moreover, it was shown in [31] that surface roughness parameters such as Ra and Rz tend to decrease
linearly with rising the laser spot size until reaching some stable value.

In the present investigation, the chosen laser spot size was 25 µm; the step between adjacent laser
passes was 18µm providing appropriate overlapping. The top-surface of SLM specimens was processed
by laser at various laser powers (2, 2.5, 3 and 3.5 W) and laser scanning speeds (1, 2.5 and 5 mm/s).
Table 2 gives the coding of sample series. The surface of the SLM parts in the as-manufactured state is
typically quite rough. This can influence the interaction between the laser beam and surface material.
Therefore, for comparison, laser processing experiments were conducted with both pre-polished
(Ra = 0.2 µm) surfaces and surfaces in as-manufactured state (Ra = 17.9 µm).

Table 2. Coding of the processed samples.

Laser Scanning Speed v, mm/s Laser Power, W
2 2.5 3 3.5

1 S1/2 S1/2.5 S1/3 S1/3.5
2.5 S2.5/2 S2.5/2.5 S2.5/3 S2.5/3.5
5 S5/2 S5/2.5 S5/3 S5/3.5

The ability of laser beam to overcome the reflectivity and heat conductivity of the material to be
processed characterized by the energy parameters, such as peak power Pp (W) and peak power density
Pd (W·m−2) provided by the applied processing parameters. These characteristics can be calculated
using Equations (2), (3) and (4) [32]:

Pp =
Ep

tp
, (2)

Pd =
4Ep

π d2tp
, (3)

Ep =
Pm

f
, (4)

where Ep is the single-pulse energy (J); Pm is the average laser power (W); f is the pulse frequency
(Hz) and d is the spot diameter (m). The main energy parameters of the laser processing applied in
the present work are given in Table 3.
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Table 3. Energy characteristics of laser processing (at f = 10 kHz, d = 25 µm).

Energy Parameters of the Process Average Laser Power, W
2.0 2.5 3.0 3.5

Ep, J 2.0 × 10−4 2.5 × 10−4 3.0 × 10−4 3.5 × 10−4

Pp, W 2.0 × 104 2.5 × 104 3.0 × 104 3.5 × 104

Pd, W·m−2 4.07 × 1013 5.10 × 1013 6.11 × 1032 7.13 × 1013

When the impulse laser processing is applied, the material surface is affected point-by-point with
certain overlapping of individual points. The overlap coefficient Per is related with pulse frequency,
laser spot diameter and processing speed according to Equation (5) [33]:

Per = 100
d− v

f

d
(5)

where v is the laser processing speed (mm·s−1), d is the laser spot diameter (mm). The overlap
coefficients provided by the processing parameters in present work are given in Table 4.

Table 4. Overlap coefficients.

Laser Processing Speed, mm·s−1 1 2.5 5

Overlap coefficient, % 99.60 99.00 98.00

Thus, the parameters chosen for surface processing in the present work provide high power
density ranged between 4.07 × 1013 and 7.13 × 1013 W·m−2 and high overlap coefficient, providing
multiple heat affecting of each processed area and prolong in such a way interaction of heated surface
material with air oxygen. Additionally, three series of samples were prepared at 2.5 W laser power
and 2.5 mm/s speed, applying surface laser processing repeatedly 2 and 4 times.

2.4. Characterization Methods

The morphological study of the surfaces and powder in the present work was performed upon
using scanning electron microscope SEM JEOL JSM-7600F (Tokyo, Japan) with r-filter providing image
formation from secondary (50%) and backscattered (50%) electron signals. The analysis performed
at the accelerating voltage 10 kV and the working distance 8 mm, temperature 22 ◦C. Prior to
the morphological analysis, the surfaces of the specimens were cleaned with C3H8O solution and dried.
For the elemental composition analysis of the surfaces, the energy dispersive spectrometer IncaEnergy
350 (Oxford Instruments, Abingdon, UK) was employed. X-ray microanalysis was performed at 10
kV accelerating voltage and ×50 magnification; three different areas 0.5 mm2 were tested for each
specimen and the arithmetical mean is presented in the work.

The analysis of surface phase composition was carried out by BRUKER D8 ADVANCE
diffractometer (Billerica, MA, USA) with a Kα (Cu) radiation. The voltage was 9 kV, the diffraction
angle 2θ ranged from 20◦ to 80◦ and the step of detector movement was 0.02◦. The diffraction patterns
were recorded at a speed of 1◦/min. The tests were performed at the temperature of 22 ◦C.

The parameters of the surface microroughness were established using the portable profilometer
TR-200 (Beijing TIME High Technology Ltd., Beijing, China) with measuring accuracy ±0.01 µm.

The microhardness was assessed on pre-polished microsections using the automated hardness
meter Zwick Roell ZHµ with 1% measurement error. The measurements were carried out by Vickers
hardness test at the load of 100 g and the exposure time of 10 s; the optical magnification was 50 times.
The paper presents an arithmetic means of 10 measurements.

The tribological study was performed by “Ball-on-disc” friction scheme using Microtest tribometer
(Microtest, S. A., Madrid, Spain) under the following conditions of the experiment: sliding
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distance—400 m, sliding speed—300 rpm, radius of the trajectory—2 mm, load—5 N and temperature
of the test—23 ◦C. The indenter was tempered stainless steel AISI52100 ball of 6 mm diameter.

3. Results and Discussion

3.1. Surface Morphology

It is known that laser processing creates certain morphology of the surface and the obtained texture
depends strongly not only on the parameters of laser beam, but also on the scanning speed and trajectory.
One of the simplest and often used processing manner is scanning by line trajectory, arranging the lines
in certain density. When the scanning line density is low, the morphology consists of the formed
individual µ-channels along with the areas of primary morphology. With the increasing line density,
the area of primary morphology decreases, and finally it disappears when scanning is performed
with overlapping. Since the surface of as-manufactured SLM is quite rough, in the present research,
the laser scanning with overlapping was applied in order, beside each other, to eliminate primary very
rough morphology obtained after SLM process. Firstly, the effect of laser processing was tested on
the polished (Ra = 0.2 µm) top-surface of SLM specimen. In order to evaluate the effect of repeated
laser processing, the one-time processed surface was compared with two- and four-times processed
surfaces. Figure 2a,d show the morphology after one time processing at 2.5 W power and 2.5 mm/s
scanning speed. Uniform texture with globule-like morphology was obtained. The approximate size
of globules was 10–20 µm with gaps between them having the similar width 10 µm.
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Figure 2. SEM micrographs of textures obtained on pre-polished SLM part surface: (a,d) texture of
the onetime processed surface; (b,e) texture of the two times processed surface and (c,f) texture of
the four times processed surface.

The analysis of the surface under higher magnification showed that globule-like asperities consist
of fine near-spherical formations (Figure 2d). The morphology of surface at micro and submicro levels
changed when the surface was laser processed two times (Figure 2b,e). The globule-like asperities
became more elongated and oriented and more expressed line scanning tracks were formed (Figure 2b).
At the submicroscopic level the morphology seemed to be less porous (Figure 2e); however, the presence
of microcracks were established, highly likely induced by a high level of residual tensile stresses [17]
(pp. 310–313). When the surface was four times processed, the morphology became more coarse
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and less uniform (Figure 2c,f): the lateral size of globule-like asperities and gaps between them
increased by 3–7 times, as compared with a one-time processed surface.

Figure 3a shows the top-surface morphology of the as-manufactured SLM specimen.
The morphology is rough and consists of parallel humps having 100 µm in width and oriented
in accordance with the laser scanning sequence during the SLM process. The texture of this surface after
laser processing is shown in Figure 3b. The initial morphology was completely eliminated. The texture
obtained at the micro- and submicroscopic level did not differ significantly from that obtained on
pre-polished surface (Figure 3c). However, slight residual undulation, pre-determined by the initial
morphology of SLM surface, was observed.
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The morphology of repeatedly processed surface (2 and 4 times) was analyzed as well (Figure 4).
Similarly as for pre-polished surface, two-times laser processing has formed less porous texture
and visually slightly reduced the residual undulation (Figure 4b). Submicroscopic morphology of
globule-like asperities consisting of fine near-spherical formations partially transformed into flower-like
formations (Figure 4e). However, the presence of microcracks was established on this surface as well as
for the pre-polished surface (Figure 4b). The size of cracks increased significantly after the surface was
processed four times (Figure 4c). Maraging steels typically possess high resistance to thermal cracking.
The most likely cause of cracks in this case, we consider cracking of oxide phases that do not have as
high resistance to cracking as treated steel under the influence of tensile thermal stresses inevitably
formed in the surface layers. The absence of cracks after the first treatment can probably be explained
by a lower degree of surface oxidation and/or less penetration of oxide phases deep into the surface
layers, as a result the subsurface layers of tough steel had a stronger cracks restraining effect. Thus,
the obtained results revealed that laser reprocessing of SLM surfaces is not expedient.

Figure 5 shows the morphologies obtained at various laser powers and scanning speeds. It was
observed that most fine and uniform morphology is obtained applying 2.5 mm/s scanning speed
(Figure 5b,e,h,k). The reduction of the scanning speed results in a formation of less uniform texture
(Figure 5a,d,g,j), in which near spherical submicroscopic morphology of globules partially transformed
into flower-like structure (Figure 5d). The increase in scanning speed led to a formation of coarser
morphology (Figure 5c,f,i,l). At the same time, the variation of laser power has negligible effect
on the surface morphology—very similar textures were observed at different powers and constant
scanning speed.
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Figure 5. SEM micrographs of morphology of as-manufactured SLM part top surface one time processed
with different laser scanning speed and power: (a) S1/2; (b) S2.5/2; (c) S5/2; (d) S1/2.5; (e) S2.5/2.5;
(f) S5/2.5; (g) S1/3; (h) S2.5/3; (i) S5/3; (j) S1/3.5; (k) S2.5/3.5; (l) S5/3.5 specimen.

3.2. Surface Roughness

Figures 6 and 7 present the results of roughness measurements. The roughness of the pre-polished
surface increased after one-time laser processing (Figure 6). Repeated processing did not influence
visibly the Ra parameter while after four-times processing Ra increased 2.7 times, what may be associated
with the formation of coarser morphology. In the case of as-manufactured SLM surface processing,
the roughness was reduced 3 times applying one-time processing (Figure 6). However, Ra parameter
for as-manufactured surface after laser processing was 2 times bigger than that for pre-polished.
This can be associated with the presence of residual undulation along with submicro-asperities of
the texture. The formation of microcracks and their growth with the increase of processing number led
to an increase in surface parameter Ra (Figure 6).
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Figure 6. Roughness Ra of the pre-polished and as-manufactured SLM surfaces after laser processing
for one, two and four time at 2.5 mm/s laser scanning speed and 2.5 W laser power.

The variation of laser scanning speed and power had influence on the Ra parameter value as
well (Figure 7). The least value of Ra parameter was determined on specimen processed at 2.5 W
power and 2.5 mm/s speed and showed more uniform and less rough morphology. The reduction
and increase in scanning speed led to an increase in the Ra parameter as a result of the formation of
less uniform and more coarse textures, respectively. Such tendency was found to be similar for all
specimen series processed at constant power. The influence of laser power was not so apparent.
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Figure 7. Roughness Ra of the surfaces one time laser-processed at different scanning speeds and powers.

3.3. Surface Elemental and Phase Composition

The results of energy dispersive spectroscopy (EDS) are presented in Table 5 and Figure 8.
According to EDS, elemental composition of specimen surface after SLM did not differ significantly
from that of the initial powder. After laser processing in air, oxygen concentration at the surface
increased visibly and ranged between 24.1 wt.% and 28.8 wt.% (Table 5), indicating that intensive
surface oxidation took place during the processing. It was determined also, that the oxygen amount
at the surface tends to rise with the increase of the laser power (Figure 8a) and reduction of the laser
scanning speed (Figure 8b). Thus, the highest average oxygen concentration of 28.8 wt.% was reached
at 3.5 W laser power and 1 mm/s scanning speed. At the same time, the higher the oxygen concentration,
the less the difference for different samples. This can be explained by the approaching to the some
possible maximum in oxygen concentration.
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Figure 8. Effect of laser power (a) and laser scanning speed (b) on the oxygen concentration
at the laser-processed surfaces.

Figure 9 shows the typical XRD patterns of the as-manufactured SLM specimen surface
and specimen surface after laser processing. The major peaks appeared in the XRD pattern of
the SLM sample are attributable to the bcc-lattice Fe with parameter a = 2.866 Å (Figure 9a). This phase
can be identified as cubic martensite, which is typical for maraging steels. Less intensive reflections
belong to residual austenite (fcc-lattice; a = 3.63 Å). X-ray diffraction pattern obtained on surface,
laser-processed in oxidizing atmosphere at 2.5 mm/s scanning speed and 3.5 W laser power (S2.5/3.5),
revealed the presence of various oxides. The major reflections appeared on the pattern can be attributed
to iron cobalt oxide (Fe2CoO4) and titanium cobalt oxide (Ti0.11Co0.89O0.99; Figure 9b). The similar set
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of the reflections was observed for all the surfaces under analysis. According to the results of Rietveld
analysis, the total amount of oxides changed with variation of laser scanning speed: the less scanning
speed the higher amount of oxides, what is related to a longer heating duration, slower cooling rate
and, as a result, to a longer surface interaction with oxygen at high temperature (Figure 10).

Table 5. Elemental composition of initial steel powder and samples surfaces (in wt.%, by energy
dispersive spectroscopy (EDS)).

Specimen
Element

Fe Ni Co Mo Ti O

Initial powder

Balance

20.0 6.9 4.5 0.7 2.0
SLM specimen 23.0 8.2 4.1 0.7 5.1

S5/2 (v = 5 mm/s/P = 2.0 W) 15.3 11.0 3.7 1.2 24.1
S1/3.5 (v = 1 mm/s/P = 3.5 W) 11.9 8.8 3.3 1.3 28.8
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3.4. Surface Microhardness and Tribology

The microhardness of SLM surface was 297 HV. As was expected, microhardness increased
significantly after laser processing (Figure 11). The average hardness values for laser-processed
surfaces ranged from 392 to 411 HV. The microhardness increase trend with the decrease in scanning
speed was observed clearly. These results were found to be in good correlation with oxides concentration
at surface, allowing one to assume that the increased surface microhardness is largely predetermined
by the formation of oxides. In general, laser processing allowed a hardness increase from 32% to 38%
and provided improvement of surface wear resistance (Figure 12).
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different laser scanning speeds and powers.

The mass loss during two-body dry sliding wear test of laser processed specimens were between
540 and 3930 µg, i.e., 2.3–16.8 times less as compared with SLM specimen (9070 µg). According to
the Reye–Archard–Khrushchov law [34,35], the wear rate is reversely proportional to the hardness.
It is also well known that wear rate tends to be increased along rise in roughness, since the specific
load increases due to reduced real contact area [36]. Clear correlation between surface roughness
and mass loss results (see Figure 12) obtained in present work testifies that the texture, formed by laser
processing, has significant impact on wear rate.

The worn surface of the SLM specimen after the two-body dry sliding test is shown in Figure 13a.
Wide scratches, surface layer fragmentation and coarse craters formed due to delamination of surface
fragments indicate the domination of delamination and abrasive wear processes. The signs of
delamination wear mechanism were observed on worn tracks of laser-processed surfaces as well
(Figure 13b–d). However, in the case of 1 mm/s scanning speed, the delaminated fragments were
much thinner and no deep coarse craters were found (Figure 13b), what is consistent with much
less wear rate, as compared with the as-manufactured SLM surface. It may be associated with quite
uniform micromorphology on the one hand and the presence of a high amount of oxides, which
are typically quite brittle, on the other. The surface seemed more flat with the presence of shallow
grooves, highly likely, due to plastic deformation. On the surface processed with 2.5 mm/s scanning
speed, only occasional areas of delamination were observed along with shallow grooves (Figure 13c).
The surface seemed mostly plastically deformed, explaining why the mass loss of this surface was
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the lowest and indicating that the parameters of laser processing applied for this surface formed
optimal combination of oxide concentration, amount of plastic γFe-based phase and texture. In the case
of 5 mm/s speed, worn surface seemed similar to worn SLM surface: coarse delaminated fragments,
a lot of debris, big craters—a result of coarse less uniform texture (Figure 13d).
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4. Conclusions

In the present work, pulsed laser processing under the ablation mode in air was applied for
the surface modification of the maraging steel SLM part. Several conclusions may be drawn based on
the results of the analyses.

Pulsed laser processing at the ablation mode in air atmosphere allow obtaining a uniform modified
micro-textured surface directly on the SLM part without surface pre-polishing. The surfaces exhibited
negligible residual undulation predetermined by the initial surface morphology of the SLM part after
manufacturing and the Ra parameter much less as compared with the SLM as-manufactured surface
(Ra = 17.9 µm). Applying the denoted parameters of laser processing, obtained Ra values ranged
between 6.22 and 9.87 µm. The least roughness was obtained at the 2.5 W laser power and 2.5 mm/s
scanning speed.

The intensive oxidation of the surface during laser processing results in a formation of significant
oxides (such as the Fe2CoO4 and Ti0.11Co0.89O0.99) amount, which can be controlled by scanning
speed and/or laser power. The oxide phase presence at the surface provides an improvement in
hardness and wear resistance. However, a surface roughness, determined by the obtained morphology,
is the dominating factor for wear rate and the lowest mass loss was determined for the specimen with
the lowest Ra parameter, obtained at 2.5 W laser power and 2.5 mm/s scanning speed.
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The repeated laser processing induced the cracking of the surface layers due to the overheating
and is not expedient.

The further study, making focus on the optimization of laser processing parameters, could
contribute to the development of the surface laser processing technologies for maraging steels
SLM parts.
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