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Abstract: A customized particle image velocimetry/planar laser induced fluorescence (PIV/PLIF)
experimental method, aiming to capture transient hydrodynamics of solitary waves of
inertia-dominated falling liquid films, is presented in this paper. A novel PIV/PLIF technique,
which only uses one camera to capture simultaneously both particle image and fluorescence,
and meanwhile a post-processing imaging method is also developed, which is able to simultaneously
measure both internal velocity field in film and its topology. To validate the fidelity of the novel
PIV/PLIF technique, a comparison between experimental results of streamwise velocity profile
and film thickness and that of the Nusselt’s prediction at low Reynold number is carried out,
and in addition, integral continuity is checked for transient wavy film, both of which shows that
they are in good agreement. Based on experimental velocity fields and film topology, pressure
distribution inside film is derived with the Poisson equation. Considering characteristics of traveling
waves, the experimental results are presented respectively in spatial mode and temporal mode.
In spatial mode, capillary wave dynamics are demonstrated out of velocity field, film topology and
pressure distribution, which reveals that flow reversal occurs at capillary troughs. In temporal mode,
the mechanism of flow reversal at capillary troughs is scrutinized on the basis of high-frequency
velocity sampling and the derived pressure gradient. It is shown that flow reversal at capillary
troughs is triggered due to occurrence of positive pressure gradient at the back side of the capillary
wave crest, rather than the trough upstream as stated by the previous researchers. By elucidating the
dynamics of flow reversal, mechanisms for the upper limit of Reynold number with respect to flow
reversal underneath capillary wave trough were proposed, which might be the gradually saturated
deceleration from the capillary curvature and shorten deceleration duration determined by the wave
speed and capillary wave length. Our results should be of interest for optimization of the mass
transport model of falling liquid films and shed light on the revealing of flow reversal mechanism.

Keywords: falling liquid films; flow reversal; capillary wave; solitary wave; PIV; PLIF; PIV
derived pressure

1. Introduction

Liquid film flow has a large surface volume ratio, which can render high capacity of energy
transportation considering its liquid volume, resulting wide usages in engineering fields [1,2]. For film
flow, the surface topology not only indicates the instability dynamics, but also influences the transport
process underneath. Observation for spatial-temporal velocity field, even possible multiple fields,
could give promising experimental insights into film flow.

The multiphase dynamics of liquid film has been investigated by many researchers with
experimental approaches since the pioneering work by Kapitza [3]. Since researches in this article
focused on experimental outcomes of solitary wave dynamics, especially velocity fields in solitary
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waves. The literature review mainly focuses on non-intrusive application of falling liquid film and
flow reversal in solitary waves.

As experimental measurement technologies develop, new emerging non-intrusive measurement
techniques could complete film experiments with better performance and less influence. On the
numerical simulation side, especially for the transport process inside the film, it requires more than
film thickness time traces data to validate the models, experimental results of velocity with correlating
topology also become indispensable for further validation.

Non-intrusive velocity measurement techniques used in experiments were mainly laser doppler
velocimetry (LDV) and PIV. LDV is a point wise sample at a certain position, which could not resolve
the instantaneous velocity profile or instantaneous velocity field. For film flow, the PIV technique was
initially applied with cylinder sub-plate, which can easily guarantee measurement plane parallel to the
tube axis and extends normally to the tube wall.

For example, rather early attempts to investigate the velocity field structure in the film cross
section was done by Adomeit [4], who used a camera to record the flow path lines of particles in film
and observed a looped shaped flow path, which showed a backflow phenomenon. In his experiment,
a glass tube was used with matched index of the refraction technique.

Alekseenko [5] applied PIV to investigate the velocity field in film flowing down an inclined
cylinder, in experiments, he carried out a special calibration method with restrictions of film surface
shape staying almost unchanged. Dietze [6-8] applied both LDV and PIV to investigate falling annular
film flow with a special designed cuboid test section, and flow reversal phenomena were observed in
the capillary wave region while the results of velocity filed was derived without rigorous calibration.
Ashwood [9] also used PIV to investigated velocity profiles within the liquid film of the vertical square
two-phase flow.

The above PIV applications can be catalogued into micro-PIV, due to its high optical magnification
in image acquisition, which allowed for a necessary spatial resolution of the velocity field in thin
film flow. The velocity field in cross section of falling film flowing on an inclined plate were also
investigated, in contrast to cylinder sub-plate, a plate would render PIV application with many more
difficulties due to its optical accessibility.

In Charogiannis” experiment [10-12], dual cameras and macro lenses were utilized to acquire
velocity field and topology in a tilted setup, the images were masked and further processed with
PIV and particle tracking velocimetry (PTV). Phase lock techniques compensate for the low spatial
resolution by averaged PTV results, yet the average method limits the applicable film flow condition
only with quasi-stationary waves. The PIV/PTV setup might be infeasible to adequately analyze
instantaneous capillary wave dynamics [13] of transient wavy film of high Kapitza number, considering
its limited sample frequency and low optical magnification.

Reck [14] applied a movable image acquisition system to observe the solitary wave in an inclined
film flow from above, and proved the existence of recirculation zone underneath sufficiently large
solitary waves, while the data in the passage was limited qualitative flow field.

Flow reversal is an important flow feature that occurs in capillary wave region and its effect on
scalar transport has been elucidated with significance for engineering applications. Of note, it is also of
academic value as capillary waves have a significant influence on the nonlinear behavior of film.

Flow reversal in capillary wave troughs was first postulated by Kapitza [3] and later by
Portalski [15]. Adomeit [4] acquired loop-shaped particle path lines with a large exposures photography,
presenting solid experimental evidence for flow reversal in capillary wave troughs. Tihon [16,17]
found that the shear stress would show sign changes in the capillary wave troughs with experimental
and computational results, the negative values suggesting the existence of flow reversal.

The experimental and numerical work of Dietze [6-8] showed that there was open vortices in
capillary troughs of falling liquid film, the velocity and dimensionless wall shear stress clearly shows
discernible flow reversal phenomenon pattern, and that analysis of resulting force on liquid element
indicates that curvature induced adverse pressure distribution caused the flow reversal in capillary
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wave region. Resulting force gradient on a fluid element was indeed the primary reason for the flow
reversal, while the spatial pressure distribution was misleading: Given that the fluid element would be
accelerated and decelerated in the capillary trough region, according to pressure distribution, which
is not the case; flow reversal onset nearly simultaneously as the resulting force attained net counter
gravity value.

Chakraborty [18] found that flow reversal occurs for a limited range of reduced Reynold number,
low limit value for flow reversal agreed with results of Tihon [16]; the upper limit was presumed to
be a consequence of saturated main hump thickness or attenuated capillary ripples as an increase
of the viscous dispersion. Rohlfs [19,20] presented phase diagram and correlations for the onset of
flow reversal, and concluded that flow reversal was influenced by the viscous dissipation number,
which corresponds well with the idea [1] that the second-order viscous terms influence significantly
the capillary ripples preceding the main hump.

Denner [21] compared different numerical simulation cases, confirmed that the pressure resulting
from the curvature of the first capillary ripple is the dominant factor for the flow separation, and
concluded the upper threshold for flow reversal is primarily the result of steeper solitary waves at high
Reynolds numbers, which leads to larger streamwise pressure gradients that arrest the flow reversal.

As the brief summary in the context stated, experimental related attempts on film flow are still
insufficient compared to numerical efforts. Most of the flow reversal mechanism are deduced with
spatial field data. This paper should be a beneficial attempt to improve the PIV capacity in falling
film on an inclined plate, allowing for quantitative transient velocity field researches in film with
a-submillimeter dimension in its thickness, mostly corresponding to large Kapitza number liquid.
As the dimension of the film depth is close to boundary layer, the experimental technique might be
helpful for the boundary layer-related research. The investigation of the film flow with large Kapitza
number working fluid is of significant importance for experimental data supplement and numerical
model validation and development.

This article is structured as follows. Section 2 presents experimental facility, including the film
test section, flow loop, PIV/PLIF system, and specifies the experimental film conditions. Section 3
illustrates experimental methodology, including image dewarp, calibration, interface identification,
and PIV analysis. A PIV-based pressure measurement principle is also given in this section. Results
and discussion are given in Section 4, which is subdivided into a first part (Section 4.1) for PIV/PLIF
experimental method validation and a second (Section 4.2) presenting wave dynamics with velocity
field and pressure field with correlating film topology, in addition to a third (Section 4.3) that is
dedicated to the flow reversal mechanism with pressure gradient in temporal mode, and a conjecture
for upper threshold of flow reversal is presented based on the temporal capillary wave dynamics.
Finally, conclusions are drawn in Section 5.

2. Experimental Facility

2.1. Film Test Section

The principal component of the film test section is a 670 mm X 220 mm X 0.7 mm soda-lime glass
plate, which serves as the film substrate and a poly-methyl methacrylate (PMMA) box. Support to the
glass is provided by the bottom part of the PMMA box, which has two windows in its bottom in order
to maximize the optically accessible area and prevent possible bend of the thin glass. The PMMA box
is held by an aluminum profile frame.

The film test section can rotate around the shaft by which the inclination angle {3 of the film is
set. In experiments 3, it is presently set to 20°, and for experiments mentioned in this article, {3 stays
unchanged. Supports of shaft are installed with both the aluminum frame of test section and the base
support PMMA box.

The PMMA box contains a flow distribution sector, an adjustable slit and film region. Inside the
flow distribution section, three chambers are partitioned. The first chamber is set to overflow. As for
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the second and the third chamber, between which the separation plate is not glued to the substrate.
The third chamber is tightly stuffed with sponge and covered with a thick hollow plate, which worked
as air chamber allowing for perturbing the entrance flow rate at frequency f by small pressure variations
as shown in Figure 1.
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Figure 1. (a) Schematic diagram of experiment flow and perturbation system, flow loop, and film test
section. (b) Film test section. The italic letters x y z denotes the streamwise cross-stream and spanwise
directions in the coordinate system of film.

Finally, flow is dispensed evenly along the spanwise direction of the glass plate with a constant
flow. A narrow and adjustable slit is installed at the exit of the distribution box, which could be
adjusted by the micrometer heads, the slit gate has a thickness of 30 mm and width the same as the
plate’s width. The thickness of the slit is set to 0.5 mm and examined by wedge plug ruler before the
experiments. The effective film region is about 500 mm x 200 mm, and the measurements in this article
were taken at 350 mm downstream of the slit and center in the spanwise direction.
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2.2. Flow Loop

A schematic presentation of the flow loop configuration is given in Figure 1. The loop consists of
the inclined film test section, a closed-loop circulating fluid from stainless steel tank via a peristaltic
pump to the film test section, at the end of test section, liquid is collected and channeled back in
the tank.

Type T thermal couples are installed in the loop to monitor the liquid temperature during the
experiments. There are two temperature probe positions in the loop, one is inside the tank, the other is
at the distribution chamber of film test section. Temperature signals are collected by DAQami software
via MCC-TC modules (MCC, National Instruments: Norton, MA, USA).

Film test section, together with PIV system, are set up on an optical table, which can
provide additional vibrating/shocking absorbing ability and a reference plane for the experiment.
A stainless-steel water tank, located next to the optical table’s long side, served as a reservoir for fluid
circulating via the loop. Next to the tank outlet, there is a recirculating loop to maintain the doped
particles from sedimentation. An electrical heater is installed in the tank and a heat exchanger, which
connects to an industrial chiller on its shell side in the recirculating loop, works together to keep
the liquid temperature constant at T = 20 + 0.5 °C. Hence, the recirculating loop could also provide
additional heat removal capacity besides dissipation via heat conduction and convection.

Liquid in the test section is pumped by a peristaltic pump. Peristaltic pump could provide
constantly pulsated flow rates, which might be too small to be adjusted precisely by normal centrifugal
pump even with the aid of frequency variable or bypass valves. The precision of liquid flow rate
provided by the peristaltic pump was calibrated with a graduated measuring glass cylinder and a stop
watch. However, to isolate pump and pipes’ vibration from influencing the test section, the pump and
related tubes are guided with an additional rack which is not attached to the optical table.

2.3. PIV/PLIF System

To capture images of film cross section (x-y plane in Figure 1) with relatively large spanwise
(z in Figure 1) width, PIV/PLIF system consisting of customized illumination and image acquisition is
utilized to fulfill the measurement task.

Usually, micro-PIV [22] (also u-PIV) is characterized with high optical magnification, low depth of
field, and volume illumination. It is also common practice that in micro-PIV applications, optical axis
of the scope is perpendicular to the object plane and imaged volume controlled by microscope’s depth
of field rather than planar illumination in traditional PIV. While the PIV/PLIF practice presented in this
article has a high optical magnification (5x), it has large depth of field and thin laser sheet illumination
determining image plane for film flowing on an inclined plate. Image access would be limited from
below the glass plate. Hence, optical axis of the scope is no longer perpendicular to the image plane.

The laser source in the system is a continuous wave (CW) Nd:YAG 532-nm laser, which could
provide 6 W illumination in a given region. The beam laser is shaped via a plano-concave cylindrical
lens (f = —25.4 mm) diverging the laser into a planer sheet and a plano-convex cylindrical lens
(f = 100 mm) reducing the beam waist diameter, which could effectively lower the ambiguity due to
illumination thickness being comparable with the film thickness when the camera lens is inclined [23].
The final illumination is a light sheet with thickness under 100 um in vicinity of lens focus, and the
light-sheet thickness is approximately constant over the entire region of interest.

luminated film cross section is imaged with a high-speed camera (Vision Research, model
Phantom V711, Wayne, NJ, USA) through an ultra-macro lens (Anhui Changgeng Optics Technology,
LAOWA ULTRA MACRO lens, Hefei, Anhui, China). The lens can provide 2.5-5 fold optical
magnification, 40-45 mm working distance, and relatively large depth of field, which ensure the whole
film region could be imaged even if the focused plane is not coincided with the desired film cross-section.
The high-speed camera is set to work in burst acquisition mode with 1280 x 400 pixels. Recording
with burst acquisition mode and continuous illumination realized the dual frame/singe exposure
PIV by capturing information on complementary metal-oxide-semiconductor (CMOS) as separate
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images in each light sensitive period during one frame instead of one image for one frame period,
which allows flexible parameters adjustment at various flow conditions. A timing diagram is given in
Figure 2 to illustrate how PIV recording based on the burst acquisition mode. Detailed information
about burst acquisition mode can be found from Vision Research Customer Community provided by
Vision Research. Table 1 briefly summarizes the relevant parameters of PIV in the experiment for a
quick review.

Camera frame rate
‘ n-1 ‘ n ‘ n+1 ‘ n+2 ‘
Burst period

Light sensitive period

Electronic Shutter ﬁ ﬁ
P & §& § § §R 1

Continuous illumination

Figure 2. Timing diagram for PIV/PLIF recording based on burst acquisition mode, burst count = 2,
both exposure images were stored for further process.

Table 1. PIV parameters in film measurements.

Parameter Value
Maximum velocity About 0.3 m/s
Field of view 512 mm X 1.6 mm
Working distance About 42 mm
Recording method Double frame/single exposure
Recording medium CMOS 1280 x 400 pixels, 20 x 20 pm per pixel
Illumination CW Nd:YAG laser at 532 nm
PIV record parameters 2000 Hz, 70-350 us, according to one-quarter rule [24]
Seeding material Titanium dioxide, diameter 0.5 um, 4.26 g/cm>

Camera installation is given in Figures 3 and 4. Camera is mounted on two-axis goniometers,
which are mounted on three-dimensional positioning stages. Two axis goniometers allow the camera
and lens to roll with the inclination of the film, guarantee the imaged film bottom edge to be parallel to
the camera sensor edge, and allow the tilt adjustment of the lens and camera to be properly placed
below the glass plate. Here the tilt angle and roll angle are set to 35° and 20° (pan angle 0°).

optical

g
Y - .

5 axis |
1hh-

Roll

ol

optical
axis

Figure 3. Film test section and PIV/PLIF system, the high-speed camera is setup besides the test section
as the figure illustrates. XYZ axis in this Figure are referred as the world coordinate system to give a
proper description of the camera’s angular orientation. The green plane represents the laser sheet in the
middle, light sheet optics using two cylindrical lenses are given for better illustration of the PIV/PLIF
image acquisition.
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(b)

Figure 4. (a) Photograph of PIV/PLIF measurement in falling film experiment. (b) Photo taken with a

high pass filter.

For P1V, adequate particles are also an essential aspect to assure the fidelity of velocity measurement
as PIV techniques determine velocity of tracer particles for the velocity of the fluid. The seeding
particles used was 2 um titanium dioxide particles. Fluid mechanical properties’ assessment of particles
are provided by Dietze [7]. Based on the Basset-Boussinesq—Oseen (BBO) equation, the particle size
can also guarantee good light scattering ability.

Besides particles, the fluids in the experiment are also doped with florescent dye (Rhodamine 6G).
Additional fluorophore could radiate florescence photon of longer wavelength after excitation.
For PIV/PLIF image recording, no filter was placed in front of the lens, both particle scattered
light and florescence were recorded, which could distinct the liquid film from air or glass plate.

2.4. Film Experiment Conditions

In the experiments presented, the working fluids include deionized water and aqueous glycerol
water (deionized water) solution (glycerol concentration 45% by volume). Properties of the working
fluids are given in Table 2 below. The glycerol water solution is mainly used to validate the PIV method
with Nusselt’s theory at a relatively low Reynold number.

Table 2. Working fluid property.

Working Fluid p kg/m3 u kg/(m-s) o N/m Ka
Deionized water 0.998 x 103 10.06 x 1074 72.75 x 1073 4831.24
Glycerol water solution 1.120 x 10° 81.03 x 1074 65.4 x 1073 278.83

With all the properties, the dimensionless groups are determined with the following equations.
Reynold number:

Q/W
= 1
Re 5 1
where Q represents the volume flow rate, W denotes the film width, and ¥, is the kinematic viscosity
of the working fluid.
Kapitza number:
0]
Ka = , )
. 1/3
P93 (sin(p)g)"

where the o; stands for surface tension of working liquid, p; is the density of working fluid, and
g represents the gravitational acceleration.

Different experiment cases are listed in Table 3, including glycerol water film cases for method
validation and water film cases.



Coatings 2020, 10, 599 8 of 24

Table 3. Experimental cases.

Name Fluid Re Ka f

Case 1 Water 80 4831.24 Ohz
Case 2 Water 50.3 4831.24 O0hz
Case 3 Glycerol 1.61 278.83 O0hz
Case 4 Glycerol 2.22 278.83 O0hz
Case 5 Glycerol 2.77 278.83 Ohz

3. Experimental Methodology

In PIV/PLIF experiments, unusual image acquisition can import image distortions and images
have to be calibrated prior to PIV analysis. Hence, a series of image process procedures are adopted to
correct the distortion and calibrate the images. Working fluids used in the experiment are mixed with
both Rhodamine 6G dye and titanium dioxide particles. The PIV/PLIF image acquisition system is only
equipped with one camera, making it unrealistic to acquire PLIF and PIV images separately. MATLAB
scripts are used to process florescence information, forming dynamic masks to mask out a non-liquid
zone. Florescence can indicate the fluid domain and the contrast of particle images against background
can be decreased. Hence, a customized filter is used to enhance the particle images. After liquid
zone in film recovered with MATLAB scripts and dynamic masking, advanced digital interrogation
techniques are applied to enhance PIV correlation signal for evaluation of the PIV/PLIF images, data
post process are also in use to minimize the random error. A schematic illustration of the PIV/PLIF
process procedures and an example of the image process are displayed in Figure 5.

Raw image
Calibration dewarp MATLARB script

v

Dewarped image Interface
® S identification
Customized filkr
A\ 4
Filtered image Hybrid mask
Calil*ation dewarp
Dewarped mask
* ]
Dynamic masked
image
¢ PIV analysis and
post process
Results

v

Experimental velocity field
and film topology

(a) (b)

Figure 5. (a) PIV/PLIF process procedures. (b) PIV/PLIF process example. Each of the procedures in (a)
corresponds to an image outcome in (b). In (a) PIV portion are given in gray color and PLIF related
process are given in pale pink color.
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3.1. Image Pre-Processing: Image Calibration and Dewarp

Recorded images are distorted. Implementation of image correction and calibration are essential
before further analysis. The calibration target is a customized dotted array, bottom of the glass substrate
is precise cut and milled to ensure minimum blanked area without damaging the dots. In calibration,
a PMMA cuboid is used as a dam building up working fluid to immerse enough target and to ensure
stable illumination. Calibration target image acquisition is in the same as PIV/PLIF recording, while
enough large target was captured to cover all possible film regions.

Image distortion correction is accomplished with DynamicStudio 6.4 (Dantecs Dynamics:
16-18 Tonsbakken, DK-2740 Skovlunde, Denmark) by multi-camera calibration methods with a
manual calibration target. After the calibration, distorted images are resampled with the calibration.
Figure 6 gives the original image of the immersed target, and corrected target. However, there is some
change in image size (pixels) after image de-warp, and some unnecessary portions of the image, which
contain non-image information, can be imported.

(a) (b)

Figure 6. (a) Original target image acquired in experiments, the distortion could be seen clearly with
tilt of dot column and image. (b) Target image after calibration and dewarp, two edges of the image are
filled with blank pixels during the de-warp process.

3.2. Film Interface Identification

As aforementioned, working fluids used in the experiment are mixed with both florescent dye
and titanium dioxide particles. The optical system in this research is only equipped with one camera,
making it unrealistic to acquire florescence and particle images separately. Particle images in non-liquid
zones could bring about an obscure flow field. It is indispensable to identify the interfaces of liquid
film prior to further the process.

This interface identification method is accomplished with the convenience of MATLAB link in
DynamicStudio. MATLAB link transfers data from DynamicStudio database to MATLAB’s workspace,
allowing data analysis performed using MATLAB scripts. Afterwards, results can be transferred back
to the DynamicStudio database for further processing. In MATLAB scripts, raw images are filtered
with a median filter to remove peaks of particle images avoiding influence on background, the 2D filter
has a width of more than twice of the particle image’s diameter in pixels (10 pixels as filter window
size), separating the particle information from the fluorescence. Then averaged pixel grayscale profile
of several columns are analyzed.

Figure 7 illustrates the typical grayscale profile in column direction and the interfaces are
determined by the maxima and minima of pixel grayscale gradient. Derived liquid gas interface is
further smoothed and fitted to a piecewise 5th degree polynomial based on segments divided by
the inflection points [6], a linear function for the liquid glass interface. To be specific, the liquid—-air
interface and liquid—-solid interface are acquired separately. Liquid-gas interface determined for every
image pairs in the transient film flow situation and liquid glass interface determined with the averaged
image pair of the whole set of image pairs. The image pixels above the liquid-gas interface and below
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the liquid—glass interface are masked out. Finally, masked images overlay into a hybrid mask, and
hybrid dynamic masks are de-warped with the resample grid built in the calibration process.

Interfaces identification principle

1200 120
1000 } pixels value | 1(
-
800 - —— - gradient 80 §
@ 600 60 T
S 400 40 o
2 s 3
< 200 3 1 20 g
= PN 9
U 0 —\\A—-\\’n‘\v\."""'———’ "&\ Fiainiiinbe PN ey ~ 7T O %\‘
- - \ ot 4 - —
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-400 | -+ 1 -40
600 L T 6
200 250 300 350 400 450 500

Pixel position in column

(a)

(b)

Figure 7. (a) Interface identification principle, (b) Interface fit for liquid gas interface and liquid solid
interface, the circle points are raw results and dash line represents the fitting curve. The image is
adjusted with vertical scale enlarged for better display effect.

3.3. PIV/PLIF Process and Data Post Process

In the PIV process, dewarped images are filtered with a 5 X 5 custom filter kernel (an embedded
filter kernel in DynamicStudio, DOG0305) with the means of a custom filter in the image process library
to enhance the contrast of particle signal and background, and in this way the fluorescent background
is removed. The effects of images are shown in Figure 8.

(a) (b)

Figure 8. (a) Dewarped image and (b) filtered image. In comparison, custom filter could be used to
remove the fluorescence background and enhance particle signal contrast.
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The PIV evaluation method applied hereis adaptive PIV provided by DynamicStudio. The adaptive
PIV method is an automatic and adaptive method for calculating velocity vectors based on particle
image pairs. The method can iteratively adjust the size, shape, and location of the individual
interrogation areas (IA) in order to adapt to local seeding densities and flow velocities and gradients.
Hence, adaptive PIV enables better velocity measurement fidelity where the velocity gradient was
strong [25,26].

In application, the adaptive PIV schemes parameters are maximum IA size: 64 X 32, minimum
IA size: 32 x 16; and grid step size: 8 X 4. The non-equal interrogation grid step size takes film flow
characteristics in consideration, where streamwise velocity u (corresponding to horizontal width)
is predominant.

To prevent outliers from disturbing the adaptive iterations and the velocity results, validation is
done by applying peak validation and universal outlier detection [27]. Peak height validation requires
a minimum of 0.15 for correlation peaks and 4 for signal to noise (5/N) ratio. Parameters of universal
outlier detection are of a neighborhood size at 5 X 3, minimum normalization 0.1, and acceptance
limit 2.0. What’s more, results are further validated with a moving average validation (5 x 3 area
with acceptance factor 0.1 and iteration 3) and smoothed with an average filter (5 x 3) to reduce the
random noise.

3.4. PIV-Based Pressure Measurement

Deriving instantaneous pressure from flow velocity field data from PIV, based on the governing
equations, is a novel non-intrusive diagnostic methodology. The feasibility of PIV-based pressure
measurement has been demonstrated abundantly over recent years, notably for low speed and
two-dimensional flow [28].

After PIV velocity results are obtained, pressure field of film flow are derived based on the velocity
field. The approach taken here is the Poisson equation for computing the pressure. The principle of
Poisson equation and its numerical implementation for the film pressure field are briefly given in
the following:

Poisson equation is obtained from taking divergence of incompressible Navier-Stokes equations,
which under incompressible assumption leads to Equation (4)

Vp = (—pg—? —p(uVu+ W2u) ®)
Vip = V~(—p§—: —p(u-V)u+ yVZu) = —pV-(u-V)u 4)

Even though there are no time derivatives in the final form of Equation (4), it is still applicable to
transient conditions, because the time-dependent information is prescribed in boundary conditions.
Expansion of Equation (4) under the condition of 2D incompressible unsteady flow, the Poisson

equation for 2D flow reads:
Pp  Pp ou\’ | dudv (ov)
a2 oz P (a_) ”5&*(&7) ©)

Numerical implementation of Poisson equation is through the following equations, the
corresponding boundary condition include Dirichlet condition for liquid gas interfaces and Neumann
condition for the rest boundaries. The pressure distribution for Dirichlet condition is determined by
surface tension [29] as Equation (8) and pressure gradient for Neumann condition is determined with
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Equation (3). With proper boundary condition and acceleration field, the pressure can be derived
after iterations.

ou\V  duav  [(ov)
q——p{(g) *%W(%)} ©
(-x)2 ('Y)z K
5XX
Ps =0 ®

(1 + 6)(2)3/2
4. Discussion Results Discussion

4.1. Method Validation

When Re < Rec (5/4cot(3), about 3.4 for 3 =20°) film flow falling on an inclined plate is developed on
laminar flow submits to the Nusselt flat film solution [1,30], after Re>Rec, flow instability commences,
and streamwise velocity profile can deviate from the semi-parabolic profile. Hence, PIV/PLIF
measurement is validated by comparing the experimental results of steady smooth film flow (Case 3-5)
with the Nusselt flat film solution. Figure 9 illustrates comparisons between the experimental velocity
profile and corresponding theoretical profiles based on Equations (9) and (10). For PIV/PILF results,
horizontal error bars illustrate standard deviation of measurement data, vertical error bars are given
by half of cross-stream resolution’s spatial dimension.

s )

2\3
6:(3R€\9] ) (10)

sin(B)g

Re=1.6068 Re=2.2221 Re=2.7709
i T '

j
| @ PIVIPLIF
usselt_|7

u (mis) u (m/s) u (m/s)

(@) (b) (c)

Figure 9. Comparison of PIV/PLIF and analytical crosswise profile of the streamwise velocity component
u for smooth water-glycerin film (Case 3-5, (a)—(c)). For PIV/PILF results, horizontal error bars illustrate
standard deviation of measurement data, vertical error bars are given by half of cross-stream resolution’s
spatial dimension.

Comparison shows good agreement between the two data sets, despite the velocity in near wall
region (0-0.1 mm) is biased for average effect where strong velocity gradient near wall exists [31,32].

Comparing the analytical film thickness, the PLIF derived film thickness matches well with the
theoretical prediction, and the error is in the range of the cross stream spatial resolution’s dimension.
The general conclusion can be draw that the PIV/PLIF experimental results of film flow matched well
with the Nusselt’s theoretical prediction for both film thickness and velocity profile.
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The above validations are mainly based on flat film. To directly further check the validity of
instantaneous wavy film velocity field and transient topology, we resorts to continuity equation in
integral form [33]. The integral continuity Equation (11) is derived from continuity with kinematic
boundary condition at free surface, hence high fidelity velocity and topology is required to acquire a
satisfying replica from an experimental outcome. Continuity validation results of Case 1 and Case 2 are
presented in Figure 10. The negative value of experimental thickness time derivative agrees well with
the flow rate stream-wise derivative, assuring the validity and accuracy of the experimental techniques.
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Figure 10. Cont.
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Figure 10. Continuity validation for instantaneous velocity dynamics and topology of Case 1 (a) and
Case 2 (b). The time index in this figure title corresponds to time index of figures in Section 4.2.

4.2. Capillary Wave Dynamics

Results and discussion mainly focus on solitary waves, especially capillary waves.
Without any classification for solitary wave regions, further elucidation may seem rather confusing.
Therefore, Figure 11 summarizes the typical terminology for solitary waves used hereinafter in
this article.

Capillary waves and flow reversal related results in the literature are mainly given with spatial
distribution like snapshots of velocity distribution at a certain time. With high-performance experiment
facilities, we are able to provide results in both spatial mode and temporal mode for better elucidation
of the traveling wave. Figures 11 and 12 are listed here as elucidation of traveling wave in spatial
mode and temporal mode. The same case may seem to be inversed in the x axis. Comparison between
spatial mode and temporal mode could make the elaboration of capillary wave dynamics more explicit
and intuitive.

For better elucidation, different image results are rearranged in the order of their streamwise
position from upstream to downstream as shown in Figure 11. In the velocity profile chart, velocity is
given in the laboratory frame, the green dashed line represents streamwise probe positions of velocity
profile, and reference y axis indicates zero value for the velocity magnitude. The black circle dots
represent PIV/PLIF results, blue dotted lines are parabolic profiles calculated from Nusselt’s theory
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Equations (9) and (10) and local film thickness, both experimental velocity and predicted velocity are
scaled with the same factor to fit streamwise spatial dimension. The number in the velocity profile
chart title are time coordinates for cross reference with other data of the same case. Careful examination
of Figures 13 and 14 show that the conclusions that could be drawn are:

e Evident flow reversal in the first and second capillary troughs are observed, negative streamwise
velocities in laboratory frame of reference. In regions of the first and second capillary troughs,
open shaped vortices, evidences flow reversal happened, which is consistent with results of
Dietze [6,7], despite different fluid (DSMO), film plate (vertical tube), and controlled disturbance.
There are no vortices in the third vortices, only velocity vectors gradually departure from the plate
and re-approach the plate afterwards.

e Compared to the measured instantaneous streamwise velocity profile in the regions of the front of
the main hump, Nusselt theory significantly overestimates the streamwise velocity. The maximum
value exceeds the experimental results by about 100%. In a qualitative manner, streamwise velocity
profile under capillary wave peak appears closer to the parabolic form. While the streamwise
velocity profile in capillary wave troughs deviates significantly from the parabolic form.

<1073 t=0.458s
1 T T T T T T T
08 =
_ main hump |
E
0 0.6 |, front of main hump T
o back of main hump¢
3
04 capillary waves -
E / \ residual film
0.2 =
0 i i : i i i —— i i i
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

streamwise coordinate (m)

Figure 11. Regions in a single hump solitary wave: back of main hump, main hump, front of main
hump, capillary waves, residual film substrate. For capillary ripples, in each capillary wave, the peak
is assigned as capillary maximum, and the lowest in trough is assigned as capillary minimum. In
streamwise direction, the capillary wave is assigned as the first, the second, and so on. In capillary
waves, front and back would also be assigned in the same order as for the main hump. This picture is a
snapshot of film thickness distribution taken from WaveMaker [34] simulation Case III for its typical
solitary wave pattern, which serves as the example of travel waves in spatial mode. Reprinted with
permission from [34] Copyright year Copyright owner’s name.

x10° x =0.010309m
T

1 T T T T T T T T

08 -

film thickness (m)

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
time coordinate (s)

Figure 12. Film thickness temporal evolution in a fixed streamwise position, data here is from the
same case as in Figure 11. The thickness time traces are adopted here for illustration of travel waves in
temporal mode.
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Figure 14. Capillary waves dynamics for Case 2. (a) Front of main hump and first capillary wave
trough. (b) First capillary wave crest and second capillary wave trough. (c) Second capillary wave crest
and third capillary wave trough.

4.3. Flow Reversal Mechanism

The onset of flow reversal is symbolled with a vanishing local flow rate (averaged streamwise
velocity equals zero), a surface velocity of zero or sign change of local shear stress [8,19,20]. Criterion for
flow reversal in this article is zero value of averaged streamwise velocity, once it is negative, flow reversal
would be considered to have happened.

The mechanism in the literature for flow reversal in capillary waves troughs were primarily
illustrated with pressure or pressure gradient in a spatial mode. For example, Dietze [6,8] confirmed
that it was the pressure gradient inside the liquid film that led to flow reversal, to be specific, streamwise
pressure gradient to gravity ratio was used to symbolize the dynamic of flow reversal.

According to canonical pressure distribution given in Figure 14(a2), which shows similar
distribution with numerical works [21] considering its surface curvature, pressure gradient in the region
in the front of the main hump (from the peak of main hump to the first capillary minimum) is negative,
positive pressure gradient in region back of the first capillary wave (from the first capillary minimum
to the first capillary maximum), and negative pressure gradient in the region at the front of the first
capillary wave. Pressure gradient in the rest regions of capillary waves could be deduced similarly.

For falling liquid film on an inclined plate, the dominant factor determining the pressure field
in film is surface tension. The solitary wave remains unchanged in the observed range as the wave
propagates, the pressure field, and pressure gradient would move forward with traveling waves. With
typical pressure field and pressure gradient distribution in solitary wave, elaboration of flow reversal
mechanism in a spatial mode might be misleading: based on pressure gradient spatial distribution,
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liquid under front of main hump will be accelerated and afterwards decelerated in the back of the
first capillary wave crest. In this way, negative averaged streamwise velocity would not exist, nor did
streamwise velocity agreed with actual flow field in capillary wave regions.

With pressure derived from high sample rate transient velocity field, an intuitive way to reproduce
the flow reversal dynamics in temporal mode would be feasible. Probe velocity, pressure, pressure
gradient at x = 1.291 mm, correlating time traces are presented in Figure 15. The pressure gradient
is presented by ratio (¥ in Figure 15) of streamwise pressure force per unit volume to streamwise
gravitational force per unit volume for better analysis of composition forces in liquid film.
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Figure 15. Time traces of streamwise velocity, pressure, and volumetric force ratio for Case 1.

To review, for falling liquid film flow: (1) pressure field is primary determined by surface topology,
(2) solitary waves travel unchanged in the imaged range, (3) wave velocity is higher than the liquid
velocity in capillary wave regions. It could be interpreted that: in temporal mode, the front of waves
passes through certain streamwise positions and the back of waves arrive then; the second capillary
wave passes prior to the first capillary waves.

For data in Figure 15, from t = 48 to t = 58, the second capillary wave minimum to the first
capillary maximum (front of the first capillary wave crest region) flows through x = 1.291 mm, the liquid
experiences a negative flow pressure gradient. During this period, the force ratio ¥ was less than 1.
Hence, the composition of pressure and gravity for liquid element is small in the downstream and
large in the upstream, liquid here would be accelerated. From t = 59 to t = 68, the first capillary
maximum to the first capillary minimum (back of the first capillary wave crest region) flows through
x = 1.291 mm, according to the time traces of force ratio ¥, it can be confirmed that the liquid elements
here experience positive pressure gradient, and the ratio ¥ is greater than 1 during this period, meaning
that composition of pressure and gravity for liquid element is large in the downstream and small in
the upstream, and the liquid can be decelerated. Similar acceleration can happen for the front of main
hump region as the front of the first capillary wave crest region.

Taking into account the third second and first capillary wave for comparison, maximum averaged
streamwise velocity at wave maximum is comparative, while the force ratio gradually decreases,
the absolute value of averaged streamwise velocity at wave minimum increases, and only in the first
and second capillary trough does the flow reversal phenomena exist. The correlating results could be
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interpreted as the following: only when the capillary wave liquid film curvature changes are strong
enough to produce a considerable positive pressure gradient, and the liquid deceleration would be
enough to reduce the liquid velocity to negative values, as the dynamics given in Figure 15. Similar
results could also be concluded from Case 2 according to Figure 16.
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Figure 16. Time traces of streamwise velocity, pressure, and volumetric force ratio for Case 2.

By analyzing time traces of experimental results, the mechanism of flow reversal phenomenon
in the capillary wave trough is given in the temporal mode, the key region for deceleration, which
promotes the onset of flow reversal is the back of capillary wave crests, instead of the capillary troughs
or front of main hump.

Previous solitary wave dynamics-related studies have reported maximum wave height stagnates
when increasing the Reynolds number above a critical value, and attained a global minimum of
the film thickness for all considered cases [18,35]. To compensate the increasing curvature at larger
Reynold numbers, the number of capillary waves will increase and capillary wave length decrease [36].
Velocity of the solitary wave and capillary wave is related to the maximum wave height. Based on the
dynamics of flow reversal given in temporal mode and solitary wave dynamics, we might provide a
conjecture for flow reversal upper threshold: The deceleration would gradually saturate with curvature,
while deceleration duration would be decreasing as the capillary wave length decreases with increasing
inertia. Eventually, the deceleration will not decrease the streamwise velocity to negative values and
flow reversal will cease to onset.

5. Conclusions

This work presents a set of special designed experimental facilities for falling liquid film with a
large Ka number. A laser diagnosis technique combining PIV and PLIF with only one camera was
used to measure film internal velocity field and film topology. Satisfactory agreement between of
the experimental velocity profile and film thickness with the Nusselt flat-film solution predictions
was achieved and meanwhile the validity and accuracy of the PIV/PLIF experimental methodology
was further verified with a good match of the continuity equation based on transient velocity and
film topology.

Film velocity fields and film topology of capillary waves are experimentally measured, in which
the occurrence of negative streamwise velocity in the laboratory reference frame suggests that flow
reversal appears at capillary wave troughs. In addition, the measured streamwise velocity profiles
show that it is deviated from a common semi-parabolic velocity profile of film flow.
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Liquid flow can experience acceleration in front of the main hump and then suffer from deceleration
at the back of the first capillary wave crest according to canonical pressure spatial distribution, which
is inconsistent with flow reversal. Flow reversal mechanism at the capillary wave is revealed from
temporal evolution of streamwise velocity and pressure gradient: For a fixed point in streamwise
direction, downstream tide and upstream counterpart pass its location in sequence; hence, positive
pressure gradient at the back of the first capillary wave crest can lead to fluid element deceleration and
eventually trigger an onset of flow reversal at the first capillary trough. Conjecture for upper threshold
mechanism of flow reversal is speculated to be based on the flow reversal dynamics in the temporal
mode, which might come from gradually saturated deceleration and shorter capillary waves duration
as the reduced Reynold number is high enough.
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