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Abstract: This study presents the contact angle prediction model of a trapezoidal groove structure
based on the laser irradiation on polymethyl methacrylate (PMMA). The trapezoidal groove structure
was designed and proposed according to the characteristics of a femtosecond laser. First, the complete
wetting model and incomplete wetting model which were compatible with the characteristics of the
laser mechanism were constructed based on the Gibbs free energy and the structural parameters of
the trapezoidal groove structure. Then, based on the contact angle prediction models constructed,
the samples were divided into two groups according to the designed structural parameters, and the
experimental investigations were carried out. The result demonstrated that the incomplete wetting
prediction model was more in line with the actual situation. The convex width and the top edge
length of spacing of the trapezoidal groove structure both affected the contact angle prediction results.
From both the experimental contact angles and the contact angles predicted by the incomplete wetting
model, it could be known that the contact angle reached 138.09◦ when the ratio of the convex width
to the top edge length of spacing was 0.25, indicating that the smaller the ratio of the convex width to
the top edge length of spacing, the better the hydrophobicity of PMMA.

Keywords: femtosecond laser; polymethyl methacrylate; hydrophobicity; trapezoidal groove structure

1. Introduction

Biomimetic interfaces such as water strider leg and the lotus leaf have been widely concerned
for self-cleaning, dustproof and anticorrosive properties [1]. Such self-cleaning surfaces are called
hydrophobic surfaces in the research community. A hydrophobic surface refers to a surface that can
hardly be moistened by droplets, and its contact angle with water is not less than 90◦ [2,3]. At present,
researchers have made continuous efforts in exploring the preparation of hydrophobic surface [4].
There are mainly two approaches to construct hydrophobic structures, one is making the surface of
the material have low surface energy and the other is machining micro-nanoscale topologies on the
surface of material [5,6].

Many methods have been proposed for preparing hydrophobic structures. Razavi et al. [7]. used
chemical vapor deposition to make microstructures on the surface of copper. Although various
chemical methods have been widely used in the construction of hydrophobic structures, the properties
of the micro-nano structures constructed by chemical methods are random and the arrangement
of the structures cannot be controlled manually, which greatly influences the prediction of the
hydrophobicity of materials. Song et al. [8] used micro-milling to fabricate the microstructure on PMMA.
The properties of the as-fabricated microstructures are usually affected by the machine tool, resulting
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in the uncontrollable size of the structure [9]. Wang et al. [10] used ion etching to fabricate T-shaped
micro array structures with different densities and sizes on the surface of silicon wafers. Chen et al. [11]
developed a rapid one-step electrodepositing process to fabricate superhydrophobic cathodic surface
on copper plate in the electrolytic solution containing nickel chloride, myristic acid and ethanol.
However, the applications of these methods are limited due to their high cost, complicated process
and large time consumption [12]. At present, the above processing methods of superhydrophobic
structures have been widely used, but they are not so effective in exploring the rule of the contact angle.

With the development of micro/nano-fabrication technology, laser processing technology has
been gradually applied to the processing of micro-nano structure. Chichkov et al. [13] drilled the
surface of the steel with femtosecond laser, picosecond laser and nanosecond laser, respectively. It can
be found that the core mechanism of material removal under long-pulse laser irradiation is thermal
deposition, resulting in melts on the edge of the structure after processing. Zorba et al. [14] used a
femtosecond laser to tailor the wetting response of silicon surfaces. Zhu et al. [15] used a laser to
process composite materials and found that long pulse laser processing led to a significant heat affected
zone, and that the heat accumulation would cause over-burning if the actuation duration between
the laser and material was too long. However, the femtosecond lasers can directly convert materials
from solid to gaseous state. When the laser frequency is lower than the critical frequency, thermal
conduction has not occurred to remove the material of surface due to the extremely short pulse time.
After laser irradiation, the material will rapidly cool down while the surface state changes, which has
the least thermal impact on the processing point [16]. In contrast, when the laser frequency is higher
than the critical frequency, the thermal decomposition of the surface of the polymer material is the
main removal mechanism, the heat effect of the material is small, and the processed surface is smooth.
Riveiro et al. [17] investigated the CO2 laser (λ = 10,600 nm) texturing of PTFE surfaces. Qin et al. [18]
used the picosecond UV laser (λ = 355 nm) to prepare micro-nano structures with superhydrophobic
properties on the surface of polytetrafluoroethylene (PTFE). Both of them had proven that the laser
processing is suitable for the large-scale preparation of surfaces with low-wettability on polymers.
The processing mechanism of polymers is based on the breaking of chemical bond energy. Polymer
chemical bonds will be broken after absorbing enough photon energy, and then the microstructure will
be formed. The femtosecond laser has ultra-high peak power and ultra-short reaction time, which
not only will realize high removal rate of polymer materials, but also ensure the smoothing of the
prepared micro-nano structure. Furthermore, the femtosecond laser can be used to process flexible,
repeatable, precise, and controllable microstructures on the surface of a variety of materials including
polymers [19–22].

The Wenzel model [23] and Cassie–Baxter model [24] were proposed to predict the contact angle
for all the micro/nano structures. Marmur et al. [25] constructed four mathematical models of cylinder,
hemisphere, paraboloid and truncated cone. However, these structures have not been studied in
connection with processing methods. Shi et al. [26] established the contact angle prediction model
based on the modification of the energy model and found that the prediction model constructed for
the grating structure was more accurate than the Cassie–Baxter model. Therefore, it is necessary to
construct the model that can predict the contact angle for the trapezoidal groove structure accurately.
Drelich et al. [27] showed that the structure and parameters of the protrusions on the surface of
objects have a great influence on the stability of the hydrophobicity. The structural parameters of the
microstructure also need to be considered in the model. Moreover, structure-specific prediction models
need to be constructed to ensure accurate contact angle prediction. Shirtcliffe et al. [28] explored the
state of existence of the static contact angle and the reason for its existence. It can be found that the
surface tension and the interface free energy for objects to be able to bridge asperities are useful in
considering superhydrophobic surfaces.

In this work, the trapezoidal groove structure was designed according to the characteristics of the
femtosecond laser and two kinds of contact angle prediction models (i.e., complete wetting prediction
model and incomplete wetting model) were constructed based on the Gibbs free energy. The numerical
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analysis of the two constructed prediction models was carried out to explore the influence of the
trapezoidal groove structural parameters on its surface hydrophobicity. On the basis of the analysis,
two groups of the structural parameters were designed and the corresponding experiments were
carried out to verify the rationality of the constructed prediction model, and to explore the structural
parameters leading to optimal surface hydrophobicity.

2. Construction of Theoretical Contact Angle Prediction Model Based on Femtosecond Laser

2.1. The Parameters of Models

As a typical ultrashort pulse laser, the femtosecond laser has a Gaussian-type spatial distribution [29,30].
Figure 1 is the schematic diagram of a laser beam with a Gaussian distribution under the action of
a focusing lens, where D is the beam diameter of incident laser, f is the focus length of the focusing
objective, and Φ is the spot diameter.
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Figure 1. Schematic diagram of laser beam.

Considering the characteristics of laser processing, the trapezoidal groove structure was designed
on the surface of polymethyl methacrylate (PMMA) to study the hydrophobicity of PMMA. Figure 2
shows the schematic diagram of the trapezoidal groove structure designed in this paper.
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Figure 2. Trapezoidal groove structure.

In Figure 2, a represents the width of the trapezoidal groove structure, b and c are the top edge
length and lower edge length of spacing of the trapezoidal groove structure, respectively. h is the depth
of the convex. U’ indicates the angle between the oblique side of the trapezoidal groove and the vertical
line, as well as the angle between the laser spot and the horizontal line in the laser beam [31]. In this
paper, U’ can be defined based on the characteristics of the optical system. The numerical aperture
(NA) of the focusing objective len is 0.65, and thus: sin U’ = 0.65, therefore, U’ = 40.54◦. As a result, the
trapezoidal groove structure designed in this paper can meet the characteristics of femtosecond laser
well, and the models constructed can be more practical.

Although many prediction models have been constructed to study the hydrophobicity of various
materials, there are few constructed models considering the influence of processing methods on contact
angle prediction. According to the actual wetting state of the material, the complete wetting model and
incomplete wetting model were established in this paper, as shown in Figure 3. The angle between
the solid–liquid contact line and the gas–liquid contact line is defined as the contact angle θcw when a
droplet completely wets the surface of the material, as shown in Figure 3a. In the case of incomplete
wetting model, the angle between the solid-liquid contact line and the gas–liquid contact line is defined
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as θiw, as shown in Figure 3b. Additionally, r in the wetting model represents the radius of the contact
surface between the droplet and the solid, and R represents the radius of the sphere droplet.
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Figure 3. Wetting model on trapezoidal groove structure: (a) complete wetting model and (b) incomplete
wetting model.

According to Figure 1 and the parameters of trapezoidal groove structure in Figure 2, the lower
edge length of spacing of the trapezoidal groove structure can be expressed as follows:

c = b−2htan U′ (1)

When the droplets are placed on the surface of the material, they are in equilibrium. The surface
area of trapezoidal groove structure under droplet is S:

S =
πr2

(2 r) 2 ×
2r
a
×

2r
a + b

× a2 =
aπr2

a + b
(2)

It is clear that the volume of droplet remains the same when the droplet is placed on the surface
of PMMA, and the droplet will eventually be in equilibrium. Thus, there is an equation expressing the
surface free energy of the droplets, as follows:

dV= 0 (3)

dG =γsldAsl + γgldAgl + γsgdAsg = 0 (4)

where γsl, γgl and γsg are the interfacial free energy of solid-liquid, gas-liquid and solid-gas interfaces,
respectively. The Asl, Agl and Asg are the contact areas of these three-phases. Based on the surface
tension, Young proposed the equation for calculating the contact angle when that the droplets are
placed on an ideal smooth surface:

cos θY =
σsg − σsl

σgl
(5)

The values of surface tension and surface free energy are the same, thus:

σ = γ (6)

2.2. Establishment of Complete Wetting Prediction Model

According to Figure 3a and the parameters in Figure 2, the contact areas of solid–liquid and
liquid–gas phases under complete wetting prediction model can be expressed in follows:

Asl= πr2
−

2πhr2(sin U′− 1)
(a + b)cos U′

(7)

Agl =

∫ θcw

0
2πr ·Rdθ =

2πr2

1 + cos θw
(8)
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Since the contact area of solid–gas phases cannot be expressed directly, the surface area of the
trapezoidal groove structure As is introduced to represent the interface area:

Asg = As −Asl (9)

By substituting the above contact areas into Equation (4), there is:

cos θY =
γsg− γsl

γgl
=

dAgl

dAsl
=

(a + b)cos U′

(a + b)cos U′−2h(sin U′− 1)
× cos θcw (10)

Then, the relationship between the intrinsic contact angle θ and the complete wetting contact
angle θcw can be expressed by Equation (11):

cos θcw =

[
1 −

2h(sin U′− 1)
(a + b)cos U′

]
· cos θY (11)

According to Equation (11), when the depth of the trapezoidal groove structure is constant, a
three-dimensional diagram of the width, spacing, and contact angle of the convex plate under complete
wetting prediction model is shown in Figure 4.
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Figure 4. Three-dimension curve of contact angle and structural parameter under complete wetting
prediction model.

It can be seen from Figure 4 that when width of trapezoidal groove structure is larger or the top
edge length of spacing of the trapezoidal groove structure is larger, the predicted contact angle will
increase gradually. In particular, the contact angle can reach the maximum value when the width and
top edge length of spacing are larger at the same time.

2.3. Establishment of Incomplete Wetting Prediction Model

When the droplet on the trapezoidal groove structure is simulated by an incomplete wetting
model as shown in Figure 3b, the contact areas of those three phases are different.

Based on the parameters in Figure 2, the contact areas of the solid–liquid phase under incomplete
wetting prediction model can be obtained:

Asl= S =
aπr2

a + b
(12)

In the incomplete wetting prediction model, the contact area between the gas phase and liquid
phase is quite different from that under the complete wetting prediction model. At this point, a partial
enlarged view of the trapezoidal groove structure is shown in the Figure 5.
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Figure 5. Schematic diagram of gas-liquid interface contact line.

When the droplet is in contact with the microstructure, the surface curvature of the droplet will
make the actual contact line between the gas and the liquid become curved. The angle θY between the
two phases is the intrinsic contact angle of the material. In this paper, the intrinsic contact angle of the
PMMA measured by the DataPhysics OCA optical contact angle measuring instrument (Dataphysics,
Stuttgart, Germany) is 64◦, there is:

m ≈ b (13)

Then, the contact area of liquid–gas phases can be obtained:

Agl =

∫ θiw

0
2πr ·Rdθ+(π r2

−Asl) =
2πr2

1 + cos θiw
+πr2

−
aπr2

a + b
(14)

Moreover, the contact area of solid–gas phases under incomplete wetting prediction model can be
expressed in the same way as that under complete wetting prediction model.

Asg = As −Asl (15)

Combining Equations (4) and (5), there is:

cos θiw =
a

a + b
(cos θY + 1) − 1 (16)

Then, the three-dimension curve of the width, spacing, and contact angle of the convex plate
under incomplete wetting prediction model can be obtained, as shown in Figure 6.
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Figure 6. Three-dimension curve of contact angle and structural parameter under incomplete wetting
prediction model.

As shown in Figure 6, the contact angle will be the largest when the width of trapezoidal groove
structure is smaller and the top edge length of spacing are larger at the same time. For single factor
variables, it can be seen that the smaller the width of trapezoidal groove structure, the larger the
prediction contact angle. It is worth noting that the prediction contact angle will take a larger value
when the top edge length of spacing increases gradually.
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3. Experiment and Verification

3.1. Experimental Equipment and Processing Parameters

In this work, experiment was conducted using Origami-10XP femtosecond laser. The femtosecond
laser processing system is shown in Figure 7.
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Figure 7. Femtosecond laser processing system.

In this processing system, the output power of laser is 4 W, pulse width is 400 fs, and wavelength
is 1030 nm. The incident laser is linearly polarized. The trapezoidal groove structure shown in the
Figure 2 was processed under the above conditions. The dichroic mirror in this system is to reflect
laser and allow natural light to pass through. The 3D platform (SPiiPlusEC, ACS, Migdal Ha-Emekity,
Israel) is controlled by computer to achieve precise control for the processing structure. The stroke of
the x-axis and y-axis is 50 mm, and the repetition accuracy is ±0.5 µm. The vertical movement speed of
the platform is 50 µm/s. The purpose of CCD is to realize the online monitoring of the microstructure
of PMMA during the construction.

Based on the structure of Figure 2, the trapezoidal groove structural parameters were selected
by the predicted contact angle, as shown in Table 1. There were two types of PMMA samples in the
experiment. The top edge length of spacing of the samples which were numbered 1 was 100 µm, and
the top edge length of spacing of the samples which were numbered 2 was 200 µm.

Table 1. Parameters of trapezoidal groove structure.

Sample Number Depth h/µm Top Edge Length of Spacing b/µm Width of Convex a/µm

1-1

100

100 50
1-2 100 100
1-3 100 150
1-4 100 200
1-5 100 250
1-6 100 300

2-1

100

200 50
2-1 200 100
2-2 200 150
2-3 200 200
2-5 200 250
2-6 200 300

The polymethyl methacrylate (PMMA) with size of 600 mm × 400 mm and thickness of 3000 µm
was selected as experimental material. The PMMA was cleaned with absolute ethanol and deionized
water to remove impurities on the surface and ensure the reliability of experimental measurement
before constructing structures. In this paper, the output power of laser beam is 1.5 W, and the speed of
processing was set to 10 mm/s in the experiment.
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3.2. Observation of Processed Samples

After processing, all the samples were placed in an ultrasonic cleaner (JP-010T, Skymen, Shenzhen,
China) containing alcohol for 5 min to remove the impurities on the surface. Then, the deionized water
was used to remove the residual alcohol solution. At last, the metallographic tapes were stuck on the
surface of PMMA to ensure the accuracy of subsequent measured data.

In this paper, the super-high-magnification lens zoom 3D microscope (VHX-5000, Keyence, Osaka,
Japan) was used to observe the morphology of PMMA. Figure 8 shows the partial morphology of
microstructure of trapezoidal groove structure on PMMA with a multiple of 500 times.
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Figure 8. Schematic diagram of trapezoidal groove structure (×20).

The hydrophobicity of the surface was measured by the optical contact angle measuring instrument
(OCA, DataPhysics, Filderstadt, Germany). The quantity of 2 µL of deionized water was used for the
measurement. The injection needle is controlled by software to ensure the accuracy of the injected
droplets, and the measurement accuracy is ±0.1◦.

Considering the array characteristics of the trapezoidal groove structure on PMMA, the
measurements were performed parallel to the direction of the convex. The contact angle of each
specimen was measured five times to reduce the randomness of the data.

4. Results and Discussion

Table 2 shows the experimentally measured value and predicted value of contact angle.

Table 2. The predicted and experimental values of contact angle.

Sample Number Experiment Complete Wetting
Prediction Model

Incomplete Wetting
Prediction Model

1-1 125.30 ± 2.8 44.96 121.4
1-2 111.02 ± 3.29 50.19 106.3
1-3 100.86 ± 2.7 53.14 97.87
1-4 97.35 ± 3.9 55.04 92.35
1-5 89.35 ± 1.3 56.38 88.43
1-6 87.08 ± 2.67 57.36 85.48
2-1 138.09 ± 4.63 53.14 135.4
2-2 126.34 ± 3.62 55.04 121.4
2-3 121.07 ± 3.8 56.38 112.6
2-4 109.75 ± 2.91 57.36 106.3
2-5 108.40 ± 4.86 58.12 101.6
2-6 101.57 ± 3.29 58.73 97.87

Figure 9 is the curve of contact angle as a function of convex width of trapezoidal groove structure.
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Figure 9. The predicted and experimental contact angle curves.

According to Figure 9, it is clear that the experimentally measured contact angle of number 1
samples and number 2 samples were very close to their predicted contact angle under incomplete
wetting model. The hydrophobicity of PMMA can be achieved by preparing micro/nano structure
on the surface of PMMA within the effective size parameters. The measured contact angle was very
close to the contact angle predicted by the incomplete wetting model within the error range. As a
result, the incomplete wetting model is more reasonable and accurate. Figure 10 shows the schematic
diagram of measurement of contact angles on PMMA, which also validates the core idea of this paper
that the preparation of micron-scale structure on the surface of PMMA can realize the transition from
hydrophilicity to hydrophobicity.
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Figure 10. Contact angles of polymethyl methacrylate (PMMA): (a) un-machined PMMA and (b)
sample 1-3.

The predicted and experimental contact angle curves show that the smaller the width of convex
of trapezoidal groove structure, the larger the contact angle. Thus, the hydrophobicity of surface of
PMMA can be enhanced by reducing the convex width.

It could be seen that the predicted and experimental contact angles of the samples which were
numbered 2 were always significantly larger than those of the samples which were numbered 1. It is
clear that not only the value of convex width will influence the hydrophobicity of PMMA, but also
the top edge length of spacing plays a synergistic role. Based on the 3D curve of contact angle and
structural parameter of incomplete wetting prediction model in Figure 6, the influence of the convex
width and the top edge length of spacing of the trapezoidal groove structure on the contact angle can
be obtained. Actually, the smaller the ratio of the convex width to the top edge length of spacing, the
larger the contact angle on the surface of PMMA and the better the hydrophobicity of PMMA surface.

The experimentally measured contact angle was always larger than the predicted contact angle,
as shown in Figure 9. The average difference between the experimental value and the predicted value
of the contact angle is 4.13. Figure 11 shows the 3D topography and cross section of samples measured
by the super-high-magnification lens zoom 3D microscope.



Coatings 2020, 10, 386 10 of 15

Coatings 2020, 10, x FOR PEER REVIEW 10 of 15 

 

The experimentally measured contact angle was always larger than the predicted contact angle, 

as shown in Figure 9. The average difference between the experimental value and the predicted value 

of the contact angle is 4.13. Figure 11 shows the 3D topography and cross section of samples measured 

by the super-high-magnification lens zoom 3D microscope. 

 

 

 

Figure 11. Three-dimensional (3D) topography and cross section of trapezoidal groove structures 

(×200): (a) sample 1-3, (b) sample 1-4 and (c) sample 1-6. 

It can be seen from Figure 11, that there are some micro-convex structures on the edge of the 

trapezoidal groove structures in all samples, which make the top edge length spacing of the 

trapezoidal groove larger than the originally designed spacing slightly. It can be seen from Figure 6 

Figure 11. Three-dimensional (3D) topography and cross section of trapezoidal groove structures
(×200): (a) sample 1-3, (b) sample 1-4 and (c) sample 1-6.

It can be seen from Figure 11, that there are some micro-convex structures on the edge of the
trapezoidal groove structures in all samples, which make the top edge length spacing of the trapezoidal
groove larger than the originally designed spacing slightly. It can be seen from Figure 6 that the larger
the top edge spacing of the trapezoidal groove structure, the greater the contact angle, and the better
the hydrophobicity.
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Actually, the convex structures on the edge of the trapezoidal groove structure are generated by
the interaction of laser and PMMA. When the femtosecond laser interacts with the polymer materials,
there will be a critical repetition rate, which makes the irradiation of materials by femtosecond laser
divided into non-thermal and thermal regime. The critical frequency fcr can be calculated according to
Equation (17) [32]:

fcr =
Dth

d2 (17)

where d represents the laser beam diameter, and the beam diameter in this research is 2.914 µm. Dth is
the thermal diffusivity, which can be obtained by Equation (18):

Dth =
K
ρc

(18)

where K, ρ and c are the thermal conductivity, the density, and the specific heat of PMMA, respectively.
At room temperature, there is: K = 0.36 W·(mK)−1, c = 1.465 J·(gK)−1, ρ = 1.18 g·cm−3. Based on the
above calculation, the critical frequency is 24.5 kHz. However, the pulse repetition rate of femtosecond
laser in this research is 100 kHz, which is much greater than the critical frequency. As a result, the
pulse repetition rate is large enough to ensure the release of energy generated by thermal accumulation,
forming a thermal regime [33]. However, it can be seen that the grooves are smooth, which indicated
that the thermal degradation dominated in the laser ablation [34]. Therefore, there is no significant
thermal effect near the trapezoidal groove structure of PMMA. The thermal accumulation mainly leads
to the thermal degradation of PMMA, and the escape of degradation products makes the processing
area almost free of thermal influence.

The focus position variation plays a significant role in this process [35,36]. When the focus of
laser irradiates the bottom of the trapezoidal groove, the energy absorbed by the upper material of the
PMMA is less than the absorption threshold of the material of PMMA, which causes the lower part of
the material to decompose and generate internal stress. However, the focus position will gradually
move upward during the machining of the trapezoidal groove structure. At that time, the deformation
caused by the internal stress will also gradually move up, and a micro-convex structure as shown in
Figure 12 will be generated on the upper edge of the trapezoidal groove structure eventually.
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Figure 12. The diagram of the evolution mechanism of trapezoidal groove structure: (a) processing
of bottom of trapezoidal groove, (b) upward movement of focus and (c) processing of top of
trapezoidal groove.

Figure 13 shows the microstructure topography and cross section of trapezoidal groove of samples.
It is clear that there are some raised microstructures in all three sample at A1, A2, B1, B2, C1 and C2
due to the movement of the focus position, which are in line with the structure in Figure 12c.

It can be seen from Figure 11 that the spacing of the processed trapezoidal groove will be gradually
increased from the bottom of the groove to the top of the groove. The top edge spacing of the trapezoidal
groove is the largest of the groove. This is consistent with the trend that the smaller the ratio of the
convex width to the top edge length of spacing, the larger the contact angle, which well explains why
the experimentally measured value is always greater than the predicted value.
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5. Conclusions

Two kinds of the contact angle prediction models (i.e., complete wetting prediction model and
incomplete wetting prediction model) were established based on the structural parameters in this
paper. The microstructure studied in this paper is designed by combining the interaction characteristics
of laser and PMMA. Considering the Gaussian distribution of the laser beam, the trapezoidal groove
structure was designed and studied. Based on numerical analysis of the contact angle prediction model
and the subsequent experimental research, it can be found that the incomplete wetting prediction
model constructed in this paper is more in line with the actual situation as compared with the complete
wetting prediction model.

According to the analysis of the two groups of experimental data, it can be found that the convex
width of the trapezoidal groove and the top edge length of spacing of trapezoidal groove structure
both have an impact on the contact angle. The smaller the ratio of the convex width to the top edge
length of spacing, the larger the contact angle and the better the hydrophobicity of PMMA. Overall,
the contact angle prediction model constructed can predict the contact angle of PMMA correctly and
accurately, which is instructive for the construction of hydrophobic structures.
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