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Abstract: Conventional sputtering method uses a single cathode with a permanent magnet.
Facing targets sputtering (FTS) methods consists of two cathodes. Because of a unique structure,
FTS can prepare high quality films with low temperature and low plasma damage. During the film
sputtering process, density and confinement of discharged plasma depend on the arrangement of
a permanent magnet in the cathode. In this study, we designed two types of permanent magnet
arrangements in the FTS system and the designed permanent magnet was inserted into two cathodes
in the FTS system. The system was operated in different permanent magnet conditions, and their
discharge voltage and properties of as-grown films were recorded. In the designed FTS, compared to
a conventional magnetron sputtering method, the substrate temperature increased to a value under
80 ◦C, which is relatively low, even though the films’ sputtering process was completed.
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1. Introduction

Films preparation methods are classified as follows: chemical vapor deposition (CVD) and physical
vapor deposition (PVD). Among these methods, sputtering methods with magnetron are widely used
in various electrical applications such as display, solar cell, and sensors because it could prepare films
across a wide area for oxide and non-oxide materials [1–3]. It is crucial to identify methods to control
the sputtering plasma discharged on the target during the film sputtering process. The plasma could be
confined by a magnetic field inserted inside the cathode of the sputtering source. A normal magnetic
field is produced by the Nd-Fe-B magnet. Researchers have attempted to improve performance of
sputtering by designing a new type of permeant magnet inside the cathode. A magnetic field of a
magnetron allows the operation of an intense sputtering discharge at low neutral gas densities [4,5].

The magnetic field strength is a critical parameter in a magnetron design but is often chosen in
practice using empirical methods. Therefore, a model that not only provides insight into magnetron
operation but also practical criteria for designing a magnetron is required. Originally, facing targets
sputtering (FTS) method was proposed for growing magnetic materials such as Co-Cr, Co-Cr-Ta,
and Co-ferrite for perpendicular recording media [6–8].

The FTS system could grow high-density-low-defect films. Compared to conventional magnetron
sputtering (CMS) methods, a sputtering target and substrate surface in the FTS system generate a
sputtering plasma in the space between two sputtering targets. Neutral working gas and high-energy
radical ion particles that originated in the plasma were confined between two targets and move
along with the magnetic field [9–11]. Therefore, the substrate surface can be directly bombarded by
secondary electrons, Ar atoms, and negative ions that obtain high kinetic energy at a cathode sheath
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generated above the target surface, especially during reactive sputtering with oxygen or nitrogen
gas. As a result, the film was grown with strong internal stress, defects in the grain boundary, and a
low-density columnar structure. Furthermore, the radiation of secondary electrons ejected from
the target surface raise the temperature of the substrate surface. Compared with other magnetron
sputtering techniques, FTS also has many advantages, such as high sputtering efficiency, high target
utilization rate, and deposition of films with low defect states and a smooth surface [12,13].

Sputtering techniques depend on plasma generated around the targets after the collision of
working gas (argon and oxygen) and high energy particles (electron) inside a high vacuum chamber.
The plasma could be controlled by the confirmed magnetic field contributed by a permeant magnet
inside the cathode of the sputtering equipment. Until now, magnetic field dependence on conventional
sputtering systems have been reported in several research studies. Murphy et al. [14] reported the
geometry of a magnetic field in a magnetron sputtering system. Hollerweger et al. [15] reported
the effect on magnetic field strength of films in magnetron sputtering. Meanwhile, Noda et al. [16]
introduced the magnetic field and materials in FTS considered as the most developed off-axis geometry
sputtering by Hoshi et al. [17]. They focused on the unique structure (two targets facing each other)
and dealt with the plasma damage on the film sputtering.

In this study, we designed a new-type magnet arrangement inside the cathode in the FTS system
and inserted the designed magnet into the cathode. We investigated the effect on the magnetic field
generated by a permanent magnet. Moreover, the films were prepared on the glass substrate and their
properties were investigated. We predicted the target erosion in the sputtering and improved it.

2. Experimental Methods and Measurements

All sputtering processes were carried out under the following conditions. Before sputtering,
the base pressure was maintained at the high vacuum of 5.0 × 10−6 Torr using a turbo-molecular pump
and a rotary pump. A DC power supply (MDX Magnetron delta 5kW, Advanced Energy Industries,
Fort Collins, CO, USA) is employed as the sputtering power source.

More detailed films’ sputtering conditions are given in Table 1. To compare various permanent
magnet arrangements inside the sputtering source, Indium Tin Oxide (ITO) targets were used for
the discharge test and films were sputtered on the glass substrate. Soda-lime glass substrates were
prepared after a standard cleaning process with Acetone, Ethanol, and D.I. water at the ultrasonication
for 10 min. We designed two kinds of Open-type FTS (OFTS) and closed-type FTS (CFTS).

Table 1. Comparison of detailed sputtering conditions by the magnet arrangement.

Parameters
Conditions

Open-Type FTS (OFTS) Closed-Type FTS (CFTS)

Target material ITO (In2O3: 90%, SnO2: 10%)
Target size 250 × 100 mm 250 × 50 mm

Base pressure 5 × 10−6 Torr
Working pressure 0.5–5 mTorr

Working gas Ar: 9–10 sccm, O2: 0–1sccm
DC power (5kW) 500 W

Distance from the target to the substrate
(DT-S) 100 mm

Distance from the target to the target
(DT-T) 100 mm

Film thickness 100 nm

Two types of permanent magnetic arrangements were inserted into two cathodes, as shown
Figure 1. Among common structural characteristics, they have two cathodes with opposite magnetic
poles and plasma is generated between two targets. Then, a substrate is placed at the center of
two targets. The working gas is mixed with argon and oxygen. Although the current FTS has
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better characteristics than those of DC magnetron sputtering, we still need better-deposited thin
films, which can be used for higher-density magnetic recording media and other applications [17–19].
The main disadvantages of current FTS techniques is that magnetic fields are not applied perfectly
perpendicularly to both of the targets, as shown in Figure 1. Therefore, the substrate is exposed to
leaked magnetic fields, which may lead to the films on the substrate being damaged by plasma during
deposition. To solve this problem, it is necessary to generate uniform magnetic fields by using a unique
arrangement of magnets [20].

Coatings 2020, 10, x FOR PEER REVIEW 3 of 13 

 

Two types of permanent magnetic arrangements were inserted into two cathodes, as shown 
Figure 1. Among common structural characteristics, they have two cathodes with opposite magnetic 
poles and plasma is generated between two targets. Then, a substrate is placed at the center of two 
targets. The working gas is mixed with argon and oxygen. Although the current FTS has better 
characteristics than those of DC magnetron sputtering, we still need better-deposited thin films, 
which can be used for higher-density magnetic recording media and other applications [17–19]. The 
main disadvantages of current FTS techniques is that magnetic fields are not applied perfectly 
perpendicularly to both of the targets, as shown in Figure 1. Therefore, the substrate is exposed to 
leaked magnetic fields, which may lead to the films on the substrate being damaged by plasma during 
deposition. To solve this problem, it is necessary to generate uniform magnetic fields by using a 
unique arrangement of magnets [20]. 

 
Figure 1. Schematic diagram of facing target sputtering (FTS) system with various magnet arrays. (a) 
and (b) Open-type FTS, (c) and (d) Closed-type FTS. 

The surface morphology was measured via scanning probes microscopy (SPM, Park Systems 
XE-150, Suwon, Korea) at Smart Materials Research Center for IoT in Gachon University. The 
crystallographic structural properties of the samples were measured via X-ray diffraction (XRD, 
RINT2100, Rigaku Corporation, Tokyo, Japan) using Cu-Kα radiation (λ = 0.154056 nm, 40 kV, 40 
mA) in the 2-theta scan mode. Electrical properties of the films were examined using a four-point 
probe (CMT-Series, Chang Min Tech. Corporation, Chatsworth, CA, USA). Magnetic flux density was 
measured using a gauss meter (MG-3002, Lutron Co.) and optical transmittance was measured using 
a UV-Vis spectrometer (LAMBDA750, PerkinElmer, Shelton, CT, USA). 

3. Results and Discussion 

3.1. Magnetism Simulation 

Before the preparation of magnetic arrangements, we performed magnetism simulation using 
the COMSOL Multiphysics software to obtain a prediction plasma similar to that generated in FTS 
systems. 

Figure 1. Schematic diagram of facing target sputtering (FTS) system with various magnet arrays.
(a) and (b) Open-type FTS, (c) and (d) Closed-type FTS.

The surface morphology was measured via scanning probes microscopy (SPM, Park Systems
XE-150, Suwon, Korea) at Smart Materials Research Center for IoT in Gachon University.
The crystallographic structural properties of the samples were measured via X-ray diffraction (XRD,
RINT2100, Rigaku Corporation, Tokyo, Japan) using Cu-Kα radiation (λ = 0.154056 nm, 40 kV, 40 mA)
in the 2-theta scan mode. Electrical properties of the films were examined using a four-point probe
(CMT-Series, Chang Min Tech. Corporation, Chatsworth, CA, USA). Magnetic flux density was
measured using a gauss meter (MG-3002, Lutron Co.) and optical transmittance was measured using a
UV-Vis spectrometer (LAMBDA750, PerkinElmer, Shelton, CT, USA).

3. Results and Discussion

3.1. Magnetism Simulation

Before the preparation of magnetic arrangements, we performed magnetism simulation using the
COMSOL Multiphysics software to obtain a prediction plasma similar to that generated in FTS systems.

In the initial discharge for film sputtering, electrons were generated from the surface of the target
(or cathode) using a DC power supply and accelerated toward the anode (substrate or another target).
Along the way to the anode, the electrons collided with other ions, which, thereby, increased the neutral
background gas and the number of electrons. Simultaneously, the charged particles move in the radial
direction of the magnetic field due to a Lorenzo force. Furthermore, the electric field intensity (E)
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induces the electrons to accelerate toward the anode with substantially high energy. Accelerated high
energy atoms transfer their energy to bonded electrons within ions and neutral atoms. Thus, more
atoms are ionized, and cations and anions are produced. Moreover, the atoms and ions are confined in
discharged plasma generated above the target.

3.2. Film Uniformity and Target Erosion

The permanent magnet is placed behind the target/Cu back plate and generates a magnetic field
through the plate. Figure 2 shows the magnet simulation results, and the lines represent the 2D
orientation of the magnetic field that was generated from the permanent magnet. The cross-section of
the magnet is separately shown in Figure 2a,b. The parts attached to both ends of the magnet is the
york (previously referred to as the plate) that is held in position and prevents the magnetic field from
permeating into its backside.
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Figure 2. 2-D magnetism simulation results of the magnetic field induced as a function of the
arrangement of permanent magnets obtained using COMSOL Multiphysics software. (a) Open-type
and (b) Closed-type.

In Figure 2a, an open-type exhibits three magnetic field circular loops and the generated plasma
was induced to be divided into three parts. However, a closed-type has only one magnetic field loop,
and it the plasma can be confined in the space between the targets, as shown in Figure 1c,d along with
the magnetic field. Thus, the magnetism simulation results show that the plasma can be confined in
the space between the targets using the magnetic field generated by the permanent magnet (Ne-Fe-B)
set behind each target.

In Figure 3, the distribution of magnetic flux density as a function of the arrangement of permanent
magnets in the cathode is illustrated. The magnetic flux density was measured at five points between
the two targets. The film was deposited on the glass substrate (200 mm × 200 mm) at a target thickness
of 100 nm. The Nd-Fe-B magnet employed in this study has a maximum surface flux density of
approximately 1321G. However, the sputtering source consists of a target, shield ring, and housing
(stainless materials). Therefore, the magnet flux density decreased after all parts were fully assembled.
Compared to CFTS, OFTS exhibits a higher magnet flux density, as shown in Figure 3a. However, film
uniformity is consistent across all systems (Figure 3b). The film growth of the sputtered target is related
to the outer region of the magnetic field. Even upon a 50% reduction of the size of the target and
magnet, the same films’ uniformity can be obtained on the substrate.
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(FTS), (b) Closed-type FTS, and (c) magnetic flux density measured on the surface of the substrate.

Furthermore, during sputtering, a target erosion area is formed along with a magnetic field.
Target materials sputtered from the target erosion area are displaced toward the substrate and grow on
the substrate with a high energy. Therefore, a large target erosion can achieved by optimally designing
the magnet arrays and controlling the incidence of plasma on the target.

We observed the condition of the ITO film subsequent to sputtering, and the photograph was
obtained, as shown in Figure 3. Moreover, we measured the magnetic field strength on the surface of
the substrate between the two targets. After the substrate was mounted on the substrate holder in the
chamber, as shown in Figure 1, we measured the magnetic field density on the surface of the substrate
from the outside using a Gauss meter. The magnetic field density was approximately zero regardless
of the type of sputtering, as shown in Figure 3c. This means that a magnetic field loop was generated
around the cathode and the anode where the plasma was confined between the two targets.

In the OFTS system, a two-part erosion was formed on the ITO target. However, in the CFTS
system, a one-part erosion was formed. This could also be anticipated from the magnetism simulation
results (Figure 2). The OFTS system exhibits magnetic flux circuits induced by each permanent magnet.
In the regions where the loops overlapped, particles with high energy exhibited increased bombardment
with the targets compared to the bombardment in the other regions. Furthermore, we confirmed that
such sputtering could be employed to prepare films regardless of the target size, as shown in Figure 4.
Moreover, we calculated the usage of the sputter targets by using the target erosion ratio equation,
as follows.

Target erosion ratio (%) = [(Erosion target area)/(Total target area)] × 100
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Figure 5 shows the eroded region in the surface of the target after sputtering. Using the equation,
the target erosion ratio of the OFTS system is determined to be 53% and that of CFTS is 70%. The target
material consumption decreased when the arrangement of the magnets was changed from open-type
to closed-type for sputtering using the same film. It is suggested that enhancing the flux densities at
the target surface enhance the sputtering efficiency by as much as 50%.
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3.3. Properties of Films

Figure 6 shows the discharge characteristics with respect to working pressure for sputtering at
a fixed 500 W using the FTS system. The typical discharge properties of magnetron sputtering are
well-known to be dependent on the discharge voltage and the current of the cathode, working pressure,
magnetic flux density, and input power [21,22].
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(b) closed-type FTS (CFTS).

In a normal sputtering system, the anode is perpendicular to the target, such as the cathode.
However, in the FTS system configuration, two targets are connected in series with the power supply,
and these act as the cathode. The anode is dark shielding and substrate. In the plasma, the number
of Ar/Ar+ atoms/ions and electrons were increased, and film sputtering enabled the growth of the
substrate at a relatively low working pressure (~1 mTorr). Therefore, it is crucial for the film in the
sputtering process. We investigated the relationship between the voltage and working pressure, and the
results are summarized in Figure 6.

At a constant input power, with a changing working pressure in the chamber, the current (I) and
voltage (V) are as follows:

P = (4I) × (4V)

where 4I is the variation value in the current, 4V is the variation in the voltage, and P is the input
power. Regardless of the magnetic arrays used, the voltage was observed to decrease as operating
pressure increased. The initial voltage of CFTS, which exhibits a higher magnetic flux density than
OFTS, is approximately 620 V (80.1 mA).

The initial voltage of CFTS was approximately 315 V, and its initial current decreased from a
maximum of 158.7 mA as the functions of working pressure. Therefore, in the case of the OFTS
configuration, the cathode currents were observed to be higher than those in the case of CFTS under a
similar working pressure and input power. It has been reported that the magnetic field in FTS enables
controlling the confinement of plasma as well as a lower voltage and higher current at a low working
pressure, in contrast to conventional magnetrons at low pressures.

The XRD patterns of the prepared ITO films are shown in Figure 7. From the XRD patterns, it can
be observed that the crystal quality of ITO where the film is grown at a working pressure of 1 mTorr
without substrate heating is almost amorphous even though two kinds of magnetic armaments were
installed in the sputtering source. In the sputtering process, the crystallization of films is affected
by the film thickness and substrate temperature [23–25]. In conventional magnetron sputtering,
the kinetic energies of sputtered particles and other energetic particles (Ar and O-) cause an increase
in the substrate temperature and enhance the crystallinity of the films during the surface migration,
as numerous particles arrive at the substrate. Therefore, ITO films with a polycrystalline structure can
be grown using magnetron sputtering at room temperature [24–26]. However, Shigesato et al. [27]
reported that ITO films with a thickness of 170 nm exhibited film growth with the crystallization
of the (400) plane and that polycrystalline ITO was grown on a glass substrate at a thickness of
approximately 240 nm. Moreover, in contrast with conventional magnetron sputtering systems,
particles with a lower kinetic energy that impact less plasma damage are produced in the FTS
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system [27,28]. Consequently, the internal damage caused by particle bombardment during the film
growth is substantially reduced.
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In the case of the FTS system, phenomena as similar to those mentioned above were observed in
this study as well. No crystal peak could be observed in the XRD pattern due to ITO film being 100-nm
thick. Moreover, its substrate was located outside the high-density plasma region. The increase in
substrate temperature was relatively low during the sputtering process. The relatively low temperature
could contribute to be the final ITO film being amorphous [29,30].

To investigate the effect of temperature on the sputtering, we employed a thermos label tap (NiGK
Corportion Company, 80–95 ◦C). For conventional DC sputtering, we used DC magnetron sputtering
(ITO target size: 2 inch) in our laboratory. We observed the thermos label tape in the sputtering
condition including 3 mTorr with Ar atmosphere and distance from the target to the substrate (DT-S)
at 100 mm. The substrate temperature is shown in Figure 8. Before the substrates were loaded onto
the holder in the chamber, the tape was attached behind the substrate, and the color change of the
tapes was observed. Figure 8 shows the images in which reversed dark-black colored spots can be
observed after and before sputtering for 1 h. The substrate temperature increased to at least 80 ◦C even
though film sputtering was successfully completed. In contrast with normal DC magnetron sputtering,
no color change was observed in the tape in the case of all types of FTS systems. Therefore, it is thought
that FTS could be employed to prepare films at a low temperature with low damage.

According to previous results obtained by another group of using magnetron sputtering, ITO
films could be made to exhibit improved electrical properties by adding a small amount of oxygen gas
to the pure argon gas atmosphere during sputtering. We investigated the effect of oxygen gas flow on
the electrical properties of ITO films, and sheet resistance was measured with respect to an increase in
the oxygen amount in the Ar working gas atmosphere, as shown in Figure 9. At oxygen flow rates of
0 to 1.0 sccm, the ITO film (100 nm) exhibited a sheet resistance of 550 ohm/sq in the case of OFTS and
820 ohm/sq in the case of CFTS. With an increasing amount of oxygen gas, sheet resistance of the films
decreased from 820 to 85.53 ohm/sq (CFTS) and from 550 to 67.42 ohm/sq (OFTS).
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Figure 9. Electrical properties of prepared films as a function of oxygen gas flow. (a) Open-type FTS
(OFTS) and (b) Closed-type FTS (CFTS).

It is known that the electrical properties of ITO films depend on free carriers, a strong scattering
center, and oxygen vacancies. The increase in sheet resistance was due to the decrease of the carrier
mobility [31]. The mobility was improved due to an increasing oxygen flow rate during sputtering,
even though carrier concentration decreased [32,33]. The enhancement of sheet resistance may be
attributed to the formation of SnO2 in the ITO films, which results in the decrease of oxygen vacancies
in the films, as the electrons that are released due to the substitution enter Sn atoms in the sublattice
and form doubly charged oxygen vacancies [26]. Meng [34] reported that a high insertion of oxygen
gas could damage the grown film and substrate as a result of an increase in the plasma bombardment
energy during film sputtering and changes in the film deposition rate in the conventional magnetron
sputtering system.

However, based on XRD patterns (Figure 7) and sheet resistance of ITO films (Figure 9), all ITO
films, grown in the OFTS and CFTS, have no crystal peak and we confirmed that the oxygen gas is
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more effective when enhancing the electrical properties of ITO films using less than 5% of oxygen gas
in an Ar/O2 mixture.

The spectral transmittance of the ITO films was obtained by scanning the films from 340 nm to
800 nm and is illustrated in Figure 10. All ITO films on the glass substrate deposited under different
oxygen flow rates exhibit transmittance of more than 85% at the wavelength of approximately 550 nm
except for the samples prepared without oxygen gas. With an increasing oxygen flow, the transmittance
attains a maximum value of 95% for the wavelength of 550 nm. Gupta et al. [35] reported that the
absorption edge is moved to higher energies (referred to as blue shift or Burstein-Moss (BM)) as a
result of the high charge carrier concentration of ITO films as arising from an increase in the oxygen
gas flow. Moreover, although the BM phenomenon could be one of the reasons for the blue shift of the
absorption edge is the high charge carrier concentration. Therefore, the charge carrier concentration of
these samples should increase with an rise in the oxygen gas flow rate [36,37].
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Figure 10. Optical transmittance spectra of ITO thin films deposited under different oxygen flow rates.
(a) Open-type FTS and (b) Closed-type FTS.

The roughness of each surface was observed using SPM, as shown in Figure 11. More detailed
values of the surface roughness are shown in Table 2. The surface roughness (RMS) of the ITO film
prepared via OFTS, from 1.565 to 2.006 nm, is shown in Figure 11a,b. The Ra (roughness average) value
of the film also slightly increased from 2.151 to 2.575 nm. Using AFM, we confirmed that ITO films
have the smoothened surface regardless of the magnetic type.Coatings 2020, 10, x FOR PEER REVIEW 11 of 13 
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Figure 11. Surface morphology of ITO film obtained via (a) open-type FTS and (b) closed-type FTS.
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Table 2. Surface roughness values of prepared ITO films.

Magnetic Type Ra (nm) RMS (nm)

Open-type FTS(1) 2.006 2.575

Closed-type FTS(2) 1.565 2.151

Sputtering conditions: (1) Oxygen gas flow = 0.8 sccm and (2) Oxygen gas flow = 0.6 sccm.

4. Conclusions

It is well known that the FTS system possesses an off-axis substrate-target geometry in contrast
with traditional magnetron sputtering with an on-axis geometry in which the substrate faces the target.
We investigated the effect of the magnet arrangement inside the cathode of the FTS system on the
sputtering outcome. Prior to analyzing the magnetic array and performing sputtering, we predicted
plasma confinement on the target surface using the result of a magnetism simulation. We selected
two kinds of sputtering systems known as OFTS and CFTS, and inserted two cathodes in the
systems. In the optimized conditions of sputtering, the obtained films (thickness: 100 nm) exhibited
optical transmittance up to 85% in the visible range and approximately 67 ohm/sq without heating.
Moreover, a maximum target erosion of 70% was observed, and it is considered that this could enhance
the sputtering efficiency by as much as 50% if the target size is reduced to half the original size of
the target. The substrate temperature was relatively low compared to that exhibited by conventional
magnetron sputtering even though film sputtering was successfully achieved.
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