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Abstract: The main function of food packaging is to maintain food’s quality and safety. The use of
active packaging, including antimicrobial materials, can significantly extend the shelf life of food.
Many of these packaging solutions are based on the application of polymer films containing metal
nanoparticles (e.g., Ag, Au, Cu) or metal oxides (e.g., TiO2, ZnO, MgO). However, the use of iron
nanoparticles is rarely mentioned. In the study, polylactide (PLA) films containing zero-valent iron
(ZVI) were made by casting method. Pure PLA films and PLA films with the addition of Fe2O3 were
used as comparative materials. The composition and structure of ZVI/PLA films were evaluated
with scanning electron microscopy. The XRD spectra performed on ZVI/PLA films confirmed the
presence of iron in the packaging material and revealed their oxide form (Fe2O3). The addition of
zero-valent iron in the concentration 1%, 3%, or 5% resulted in the formation of crystallographic
planes measuring 40.8, 33.6, and 28.6 nm, respectively. The color and gloss of the films, and their
antimicrobial activity against bacteria (Bacillus subtilis, Escherichia coli, Staphylococcus epidermidis) and
fungi (Geotrichum candidum, Rhodotorula rubra) were also examined. The PLA films with addition
of 3% of ZVI (w/w) inhibited the growth of all tested organisms in contrast to PLA and PLA/Fe2O3

films. The addition of ZVI to polymer matrix caused changes in its appearance and optical properties.
The ZVI/PLA coating used on polyolefin film allowed to extend the shelf life of goat cheese packed in
examined material to 6 weeks. Considering the antimicrobial properties of the ZVI/PLA films and
PLA biodegradability the obtained material can be successfully applied in the food industry.

Keywords: active packaging; zero-valent iron; antimicrobial coating; food packaging

1. Introduction

The basic functions of food packaging are closely linked to their role in ensuring food quality
and safety in the supply chain and during the storage of groceries by consumers [1]. Commonly
used conventional forms of packaging ensure, above all, the protection of packed products, provide
information about them and also enable their convenient consumption [2,3]. The protection against
adverse external factors, chemical, and/or microbiological pollution mainly results from the barrier
properties of packaging materials and the design of the packaging itself, but those are provided in
a passive way [4]. Active packaging and materials actively contribute to reducing the effects of the
above-mentioned adverse factors and increase the functionality of conventional packaging systems
most often by releasing the desired or absorbing harmful substances from the packed product and/or
its environment [4,5]. The use of active packaging solutions can significantly extend the shelf life
of food and reduce the costs associated with protecting food against spoilage as well as disposal of
already wasted products. Active packaging is particularly useful for perishable food products such as
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dairy products, fresh meat, fish, or seafood. They can support food protection in the supply chain and
enable the reduction of food processing or the use of food preservatives. The most commonly used
active packaging solutions include moisture absorbers, oxygen scavengers, carbon dioxide emitters,
antioxidant, or antimicrobial factors [1,5–7].

Food is usually a very good environment for the development of various microorganisms, whose
existence leads to or accelerates changes in the taste, aroma, appearance, and texture of food products
and thus significantly shortens their shelf life. Sometimes contamination of food with pathogenic
microorganisms can also pose a threat to the health or life of consumers [8,9]. Antimicrobial active
packaging materials are usually designed to lengthen the adaptation phase (lag phase) and limit the
further growth of unwanted microorganisms. Packaging materials with active non-volatile substances
must have direct contact with the food being protected, for example by using antimicrobial coatings
on the internal surface of packaging [10]. In this case, antimicrobial substances may be immobilized
on the surface of the active packaging or be released directly from it into the protected product [11].
Antimicrobial coatings and direct packaging wrappers are particularly effective against microorganisms
growing on the surface of microbiologically contaminated food products [12]. The active substances
used in antimicrobial packaging encompass natural essential oils [13], enzymes and bacteriocins [14],
silver zeolites [15], polymeric substances with antimicrobial properties [16], organic acids and their
derivatives [17], as well as other substances in nanoparticle size [18–21]. Table 1 presents some
examples of commercially available antimicrobial active packaging [1].

Table 1. Examples of commercially available antimicrobial packaging for food.

Form of Antimicrobial Packaging Active Substance(s) Product Name (Company)

Antifungal coatings Natamycin Sanico® (Laboratories STANDA)
Component for a wrap/packaging foil Silver Bactiblock® (NanoBio Maters)
Component for a wrap/packaging foil Silver Irgaguard® (BASF)

Foils, wraps, cardboard packaging Silver Novaron® (Taogosei)
Foils, wraps, cardboard packaging Silver zeolites Aglon® (Aglon Technologies)

Foils, multi-layer materials Inorganic components Sanic Films® (Nanopack
Technology & Packaging)

Laminated pads, packaging sheets Sulphur dioxide UvacyTM (Grapetek)
Sachets Glucose oxidase Bioka (Bioka Ltd.)

Sachets, foils, wraps Chlorine dioxide MicrogardieTM, MicrosphereTM

(Bernard Technologies)
Sheets, labels, and foils with antibacterial

and antifungal properties Allyl isothiocyanate Wasaouro® sheets
(Mitsubishi-Kagagu Foods Co.)

Source: Own work.

Many active packaging films are based on antimicrobial properties of nanostructured metal
compounds such as silver, gold, and copper nanoparticles [22]. Materials that can be used to
make nanocomposites (e.g., metal nanooxides TiO2, ZnO, MgO) are also tested for antimicrobial
properties [23]. Antimicrobial properties of polylactide packaging films are also investigated
by applying coatings containing bioactive substances and depositing them onto paper surfaces.
The resulting composite materials have strong antibacterial effect against the pathogenic Escherichia coli
strains and Listeria monocytogenes. Active films can be used as antibacterial and barrier UV material
for food packaging and biomedical applications [24]. In the literature of packaging studies, many
antibacterial aspects of nanoparticles have been reported [25] e.g., the soft white cheese was packaged
with the chitosan-PVA-TiO2 films and stored at 7 ◦C for 30 days. The addition of TiO2 nanoparticles
(2–8%) into polymer matrix resulted in the decrease of the total bacterial and fungi microflora and the
increase of storage period in comparison to a control sample [26]. Similar results were presented for
chitosan/carboxymethyl cellulose/ZnO nanoparticles films [27].

The literature on the use of metal nanoparticles with antimicrobial activity in packaging rarely
mentions iron nanoparticles. Some reports refer to the application of iron nanoparticles but from the
strictly chemical point of view, they are usually iron oxides. Iron nanoparticles, especially zero-valent
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iron, are used as innovative active ingredients in oxygen scavengers for packaging and usually the
application is protected by patent law [28]. However, in literature, there can be found descriptions of
the potential bactericidal effect of nano-Fe0 on Escherichia coli. It has been found that the bactericidal
effect is dependent on the size and specific properties of the nano-Fe0. A significant increase in
antimicrobial activity was also observed in the absence of oxygen [29]. The activity of nano-ZVI
(nZVI) against Bacillus subtilis, Pseudomonas fluorescens, and Aspergillus versicolor was also studied.
The antimicrobial effect of nZVI was demonstrated in both bacterial strains, however, Gram-negative
bacteria (P. fluorescens) was less resistant than Gram-positive one (B. subtilis) [30]. The safety of the
application of ferrous iron and especially nano-compounds of ZVI, in packaging materials, is also the
subject of many discussions [31–33]. No harmful effects of iron on human organisms were found, even
nano-iron supplements are used to thread anemia [34–36]. Their beneficial effect on iron deficiency
anemia occurs at doses from 3 mg to 6 mg per kilogram of body weight per day. Adverse effects occur
at doses above 10–20 mg/kg of elemental iron. Additionally, the bioavailability of nano-iron depends
on the particle size and increases with the reduction of their size—nanoparticles are recognized as a
toxicological hazard when their size is of less than 54 nm [36]. The specific migration of nano-iron from
the packaging materials to packed products was investigated by Hamilton Company using composite
oxygen scavengers based on nano-iron. Not even minimal iron migration from nano-iron contained in
the cross-linked silicone matrix to model substances was observed [28]. Nevertheless, ZVI modified
bentonite [37] and kaolinite [38] were approved by the European Food Safety Authority (EFSA) as
non-nanoform species applicable in food packaging materials [39,40].

The aim of this work was to examine the impact of the nano-compounds of zero-valent iron
additive on selected properties of PLA film and investigate the antimicrobial activity of performed
packaging material. The PLA coating with 3% addition of ZVI (w/w) was applied on polyolefin film.
The obtained film was used to pack the bio food product (goat cheese) to evaluate its antimicrobial
activity, which has crucial impact on the possibility of extending the shelf life of the packaged product.

2. Materials and Methods

2.1. Materials

Commercial poly(lactic acid) (PLA) Ingeo™ 4043D (NatureWorks LLC, Minnetonka, MN, USA)
donated by Folpack was used to prepare PLA film. Chloroform was purchased from Sigma Aldrich.
The zero-valent iron (ZVI) was prepared in accordance with the method developed in our laboratory
and protected by international patents: PCT/PL2011/050055 [41] and EP2658666A1 [42]. The activity of
ZVI was described previously [43].

Ethyl alcohol (96% pure) was purchased from POCH/Avantor Performance Materials (Poland).
Nutrient broth (PS 90), Plate Count Agar (PCA) (LAB-AGARTM, PS 37) and Sabouraud Dextrose
with Chloramphenicol LAB-AGAR (PS 146) were provided by BioMaxima (Lublin, Poland).
The antimicrobial activity of ZVI/PLA was evaluated against selected microorganisms: Gram-negative
bacteria Escherichia coli (ATCC 11775), Gram-positive bacteria Bacillus subtilis (ATCC 11774) and
Staphylococcus epidermidis (ATCC 49134), yeast Rhodotorula rubra, and fungus Geotrichum candidum from
the research collection of the Poznan University of Life Sciences, Poland.

2.2. Preparation of Active PLA Film

Polylactide film containing ZVI was obtained by casting a mixture of PLA and ZVI in chloroform
on polished steel form, followed by a uniform distribution of the mixture using a steel plate with a slot
milled along the base. The slot was 0.4 mm high and 100 mm long. After spreading the mixture, it was
allowed to dry at room temperature for 48 h. The initial PLA solution in chloroform was obtained by
mixing 10 g of PLA and 135 g of chloroform using magnetic stirrer. In order to prevent the evaporation
of chloroform, the beaker was covered with watch glass. Mixing was carried out at room temperature
for about 3 h. After the complete dissolution of PLA, the magnetic stir bar was removed from the
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beaker and the appropriate portion of ZVI was added—0.10 g, 0.30 g, or 0.50 g of ZVI per 10 g of
PLA. As a result, the films containing 1%, 3%, or 5% of ZVI were obtained. Before casting onto the
form, the whole mixture was mixed for 10 min in an ice-water bath using the VCX130 ultrasonic
homogenizer, Sonics & Materials Inc, Newtown, CT, USA (frequency: 20 kHz, vibration amplitude
50%). The obtained ZVI/PLA films had thickness in the range of 50–90 µm. The thickness of each
film was measured at ten different points with the use of Sylvac S229 digital indicator (Sylvac SA,
Yverdon-les-Bains, Switzerland) with a resolution of 0.001 mm. For further tests, films with a standard
deviation of sample thickness not exceeding 10 µm were used. The ZVI/PLA coating with a 3% addition
of zero-valent iron was used to cover a polyolefin film (15 µm thick, Politerm SF, Centropack, Łódź,
Poland). The procedure was the same as described above for casting the mixture of PLA and ZVI in
chloroform, but the metal form was replaced with the backing polyolefin film.

2.3. Elemental Composition Assessment

The presence of iron on the surface of the PLA film, as well as the determination of its forms,
was carried out by X-ray elemental composition assessment. For structure and phase identification,
the XRD Panalytical Empyrean with the CuKα radiation (45 mV, 40 mA) was used. The materials were
investigated within a 30–120◦ 2θ range. The Highscore software with the ICDD database was used for
phase identification. The microstructure and Fe distribution in samples were investigated by scanning
electron microscopy (SEM, Vega Tescan 5135) connected with energy dispersive spectroscopy (EDS,
PGT Prism 200 Avalon).

2.4. Color and Gloss Testing

The optical parameters of PLA films, with and without ZVI, were evaluated by color measurements
of the analyzed films and gloss assessment of their surface. The color measurements of the PLA films
were performed on a white background with the application of CR 400 Chroma Meter (Konica Minolta)
in CIE L*a*b* color system (illuminating/viewing system conforms to JIS Z 8722 condition c standard).
Each film was measured ten times in different places in the distance of at least 10 millimeters from
the sample edge. The color change was measured using TCD parameter i.e., Total Color Difference
(known also as ∆E), that was calculated in accordance with the following Equation (1) [44]:

TCD value = [(∆L)2 + (∆a)2 + (∆b)2]
1/2

(1)

where ∆L, ∆a, and ∆b are differences in L, a and b parameters, respectively, between the color description
in CIE L*a*b* for compared colorimetric characteristics—for example in the reference to the color of
white background. The TCD values correspond to the specific optical sensations of the observer [44]:

0 < TCD < 1—observer does not notice the difference in color;
1 < TCD < 2—only experienced observer can notice the difference in color;
2 < TCD < 3.5—inexperienced observer can also notice the difference;
3.5 < TCD < 5—clear difference in color is observable;
5 < TCD—observer notices two different colors of the analyzed sample.

The gloss measurements were performed on the surface of analyzed PLA films (with or without
ZVI) by TestAn DT-268 gloss meter (PCE Instruments Ltd., Hampshire, UK) at the angle of 60 degrees
typical for medium gloss coatings.

The measurements were repeated ten times for each analyzed film placed on a white background
both for color and gloss testing. Statistical analysis was performed with Origin 2017 software
(OriginLab, Northampton, MA, USA). The results obtained for the separate films were analyzed for
the difference significance in t-Test for means with the significance level of 0.05. Superscript letters for
significant differences were introduced. The results obtained for individual parameters of tested films,
the difference of which was not statistically significant, had the same superscripts. Standard deviation
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was determined for each tested material and its value was used to calculate the standard uncertainty
of TCD indexes and gloss measurement results obtained for each analyzed film. The linear fit analyses
were performed to describe the relations between the concentration of ZVI introduced into PLA matrix
and the change of ZVI/PLA film color (TCD) or its gloss, respectively. R2 coefficient were estimated for
both relations.

2.5. Evaluation of the Antimicrobial Activity of ZVI and Application of Active Films

Antimicrobial activities of PLA films with the addition of ZVI were analyzed in the following
steps. The ZVI/PLA films containing 1% or 3% addition of ZVI were disinfected by the immersion in
70% ethanol for 15 min, then they were transferred to sterile Petri dishes and allowed to evaporate the
alcohol. Microbial cultures were made on the solid media: nutrient agar (for bacteria—B. subtilis, E. coli,
S. epidermidis) and Sabouraud’s medium (for fungi—G. candidum, R. rubra). Inoculation was carried out
by surface method: 100 µL of microbial suspension with a density of 1.5 × 107 cells per 1 mL (bacteria)
or 1 × 106 (fungi) were inoculated onto the solid medium, then the tested films previously dipped in
microbial suspension were applied to the medium. The cultures were incubated at 37 ◦C ± 2 ◦C for
24–48 h (bacteria) and at room temperature for 72–96 h (fungi). After incubation the inhibition of the
microorganisms’ growth in the area of direct contact with the tested film (also on the surface of the
film) was observed. The results were compared with the intensity of culture growth on the other part
of the plate (not contacted with the film).

The antimicrobial activity of ZVI/PLA coating was evaluated by the application of PLA film
with 3% ZVI content on the surface of polyolefin film in accordance with the procedure described
in Section 2.2. The film with ZVI/PLA coating was used to prepare functional packaging for a
perishable dairy product with a unit weight of 150 g. Uniform portions of fresh goat curd were
wrapped in the tested film containing on its inner side a ZVI/PLA coating (in direct contact with
the product). The packed product was stored in a fridge at temperature (4 ◦C ± 2 ◦C) for six weeks.
As control polyolefin film with PLA coating, without ZVI was used. At the beginning of each week,
the microbiological state of the packaging surface, the surface and the inside of the product (packed
curd) were evaluated in microbial tests. To determine the number of microorganisms on the surface of
the packaging, microorganisms were collected from the area of 25 cm2 with a sterile swab. The swab
was transferred to 9 mL of physiological saline and shaken, then 1 mL of suspension was inoculated
into a sterile plate and flooded with appropriate growth medium. Microbiological contamination
of the product surface was determined by the contact method (the agar surface is placed onto the
cheese surface for 30 s). Whereas, microbes from the product’s interior were inoculated by taking
1 g of curd sample from the inside part of a packed product, transferring it to 9 mL of physiological
saline, shaking, then plating 1 mL of resulting suspension onto a sterile plate and flooding with the
appropriate medium.

During six weeks of the packed curd storage the following microbiological tests were performed:

- determination of psychrophilic microorganisms on the PCA medium (incubation at 20 ◦C ± 2 ◦C
for 72 h);

- determination of fungi on the Sabouraud medium (incubation at 20 ◦C ± 2 ◦C for 5–7 days).

3. Results

3.1. Composition and Structure of ZVI/PLA Films

The structure and composition of ZVI/PLA films with the level of ZVI addition from 1% to 5% were
investigated using SEM, but isolating properties of polymer matrix hindered obtaining satisfactory
results without blur effect. The iron mapping with EDS spectroscopy revealed the distribution of Fe
nanoparticles in the polymer matrix. The Fe nanoparticles (yellow dots) in ZVI/PLA sample with 1%
(w/w) addition of zero-valent iron are relatively uniformly distributed (Figure 1a), whereas the increase
in ZVI concentration to 3% (w/w) led to higher density and uniformity in Fe nanoparticles distribution



Coatings 2020, 10, 156 6 of 15

(Figure 1b). The highest ZVI concentration (5% w/w) in analyzed ZVI/PLA films led to the formation of
areas with larger Fe particles concentration (Figure 1c).
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Figure 1. EDS maps of Fe identification on ZVI/PLA films with the addition of 1% (a), 3% (b), or 5%
(c) of ZVI, respectively. XRD spectra for ZVI/PLA films with the addition of 1% (d), 3% (e), or 5% (f) of
ZVI, respectively.

The XRD spectra performed on ZVI/PLA films with the increasing content of ZVI (Figure 1d–f)
confirmed the presence of Fe in the packaging material and revealed their oxide form (Fe2O3). The Fe
crystallite size was estimated using Sherrer’s equation for (110) crystallographic plane. The addition of
zero-valent iron into PLA films in concentration 1%, 3%, or 5% led to the formation of crystallographic
planes with a size of 40.8, 33.6, and 28.6 nm, respectively. The higher content of ZVI diminished the
size of formed metal crystals on the ZVI/PLA surface.

3.2. Appearance and Optical Properties of ZVI/PLA Films

The introduction of ZVI into polylactide film changed their optical properties regarding their
transparency, color, and gloss. The modification of the appearance of PLA films after the addition of
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1%, 3%, or 5% of ZVI was evaluated by the colorimetric measurements of the film samples placed on a
white background in accordance with the procedure described in paragraph 2.4. The color of white
background and film samples were analyzed with CR 400 Chroma Meter in CIE L*a*b* color system.
The results obtained for particular PLA films (with or without ZVI addition) and white background
are presented in Table 2. The color change of the PLA films (with or without ZVI addition) towards
the white background (1) and ZVI/PLA films towards pure PLA film (2) is expressed in TCD values
calculated as described above (Section 2.2.)—TCD1 and TCD2, respectively. The small addition of
ZVI (1% w/w) into the PLA film did not change significantly its transparency (similar values for L
parameter for pure PLA and ZVI (1%)/PLA) and its color (TCD value close to 1 in the color comparison
of ZVI (1%)/PLA and PLA film).

Table 2. Color parameters (in CIE L*a*b* system) obtained for white background, pure PLA films and
PLA with the different addition of ZVI, followed by total color difference index values calculated for
the color comparison of PLA and ZVI/PLA films with the color of white background (TCD1) and for
the comparison of ZVI/PLA with pure PLA films (TCD2).

CIE L*a*b*
Color

Parameters for

White
Background PLA PLA with 1% ZVI PLA with 3%

ZVI
PLA with 5%

ZVI

L 96.93 ± 0.03 a 98.42 ± 0.15 b 97.59 ± 0.24 c 85.31 ± 2.52 d 80.26 ± 2.53 e

a 0.15 ± 0.02 f −0.89 ± 0.03 g
−1.00 ± 0.04 h −0.88 ± 0.09 g

−0.89 ± 0.08 g

b 2.13 ± 0.02 i 4.79 ± 0.06 j 5.78 ± 0.32 k 9.08 ± 0.41 l 8.06 ± 0.43 m

Color change (TCD values) of PLA and ZVI/PLA films rating against a white background

TCD1 – 3.22 ± 0.20 3.88 ± 0.44 13.58 ± 2.59 17.73 ± 2.60
Scale of color

change – slightly
noticeable slightly noticeable different color very different

color

Color change (TCD values) of ZVI/PLA films in relation to PLA film

TCD2 – – 1.30 ± 0.55 13.79 ± 2.71 18.45 ± 2.73
Scale of color

change – – unnoticeable/
slightly noticeable different color very different

color
a, b, . . . , m—superscript letters for significantly different measurement results (p < 0.05).

The increased content of zero-valent iron in ZVI/PLA films caused lower transparency and
significant change in color of the film, which is observed in TCD2 values increased proportionally
(R2 coefficient equaled to 0.935) to the ZVI addition (Figure 2). The ZVI concentration of more than 3%
caused a significant change in PLA color and its transparency.
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The increased addition of zero-valent iron into ZVA/PLA films influenced also their gloss.
The comparison of the film gloss at the angle of 60 degrees (typical for medium gloss coatings) revealed
a proportional decrease in gloss (with R2 coefficient equaled 0.948) regarding the concentration of ZVI
used for the film preparation (Figure 3). The small amount of ZVI did not influence the gloss of PLA
films, but the addition of ZVI above 3% significantly reduced the gloss of the polylactide film.
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3.3. Antimicrobial Properties of ZVI/PLA Films

The antimicrobial activity of ZVI/PLA films was examined in accordance with the procedure
presented in point 2.5. towards the selected group of microorganisms. First, the antimicrobial activity
of pure polylactide, PLA with the addition of 3% iron oxide and 1% or 3% of zero-valent iron was
checked. All types of PLA films were evaluated against microorganisms from a different group of
microbial food contaminants: Gram-negative bacteria (E. coli), Gram-positive bacteria (B. subtilis and
S. epidermidis), yeast (R. rubra), and molds (G. candidum). The results of its antimicrobial activity
are presented in Table 3. Figure 4 presents microbial culture in Petri dishes illustrating the way of
antimicrobial activity recognition of tested materials. The surface of the evaluated films, on which
bacteria or yeast grew, was shiny, whereas in the absence of growth, the surface was dull (Figure 4a).
The inhibition of fungal growth was observed through the bottom of the Petri dishes with the microbial
culture (Figure 4b).

Table 3. Antimicrobial activity of pure PLA films and PLA films with the addition of iron oxide or ZVI
(3% w/w) towards selected microorganisms.

Selected Microorganism/
PLA Film Pure PLA PLA + Iron Oxide (3%) PLA + ZVI (1%) PLA + ZVI (3%)

Geotrichum candidum − − −/+ +

Rhodotorula rubra − − −/+ +

Staphylococcus epidermidis − − −/+ +

Escherichia coli − − −/+ +

Bacillus subtilis − − −/+ +

“−”—lack of growth inhibition, “−/+”—slight growth inhibition, “+”—growth inhibition.

Pure poly(lactic) acid and iron oxide introduced into the PLA film did not reveal antimicrobial
activity towards any type of tested microorganism. Zero-valent iron presented antimicrobial activity
towards all selected microorganisms but in the case of 1% ZVI additive, the growth was inhibited to a
very small extent, while the addition of 3% provided full inhibition of microbial growth in the area of
the plate being in direct contact with ZVI/PLA film. Additionally, the microbial growth on the surface
of the film containing ZVI additive was also not observed.
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The antimicrobial activity of the ZVI/PLA coating applied onto polyolefin background film was
determined by testing the durability of goat cheese wrapped in ZVI/PLA coated films containing 3%
ZVI, because the addition of ZVI in this amount inhibited the growth of reference microbial strains.
Coatings with 3% ZVI were applied to prepare functional packaging, which was used to wrap goat
cream cheese with a unit weight of 150 g. The packaged product was stored at chilled temperature
(4 ◦C +/−2 ◦C) for 6 weeks. During this period, the presence of psychrophilic bacteria and fungi on the
surface and inside the cheese, and on the inner surface of the packaging was examined. The cultures
were made first 3 days after packing the product, and then every week from the application of the
tested package. The preparation of the packed product samples and the evaluation of the antimicrobial
activity of ZVI/PLA coatings were described in Section 2.5. The control test consisted of the application
of polyolefin foil with PLA coating, but without the addition of ZVI to wrap the goat cheese. The results
of goat cream cheese protection with the polyolefin wrapping with internal ZVI/PLA coating are
presented in Table 4.
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Table 4. Antimicrobial activity of polyolefin film with 3% ZVI/PLA coating applied for wrapping goat
cream cheese stored for 6 weeks at chilled temperature.

Type of Packaging Analyzed
Microorganisms

Time of Cheese Storage at 4 ◦C +/−2 ◦C

3
days

1
week

2
weeks

3
weeks

4
weeks

5
weeks

6
weeks

Polyolefin foil with PLA coating
(packaging inner surface)

Bacteria − − + + + + +

Fungi − − + + + + +

Polyolefin foil with PLA coating
(product surface)

Bacteria − − + + + + +

Fungi − − + + + + +

Polyolefin foil with PLA coating
(product interior)

Bacteria + + + + + + +

Fungi − − − − − + +

Packaging with ZVI/PLA coating
(packaging inner surface)

Bacteria − − − − − − −

Fungi − − − − − − −

Packaging with ZVI/PLA coating
(product surface)

Bacteria − − − − − − −

Fungi − − − − − − −

Packaging with ZVI/PLA coating
(product interior)

Bacteria + + + + + + +
Fungi − − − − − − −

“−”—lack of growth, “+”—visible growth.

The wrapping made from polyolefin foil with ZVI/PLA coating efficiently protected goat cheese
stored at chilled temperature for 6 weeks against the development of psychrophilic bacteria and fungi
on the surface of the packed product. The psychrophilic microflora was not present in this storage
period, as well as on the inner surface of the packaging made from polyolefin foil coated with the
ZVI/PLA layer. The application of tested active packaging material did not influence the presence of
natural microflora inside the packed goat cheese, the growth of bacteria derived from product interior
was observed.



Coatings 2020, 10, 156 10 of 15

Despite the lack of visible microbial contamination of the cheese wrapped in the packaging without
ZVI/PLA coating an intensive growth of microorganisms (monitored by cultures on microbiological
media) was observed after two weeks of the product storage—both in the case of fungi (Figure 5a,b)
and bacteria (Figure 5d,e). The wrapping made from polyolefin foil with ZVI/PLA coating prevented
the packed goat curd against the unwanted growth of microorganisms (Figure 5c,f). On the
plates in Figure 5c,f can only be seen small pieces of the cheese transferred during sampling for
microbiological testing.
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Figure 5. Fungi (a–c) and psychrophilic bacteria (d–f) cultured from the inner surface of the packaging
of goat curd stored for two weeks at chilled temperature and wrapped in polyolefin foil with PLA
coating (a,b,d,e) or polyolefin foil with ZVI/PLA coating (c,f).

The control polyolefin film with PLA coating, without the addition of ZVI, did not prevent the
product against the growth of microorganisms on the surface of packed cheese and on the internal
surface of the packaging material, which can be seen in the photos taken for the stored product
(Figure 6).
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Figure 6. Goat cream cheese after five-week storage at chilled temperature (4 ◦C +/−2 ◦C) wrapped in
polyolefin foil with PLA coating (a) or polyolefin foil with ZVI/PLA coating (b).
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Microorganisms developed significantly after five-weeks storage of cheese wrapped in packaging
without ZVI addition (Figure 6a), while the use of active packaging inhibited the growth of
microorganisms both on the surface of the product and the packaging itself (Figure 6b).

4. Discussion

Perishable food products require special protection against microbial contamination coming
from the environment. Conventional packaging provides a barrier between the packed product and
its surroundings, and the durability of the product depends to a large extent on the effectiveness
of this protection. Active packaging with antimicrobial properties actively affects the growth of
microorganisms inside and/or on the surface of the packed food, and their effectiveness depends on
the mechanism of action of the active agent and the way it is introduced into the packaging material.
For products containing specific and desirable microflora (e.g., ripening cheese or cottage cheese), the
active packaging cannot disturb the development of the above-mentioned microorganisms within the
foreseeable shelf-life of the product.

Zero-valent iron was incorporated into polylactide film to provide an active component on the
surface of packaging material, which could be applied as a coating for other types of conventional
packaging materials such as sheet of paper or plastic film used to wrap food products. The composition
and structure of the ZVI/PLA films with different additions of zero-valent iron were evaluated using
scanning electron microscopy. Unfortunately, the isolating properties of the polymer matrix did not
allow checking the structure of the evaluated material. The energy dispersive spectroscopy was used to
confirm the presence of iron in the polymer matrix and to investigate the influence of ZVI concentration
on the accessibility of the active compounds in the PLA film. The EDS analysis of ZVI/PLA structure
revealed an even distribution of iron nanoparticles over the PLA surface, which is important regarding
the effectiveness of the antimicrobial activity of the packaging material. The ZVI concentration of 3%
(w/w) in the PLA matrix provides uniform distribution of active compounds with a high concentration,
whereas higher addition of ZVI leads to the formation of iron groups and inefficient application of the
active ZVI compounds. The XRD spectra revealed that zero-valent iron incorporated in ZVI/PLA films
in the concentration 1%, 3%, or 5%, was present in oxide form (Fe2O3) in the planes with the size of
40.8, 33.6, and 28.6 nm, respectively. The higher concentration of ZVI led to the formation of smaller
crystallographic planes.

The addition of zero-valent iron compounds into PLA film led to the significant change of its
appearance and optical properties. It has been tested in colorimetric and gloss measurements of
ZVI/PLA films placed on white background, that even a 3% addition of ZVI changes the color of the
film and its gloss. The color change of PLA films after the addition of zero-valent iron, expressed
in TCD values, increases proportionally to the concentration ZVI introduced into a polymer matrix.
The R2 coefficient for this relationship was 0.935. Similarly, the gloss level of ZVI/PLA films measured
at the angle of 60 degrees decreased proportionally to the amount of iron introduced into the PLA
matrix with the R2 coefficient equal to 0.948. The introduction of zero-valent iron into polylactide
matrix changed significantly its color and gloss, therefore ZVI/PLA films should rather be applied as
the coating of the inner part of non-transparent films intended for wrapping food products.

The antimicrobial activity of ZVI/PLA was investigated against selected microorganisms commonly
recognized as microbial contamination of dairy products i.e., Gram-negative bacteria (E. coli),
Gram-positive ones (B. subtilis and S. epidermidis), yeast (R. rubra), and fungus (G. candidum). The activity
of ZVI/PLA films was compared with the influence on the microorganisms’ growth on the films made
from pure polylactide and from PLA with the addition of 1% or 3% iron oxide. Both materials
without the addition of zero-valent iron did not influence the growth of all examined microorganisms.
The ZVI/PLA film (with the addition of 1% or 3% zero-valent iron) inhibited the growth of all tested
microorganisms in the direct contact of microbial media and on the film surface, but 1% concentration
of ZVI inhibited only slightly their growth, while 3% inhibited it completely. The ZVI/PLA film
presented activeness in the inhibition of growth of all analyzed microorganisms, but the active agent
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did not migrate into the microbial media, because no microbial growth inhibition zone was observed
around the ZVI-containing coating.

With the recent increase in popularity of so-called ‘bio’ products on the market, which are made
from raw materials obtained without the use of chemicals or any other preservatives, it is important
that these products should be protected against microbial spoilage through the use of functional
packaging [1,4,11]. Currently, the products that do not contain preservatives are used mainly by
the more demanding group of consumers, but due to their high pro-health value, they are gaining
more and more popularity among the general public. Rapid microbial spoilage of these products
can contribute to producers’ losses, which may discourage them from expanding their product range.
The reduced quality associated with the development of an unfavorable microflora may also pose a
threat to consumer health [5,7,10]. Therefore, coatings based on ZVI active compounds were used to
prepare functional packaging, which was applied to pack perishable ‘bio’ product—goats’ cottage
cream cheese. The ZVI/PLA coating was deposited on commercially available polyolefin foil, which
was used as a reference material to pack the cheese and store it at chilled temperature for 6 weeks.
Three days after packing the product, and in each subsequent week, the number of psychrophilic
bacteria and the total number of fungi inside the cheese, as well as on the product surface and the
packaging were checked. Unfavorable development of bacterial and fungal microflora on the surface
of the packed product and on the surface of the packaging was observed after two weeks of storage of
the cheese in a conventional film. The packaging made from polyolefin film did not prevent further
microbial contamination of the product’s interior which was infected by fungi in the fourth week
of the cheese storage. The polyolefin film with the ZVI/PLA coating effectively prevented fungal
contamination of the inside and the surface of the cheese over the entire six-week storage of the product.
Additionally, the active packaging inhibited the growth of psychrophilic bacteria on the surface of the
product and packaging material. The ZVI/PLA did not influence on the specific microflora inside the
packed goat cottage cheese and could preserve its properties throughout the entire storage period.
It turned out that the use of ZVI/PLA coating affected the possibility of extending the shelf life of the
cheese to 6 weeks while the product placed in conventional packaging was fit for consumption only
within 2 weeks of refrigerated storage.

5. Conclusions

Physicochemical and antimicrobial tests of films and coatings made of pure polylactide and PLA
with addition of zero-valent iron nanoparticles in the amount of 1%, 3%, or 5% (w/w) were carried out.
The incorporation of ZVI nanoparticles into the PLA matrix caused a grayish color change compared
to pure PLA in proportion to the ZVI concentration as weel as led to a decrease in the gloss of the
ZVI/PLA film. The addition of iron nanoparticles into the PLA caused inhibition of the growth of
microorganisms belonging to different groups in terms of morphological structure (Gram-negative
and Gram-positive bacteria, yeast, and molds). Complete growth inhibition was observed for ZVI
nanoparticles contents above 3% (w/w) in the PLA matrix. Reference tests performed on pure PLA and
PLA containing iron oxide have shown that they do not have the ability to inhibit the growth of any of
the tested microorganisms.

Goat cheese wrapped in the packaging foil made of polyolefin with PLA coating containing at
the best 3% of ZVI was stored for 6 weeks in refrigerated condition. During this time no microbial
growth was observed on the inner surface of the packaging and on the surface of the product due to
the ZVI presence. The prolonged period of cheese shelf life packaged in the developed packaging
material with the ZVI/PLA coatings was similar to the results provided in the literature for that of the
chitosan-PVA-TiO2 films and chitosan/carboxymethyl cellulose/ZnO nanoparticles films containing the
comparable amount of active nanoparticles [26,27]. Additionally, the biodegradable nature of PLA and
demonstrated antimicrobial activity the ZVI/PLA films, gives promising prognosis as to their use as
active food packaging.
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6. Patents

Polish patent application—PL 432267: Packaging material with antimicrobial properties, method
of its production and application.

Patent PCT/PL2011/050055, Foltynowicz, Z.; Kozak, W.; Stoinska, J.; Urbanska, M.; Muc, K.;
Dominiak, A.; Kublicka, K. Nanoiron-Based Oxygen Scavengers. Uniwersytet Ekonomiczny w
Poznaniu. December 2011.

Patent EP2658666, Foltynowicz, Z.; Kozak, W.; Stoinska, J.; Urbanska, M.; Muc, K.; Dominiak,
A.; Kublicka, K. Nanoiron-based oxygen scavengers, Uniwersytet Ekonomiczny w Poznaniu.
December 2018.
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