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Abstract: Nanofluids are potential heat transfer fluids with improved thermophysical properties
and heat transfer performance. Double diffusion convection plays an important role in natural
processes and technical applications. The effect of double convection by diffusion is not limited to
oceanography, but is also evident in geology, astrophysics, and metallurgy. For such a vital role of
such factors in applications, the authors have presented the analytical solutions of pumping flow of
third-grade nanofluid and described the effects of double diffusion convection through a compliant
curved channel. The model used for the third-grade nanofluid includes the presence of Brownian
motion and thermophoresis. Additionally, thermal energy expressions suggest regular diffusion and
cross-diffusion terms. The governing equations have been constructed for incompressible laminar
flow of the non-Newtonian nanofluid along with the assumption of long wavelength. The obtained
analytical expressions for velocity, temperature, and nanoparticle concentration have been sketched
for various considerable parameters. The effects of regular buoyancy ratio, buoyancy parameter,
modified Dufour parameter, and Dufour-solutal Lewis number have been analyzed along with wall
properties and pumping characteristics. This study concludes that fluid becomes hotter with increase
in regular buoyancy ratio and a modified Dufour parameter, but a decrease in temperature is observed
for the buoyancy parameter. Moreover, the solutal concentration is behaving inversely against the
Defour-Solutal Lewis number.

Keywords: double diffusion; nanofluid; curved channel; peristaltic pumping; compliant walls;
analytical solutions; third grade fluid model

1. Introduction

Nanofluid has served in a number of engineering applications, for example, porous materials [1,2],
fuel-cell industry [3], etc. due to its significant increase in the heat-transfer rate compared to
conventional engineered fluid [4]. Nanofluids are another class of fluids made by scattering at the
nanometer scale materials (nanoparticles, nanofibers, nanotubes, nanowires, nanorods, nanosheets,
or nanobeads) in base fluids. As it were, nanofluids are nanoscale colloidal suspensions containing
dense nanomaterial. They are two-stage frameworks with one stage (solid stage) into another (fluid
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stage). It was discovered that nanofluids have improved thermophysical properties, for example,
thermal conductivity, heat-diffusivity, thickness, and convective warmth move coefficients contrasted
with those of base fluids, like oil or water. It has indicated incredible potential applications in numerous
zones. Some investigations on nanofluid can be cited in [5–9]. Most of the human vessels are flexible in
nature and the peristaltic flows exhibit such kind of geometries. The flows of such types are very useful
in industry, engineering and medical. These flows have also immense applications in curing cancer cells.
Abd Elnaby and Haroun [10] have studied the influence of conformal wall properties on peristaltic
movement in a two-dimensional channel and produced the conclusion that the reverse pumping
rate increases by rising the wall damping and reduces under the increasing magnitude of the wall
elasticity as well as tension, which differs from the model used by Mittra and Prasad [11] and Srivastava
and Srivastava [12]. Muthu et al. [13] analyzed the peristaltic movement of a micropolar fluid in
circular cylindrical tubes with elastic wall properties. They suggested from the obtained measurement
that viscous damping is affecting the mean flow reversal over the elastic surface. Nadeem et al. [14]
obtained an analytical solution for pumping transport of Williamson nanofluid through a curved
channel with compliant walls and offered the readings under the variation of curvature of the enclosure
and heat transfer coefficient. Although a large number of studies on the peristaltic flow of conventional
fluids are available, only a few articles have been reported on the peristaltic flow of nanofluids [15–18].
In this regard, Akbar et al. [19] investigated the copper nanoparticles impinging on a curved channel
with compliant walls and peristalsis. They acquired analytical solutions for temperature distribution
and nanoparticle concentration. Due to the importance of the effects Soret (thermal diffusion) and
Dufour (diffusion-Thermo), many investigators have been studied which can be found in [20–22].

Collective forced, free convection (mixed convection stream) is occurred in large number of
engineering and industrial processes, like solar central receivers attached to the wind potentials,
cooling of electronic equipment through fans and nuclear reactors during emergency shutdown and
heat transfers kept in lower-velocity surroundings. Heat and mass transfers accompanying effect on
each other also produce a cross-diffusion influence. The temperature difference generates mass transfer
which is known as Soret effect, on the other hand, the Dufour effect comes from the heat transfer
produced by the concentration gradient. Due to wide range of aplications, peristaltic transport of Jeffrey
fluid with double diffusion convection for nanofluids has been analyzed by Akram et al. [23] in the
presence of a tilted magnetic field. Exact solutions are obtained for the breaking field of nanoparticles,
the concentration field, the temperature field, the flow functions, the pressure gradient and the pressure
increase with respect to the axial and transverse coordinates on the length restrictions of longwave and
low Reynolds number. Akbar and Habib [24] have discussed the peristaltic flow induced by natural
double-diffusive convection to achieve a nanofluid magnetic field analysis in an asymmetric porous
channel and obtained solutions in a series of five coupled equations.

The feature of compliant wall in peristaltic flows is a key tool for governing muscle tension.
This physical phenomenon has been revealed mathematically by a system of equations which are linked
to compliant walls displacement [25,26]. Srinivasvas and Kothandapani [27] have investigated the
transfer of heat and mass effects on wavy flow through a porous region experiencing compliant walls.
Batti et al. [28] have introduced the wavy phenomenon of Jeffrey fluid in a non-uniform rectangular
enclosure with the effects of variable magnetic field. They proposed the attributes of non-uniformity
of channel on the flow with the incorporation of lubrication theory and obtained the exact solutions.
Bhatt et al. [29] have published the hall current factor on peristaltic analysis of heated particle–fluid
combined flow with compliant wall properties through numerical treatment. It is to be mentioned here
that the analysis of double diffusion mixed convection for a wavy mechanism of viscoelastic nanofluid
in a curved structured geometry has not been yet investigated.

Keeping in mind the importance of above-discussed literature and wide range of applications of
mixed convection phenomenon with nanoparticles in peristaltic flows, the authors converted their
attention to exploring the theoretical effects of double diffusion over peristaltic flow of nanofluid
having third-grade fluid as a base fluid through a curved channel along with wall properties.
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Most probably, this study will be the best direction to efficiently use the achieved data in experimental
side. The equations of continuity, momentum, energy, and nanoparticle concentration have been
modeled through some suitable physical conditions like low values of wavenumber and the Reynolds
number. The observing equations are then solved analytically by using a perturbation method.
The results are manipulated graphically and discussed in detail. The parameters affecting the
phenomenon have been described individually.

2. Mathematical Modeling

The problem is to contemplate the effects of double diffusion on the peristaltic transport of an
impermeable third-grade fluid in a compliant curved channel having radius R and uniform width 2d
bent in the form around the curve with central point having the corresponding components u and v in
above-mentioned sides (see Figure 1a). The walls have been structured to become wavy along the flow
and have the mathematical expression as described below. The operating equations for the obstacle
are [18]

∇ ·V = 0, (1)

ρ f (
∂v
∂t + V · ∇V) = −∇p + µ∇ · S

+(ϕρp + (1−ϕ)ρ f (1− βt(T − T1) − βc(C−C1)))g,
(2)

(ρc) f

[
∂T
∂t + V · ∇T

]
= K∇2T + (ρc)p(Db∇ϕ · ∇T + Dt

T1
(∇T · ∇T))

+(ρc) f Dtc∇
2C,

(3)

∂C
∂t

+ V · ∇C = Ds∇
2C + Dct∇

2T, (4)

∂ϕ

∂t
+ V · ∇]ϕ = Db∇

2ϕ+ (
Dt

T1
)∇2T, (5)

where ρ f and ρp suggest the fluid and particles density in order; c stands for volumetric coefficient;
V implies the velocity column; f gives the forcing factor; P delivers the pressure term; e represents
the nanoparticles strength; T0, C0, and ϕ0 describe the contextual representatives of T, C, and ϕ at
lower wall, respectively; and T1, C1, and ϕ1 are the correspondent at the upper wall; Db depicts
the Brownian diffusion factor; Dt the thermophoretic diffusion coefficient; βt shows the volumetric
volume expansion coefficient for the liquid; βc is the cognate solutal coefficient; Dct represents the soret
diffusivity; Ds reveals the solutal diffusivity; Dtc directs the Dufer diffusivity; and S sweeps the fluid
model tensor. We use the following dimensional quantities

x∗ = x
λ , r∗1 = r1

d1
, t∗ = ct

λ , w∗1 = w1
d1

, k∗ =
R∗1
d1

,

p∗ =
d2

1p
cλµ , S∗i j =

d1Si j
cµ , θ = T−T0

T1−T0
, φ = C−C0

C1−C0
,

γ =
ϕ−ϕ0
ϕ1−ϕ0

, Nc =
βcC0
βtT0

, Nr1 =
ρp−ρ f

(1−ϕ0)ρ f βtT0
, τ =

(ρc)p

(ρc) f
,

(6)
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Figure 1. (a) Geometry of the problem. (b) Comparison of current work with literature [25]. Figure 1. (a) Geometry of the problem. (b) Comparison of current work with literature [25].

The new discovered parameters like Ld, Nb, Nc, Nd, Nr1 and Nt take place for a Dufour Lewis
number, a Brownian motion parameter, the regular double-diffusive buoyancy ratio, a modified
Dufour parameter, the nanofluid buoyancy ratio, and the thermophoresis parameter, accordingly.
According to the mechanism of flow, the velocity field is supposed as V = (v, u). After using above
defined parameters and applying the conditions of low Reynolds number and long wavelength,
the Equations (1)–(5) get the next coming form

−
l

r1 + k1

∂p
∂x

+
1

r1 + k1

∂
∂r1

[
(r1 + k1)

2Sr1x
]
+ Ncγ+ θ−Nr1φ = 0, (7)

[
∂2θ

∂r1
2 +

1
r1 + k1

∂θ
∂r1

+ Nb
∂φ

∂r1

∂θ
∂r1

+ Nt(
∂θ
∂r1

)
2
+ Nd

[
∂γ

∂r1
+

1
r1 + k1

∂γ

∂r1

]]
= 0, (8)[

∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
φ+

Nt

Nb

[
∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
θ = 0, (9)
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∂2γ

∂r2
1

+
1

r1 + k1

∂γ

∂r1
+ Ld

∂2θ

∂r2
1

+
1

r1 + k1

∂θ
∂r1

 = 0, (10)

by using the no-slip boundary conditions and compliant walls phenomenon [22,29]

U = c at r1 = ±η = ±(d1 + a sin (
2π(X−ct)

λ ))

T = T0 at r1 = −η and T = T1 at r1 = η
C = C0 at r1 = −η and C = C1 at r1 = η
ϕ = ϕ0 at r1 = −η and ϕ = ϕ1 at r1 = η

,
After adopting wave frame phenomeno and creeping characteristics of the current ransport,

we have the following conclusive form of the above-defined boundary relations in dimensionless format

u = 0 at r1 = ±η = ±(1 + ε sin 2π(x− t)), (11)

θ = 0, φ = 0, γ = 0 at r1 = −η, (12)

θ = 1, φ = 1,γ = 1 at r1 = η, (13)

k
[
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂t∂x

]
η =

∂p
∂x

at r1 = ±η, (14)

Sr1x = −ur1 +
1

r1 + k1
u− 2β(ur1 +

1
r1 + k1

u)
3
. (15)

where E1, E2, and E3 are the representatives of the compliant wall properties [10].

3. Solution of the Problem

We utilize the method of series expansion to solve coupled differential equations which are given
before. The deformation equations for u, θ, γ, and φ are defined as [30]

(1− q)£[u− u0] + q

 − l
r1+k1

∂A
∂x + 1

r1+k1

∂
∂r1

[
(r1 + k1)

2Sr1x
]

+Ncr1 + θ−Nr1φ

 = 0, (16)

(1− q)£[θ− θ0] + q


∂2θ
∂r1

2 +
1

r1+k1

∂θ
∂r1

+ Nb
∂ϕ
∂r1

∂θ
∂r1

+ Nt(
∂θ
∂r1

)
2

+Nd

[
∂γ
∂r1

+ 1
r1+k1

∂γ
∂r1

]  = 0, (17)

(1− q)£[ϕ−ϕ0] + q
[[
∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
ϕ+

Nt

Nb

[
∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
θ

]
= 0, (18)

(1− q)£[γ− γ0] + q

∂2γ

∂r2
1

+
1

r1 + k1

∂γ

∂r1
+ Ld

∂2θ

∂r2
1

+
1

r1 + k1

∂θ
∂r1

 = 0. (19)

where £ is the linear operator which is chosen as £ = ∂2

∂r2
1
. The initial guesses for u, θ, φ, and γ are

defined as

u0 = 1
2w1

[−2(k1 + r1)w ln (k1 + r1) + (k1 −w1)(−r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)],
(20)

θ0 = 1
2w1

[−2(k1 + r1)w1 ln (k1 + r1) + (k1 −w1)(r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)],
(21)

ϕ0 = 1
2w1

[−2(k1 + r1)w1 ln (k1 + r1) + (k1 −w1)(−r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)],
(22)
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γ0 = 1
2w1

[−2(k1 + r1)w ln (k1 + r1) + (r1 −w1)(r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)].
(23)

Now we use the following perturbation series for u, θ, γ, and φ

u = u0 + qu1 + . . .
θ = θ0 + qθ1 + . . .
γ = γ0 + qγ1 + . . .
ϕ = ϕ0 + qϕ1 + . . .

. (24)

After using the above series solutions in Equations (11) to (14) and comparing the coefficients of q,
we get the same solutions for zeroth order terms and the first order systems found the following solutions

u1 = C1 + rC2 −
1

4η3 (
1
9

rη2(6k(6 + k + kNc − kNr1 + 6A)η+ 3(3 + 5k)(1 + Nc −Nr1)

rη+ (1 + Nc −Nr1)r2(3 + 5η)) + 1
12(k+r)3 (768(k + r)3βη3Log[k + r]3

−3β(k− η)3(k + η)(17k2 + 40kr + 24r2
− 6kη− 8rη+ η2)Log[k− η]3

+288(k + r)2βη2Log[k + r]2(12(k + r)η+ (k− η)(3k + 4r− η)Log[k− η]

−(k + η)(3k + 4r + η)Log[k + η]) + β(k− η)2(k + η)Log[k− η]2(−8(k + r)(31k + 36r− 5η)η

+3(3k(17k2 + 40kr + 24r2)η+ (5k + 8r)η2
− 3η3)Log[k + η])

+(k + η)Log[k + η](4(k + r)2η2(r3(6 + r + Ncr−Nr1r) + 3(1 + (1 + Nc −Nr1)r3
− 30β)η

+k(−3 + 90β+ r2(6 + r + Ncr−Nr1r + 3(1 + Nc −Nr1)η)))

+β(k− η)(k + η)Log[k + η](−8(k + r)η(31k + 36r + 5η)

+3(k + η)(17k2 + 40kr + 24r2 + 6kη+ 8rη+ η2)Log[k + η]))

−(k− η)Log[k− η](4(k + r)2η2(r3(6 + r + Ncr−Nr1r) − 3(1 + (1 + Nc −Nr1)r3
− 30β)η

+k(−3 + 90β+ r2(6 + r + Ncr−Nr1r− 3(1 + Nc −Nr1)η)))

+β(k + η)Log[k + η](−16(k + r)η(31k2kr + 5η2) + 3(k + η)(3k(17k2 + 40kr + 24r2)

−(11k2 + 32kr + 24r2)η+ (5k + 8r)η2 + 3η3)Log[k + η]))

−8(k + r)ηLog[k + r]((k + r)2(6 + (k + r)(k2(1 + Nc −Nr1)

+r(6 + r + Ncr−Nr1r) + 2k(3 + 3A + r + Ncr−Nr1r)) − 936β)η2

+6β(−(k− η)2(7k2 + 18k + 12r2
− 4kη− 6rη+ η2)Log[k− η]2

+2(k− η)Log[k− η](−6(k + r)(5k + 6r− η)η

+(k + η)(7k2 + 18kr + 12r2
− η2)Log[k + η])

+(k + η)Log[k + η](12(k + r)η(5k + 6r + η)

−(k + η)(7k2 + 18kr + 12r2 + 4kη+ 6rη+ η2)Log[k + η]))))),

(25)

θ1 = C3 + rC4 −
1

4η2 (2(k + r)(−1−Nd + (Nb + Nt)(k + r))η2Log[k + r]2

+2(k + r)η+ Log[k + r](1 + Nd − (Nb + Nt)(k + r) − 2η
−(2Nd + (Nb + Nt)(k + r))η+ (−1−Nd + (Nb + Nt)(k
+r))((k− η)Log[k− η] − (k + η)Log[k + η])) + 1

2 r((Nb

+Nt)r + 2(−2(1 + Nd) + (Nb + Nt)(2k + r))η+ 2(4 + 4Nd

+2k(Nb + Nt) + 3(Nb + Nt)r)η2 + ((k− η)Log[k− η] − (k
+η)Log[k + η])(−2(Nb + Nt)r− 2(−2(1 + Nd) + (Nb

+Nt)(2k + r))η+ (Nb + Nt)r((k− η)Log[k− η] − (k
+η)Log[k + η])))),

(26)

φ1 = C5 + rC6 + 1
2Nbη

((Nb + Nt)(k + r)(1− 2η+ ηLog[k + r]2

+(−k + η)Log[k− η] + (k + η)Log[k + η] − Log[k + r](1− 2η
+(−k + η)Log[k− η] + (k + η)Log[k + η]))),

(27)
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γ1 = C7 + rC8 + 1
2η ((1 + Ld)(k + r)(1− 2η+ ηLog[k + r]2

+(−k + η)Log[k− η] + (k + η)Log[k + η] − Log[k + r](1− 2η
+(−k + η)Log[k− η] + (k + η)Log[k + η]))),

(28)

where the constants Ci, i = 1, 2, 3, . . . 8 can be found by using boundary conditions are described in the
Appendix A and the quantity A(x,t) contains the subsequent expression

A(x, t) = −2επ3k
{ E3

2π
sin (x− t)2π− (E1 + E2) cos (x− t)2π

}
. (29)

Therefore, the final solutions can be composed by injecting above evaluated expressions of
u0, θ0, φ0, γ0 and u1, θ1, φ1, γ1 into Equation (24).

The expression for the heat transfer coefficient is described as

z = ηxθr(η). (30)

Hence, it is calculated as

z = −
1

2+2εSin[2π(−t+x)]πεCos[2π(−t + x)](5(Nb + Nt) − 4C4 + (−1 + k)2(Nb

+Nt)Log[−1 + k + εSin[2π(t− x)]]2

+2(−1 + k)Log[−1 + k + εSin[2π(t− x)]](−Nb−Nt
+(−1 + Nb + kNb−Nd + Nt + kNt)Log[1 + k + εSin[2π(−t + x)]]) + Log[1 + k
+εSin[2π(−t + x)]](−2(3 + Nb + kNb + 3Nd + Nt + kNt) + (Nb + Nt− 3k2 (Nb
+Nt) − 2k(−1 + Nb−Nd + Nt))Log[1 + k + εSin[2π(−t + x)]]) + εSin[2π(−t
+x)] (2(4(Nb + Nt) − 2C[2] − (−1 + k)(Nb + Nt)Log[−1 + k + εSin[2π(t− x)]]2

−(4 + Nb + 4Nd + Nt)Log[1 + k + εSin[2π(−t + x)]]−(−1 + k)(Nb + Nt)Log[1 + k
+εSin[2π(−t + x)]]2 + Log[−1 + k + εSin[2π(t− x)]](Nb + Nt + (1− 2Nb + Nd
−2Nt)Log[1 + k + εSin[2π(−t + x)]])) + (Nb + Nt)ε(4 + (Log[−1 + k + εSin[2π(t
−x)]]−Log[1 + k + εSin[2π(−t + x)]])2)Sin[2π(−t + x)])).

4. Graphical Results and Discussion

The above analysis composes the effects of double diffusion on pumping flow of non-Newtonian
(third order) fluid travelling through a curved channel and also described the wall properties.
The formulation is carried out by introducing non-dimensional parameters and imposing the features
of the lubrication approach. After achieving system of four nonlinear coupled differential equations,
exact analytical solutions have been found by an appropriate analytical highly converging technique
(HPM). In this segment of the study, we have included graphical treatment of various obtained
quantities like comparison graph, velocity, temperature, solutal concentration, and nanoparticle
phenomenon. Figure 1b is included just to validate the present results by comparing analytical solution
with exact solution [25]. This graph contains the data of velocity obtained in the current study by
neglecting the effects of double diffusion convection (Nc = Nr1 = 0) and the data of [25]. One can find
the reading that the current analytical solutions are very much in agreement with the exact solutions
found by Hayat et al. [25]. In Figure 2, the velocity is displayed under the variation of the regular
buoyancy ratio Nc. We conclude from this figure that the velocity of fluid is increasing with increasing
quantity of Nc and become highest in the middle part of the channel. This result stresses that Nc

being the ration of concentration variance to temperature gradient, when gets increased meant that
concentration change is higher than the temperature difference which is actually causing the fluid to
travel with greater intensity. From Figure 3, it is very clear that the velocity is showing totally opposite
behavior against the buoyancy parameter Nr1 as compared to Nc which is also prominent physically
that when we increase the density of particles the fluid travels slowly. Figure 4 is portrayed to find the
influence of complaint wall parameters E1, E2, E3 and it can be concluded here that the velocity of
the nanofluid is minimized with the complaint wall parameters. In Figure 5, the temperature profile
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θ is portrayed to measure the influence of the regular buoyancy parameter Nb. According to this
graph, it is noticed that the temperature is increasing with the increasing value of Nb and the highest
temperature is observed at r = 0.2, which is near the centerline of channel. Figure 6 is showing the
effect of a modified Dufour parameter Nd on temperature profile θ. This graph is emphasized that
Nd is lowering the temperature throughout the geometry which represents the cooling effects due to
change in nanoparticles concentration. The temperature profile θ for various values of thermophoresis
parameter Nt is plotted in Figure 7. According to this figure, we can analyze that as we increase the
magnitude of Nt, the temperature θ is also increased and gets higher magnitude in the central region
of the channel. Figures 8 and 9 highlights the variation of nanoparticle concentration φ when there is
an increase the values of Brownian motion parameter Nb and thermophoresis parameter Nt. It can
be supposed from these figures that nanoparticle concentration is increasing with Nb but decreasing
with Nt. It is also observed that nanoparticles are less in numbers in the central part and minimum
quantity is at the position r = h. Figures 10 and 11 are drawn to manage the behavior of curvature
parameter k and Defour-Solutal Lewis number Ld on solutal concentration. Figure 10 depicts that γ
is increasing with the increasing values of k. It means that as we use the curved channel with large
curvature, the solutal concentration will get increased. On the other hand, Figure 11 emphasizes that γ
is decreasing with Ld and quite opposite behaviour is observed in this figure as we have seen from
Figure 10. Figures 12–14 are captured to visualize the effects the Nb, Nd, and Nt respectively on the
heat transfer coefficient z. It is found from these figures that heat transfer is decreasing with Nb and Nt

on the left and right sides but increasing in the centre. It is depicted here that Nd reflects the opposite
behaviour on heat transfer. It is also noted from Figures 12–14 that amount of heat transfer is maximum
at the center of the channel.Coatings 2020, 10, x; doi: FOR PEER REVIEW 9 of 18 
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5. Conclusions

In the third chapter, we have presented the effect of double diffusion on the peristaltic flow of
nanofluid through a curved channel. The governing equations for velocity, temperature, nanoparticles,
and solutal concentration have been modified and illustrated under the suppositions of low Reynolds
number and low wavelength. The solutions have been carried out by HPM. In the last section, graphical
results have been sketched through figures. The major points of the study are given below:

• The velocity profile increases with an increasing regular buoyancy ratio, but buoyancy parameter
and compliant walls give opposite effects on velocity.

• The temperature increases with the Brownian motion parameter and thermophoresis parameter,
but decreases with the buoyancy parameter. It is also noticed that the maximum temperature is
observed in the center of the channel.

• The nanoparticles increase with the variation of regular buoyancy parameter, but decrease with
increasing thermophoresis parameter. Moreover, it is concluded that in the center, there are fewer
numbers of nanoparticles as compared to the left side boundary.

• It is observed that as an increase in the curvature of the channel, solutal concentration is increased,
but reveals opposite behavior with Defour-Solutal Lewis number.

• It is found that heat is transferred in large amounts while increasing a modified Dufour
parameter, but the less heat transfer is observed in case of Brownian motion parameter and
thermophoresis parameter.

• It is disclosed that current analytical study is in line with the study [25] having exact solutions by
skipping the terms of double diffusion.
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Appendix A

C1 = − 1
48η3 (−4(3 + 5k)(1 + Nc −Nr)η5 + 3β(17k3

− 96k2η+ 51kη2
− 32η3)Log[k− η]3

+βLog[k− η]2(8η(31k2
− 216kη+ 31η2) − 9(17k3

− 32k2η− 77kη2 + 32η3)Log[k + η])
+Log[k− η](4η2(3k(−1 + 30β) + (6 + k2(6 + k + kNc − kNr + 6A) − 936β)η
−3k(2 + k + kNc − kNr + 2A)η2 + 2(1 + Nc −Nr)η4) + βLog[k + η](−496k2η
+2960η3 + 9(17k3 + 32k2η− 77kη2

− 32η3)Log[k + η])) + Log[k + η](4η2(k(3
−90β) + (6 + k2(6 + k + kNc − kNr + 6A) − 936β)η+ 3k(2 + k + kNc − kNr

+2A)η2
− 2(1 + Nc −Nr)η4) + βLog[k + η](8η(31k2 + 216kη+ 31η2) − 3(17k3

+96k2η+ 51kη2 + 32η3)Log[k + η]))),

C2 = 1
144η3 (4η3(6k2(1 + Nc −Nr) + 36k(1 + A) + (1 + Nc −Nr)η(3 + 5η)) + 3(−45β (3k2 + η2)Log[k− η]3

+βLog[k− η]2(−1232kη+ 135(3k2 + η2)Log[k + η]) + Log[k− η](4η2(3
−846β+ (k− η)(k(6 + k + kNc − kNr + 6A) − 2(3 + k(1 + Nc −Nr))η)) + βLog[k + η](2464kη
−135(3k2 + η2)Log[k + η])) + Log[k + η](4η2(−3 + 846β− (k + η)(6η+ k(6 + k + kNc − kNr

+6A + 2(1 + Nc −Nr)η))) + βLog[k + η](−1232kη+ 45× (3k2 + η2)Log[k + η])))),

C3 = 1
8η ((Nb + Nt)η(1 + 2η+ 6η2) + (k− η)(2k2(Nb + Nt) − (Nb + Nt)η2

− k(2 + 2Nd

+(Nb + Nt)η))Log[k− η]2 + 2(k− η)Log[k− η](1 + Nd − 2(1 + Nd)η− k(Nb + Nt)(1 + η)

+(Nb + Nt)η(k + η)Log[k + η]) + (k + η)Log[k + η](−2(k(Nb + Nt)(1 + η)

+(1 + Nd)(−1 + 2η)) + (2k(1 + Nd − k(Nb + Nt)) − k(Nb + Nt)η+ (Nb + Nt)η2)Log[k + η])),

C4 = 1
4η2 (2η(k(Nb + Nt)(1 + η) + (1 + Nd)(−1 + 2η)) − k(−1−Nd + (Nb + Nt)(k− η)) (k

−η)Log[k− η]2 + (k− η)Log[k− η](−1−Nd − k(Nb + Nt)(−1 + η) + 4Ndη

−η(−4 + Nb + Nt + (Nb + Nt)η) + 2(−1−Nd + k(Nb + Nt))(k + η)Log[k + η])

+(k + η)Log[k + η](1 + Nd + k(Nb + Nt)(−1 + η) − 4Ndη− η(4 + Nb + Nt + (Nb + Nt)η)

−k(−1−Nd + (Nb + Nt)(k + η))Log[k + η])),

C5 = 1
4Nbη

((Nb + Nt)(2k(−1 + 2η) + (1 + 2k− 2η)(k− η)Log[k− η] + k(−k + η) Log[k− η]2

+(k + η)Log[k + η](1− 2k− 2η+ kLog[k + η])),

C6 = 1
4Nbη2 ((Nb + Nt)(2η(−1 + 2η) + k(k− η)Log[k− η]2 + (k + η)Log[k + η] (1− 4η+ kLog[k + η])

−(k− η)Log[k− η](1− 4η+ 2(k + η)Log[k + η]))),

C7 = 1
4η ((1 + Ld)(2k(−1 + 2η) + (1 + 2k− 2η)(k− η)Log[k− η] + k(−k + η) Log[k− η]2

+(k + η)Log[k + η](1− 2k− 2η+ kLog[k + η]))),

C8 = 1
4η2 ((1 + Ld)(2η(−1 + 2η) + k(k− η)Log[k− η]2 + (k + η)Log[k + η] (1− 4η+ kLog[k + η])

−(k− η)Log[k− η](1− 4η+ 2(k + η)Log[k + η]))).

References

1. Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability
and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers.
Powder Technol. 2019, 349, 92–98. [CrossRef]

2. Xiao, B.; Zhang, X.; Giang, G.; Long, G.; Wang, W.; Zhang, Y.; Liu, G. Kozeny–Carman Constant For Gas Flow
Through Fibrous Porous Media By Fractal-Monte Carlo Simulations. Fractals 2019, 27, 1950062. [CrossRef]

3. Liang, M.; Liu, Y.; Xiao, B.; Yang, S.; Wang, Z.; Han, H. An analytical model for the transverse permeability
of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J.
Hydrog. Energy 2018, 43, 17880–17888. [CrossRef]

http://dx.doi.org/10.1016/j.powtec.2019.03.028
http://dx.doi.org/10.1142/S0218348X19500622
http://dx.doi.org/10.1016/j.ijhydene.2018.07.186


Coatings 2020, 10, 154 15 of 16

4. Choi, S.U.S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Proceedings of the ASME
International Mechanical Engineering Congress and Exposition, Washington, DC, USA, 12–17 November
1995; Volume 66, pp. 99–105.

5. Safaei, M.R.; Togun, H.; Vafai, K.; Kazi, S.N.; Badarudin, A. Investigation of Heat Transfer Enhancement in a
Forward-Facing Contracting Channel Using FMWCNT Nanofluids. Numer. Heat Transf. Part A Appl. 2014,
66, 1321–1340. [CrossRef]

6. Zeeshan, A.; Ellahi, R.; Mabood, F.; Hussain, F. Numerical study on bi-phase coupled stress fluid in the
presence of Hafnium and metallic nanoparticles over an inclined plane. Int. J. Numer. Methods Heat Fluid Flow
2019, 2854–2869. [CrossRef]

7. Ibrahim, W.; Makinde, O.D. Double-diffusive mixed convection and MHD stagnation point flow of nanofluid
over a stretching sheet. J. Nanofluids 2015, 4, 1–10. [CrossRef]

8. Maskeen, M.M.; Zeeshan, A.; Mehmood, O.U.; Hassan, M. Heat transfer enhancement in hydromagnetic
alumina–copper/water hybrid nanofluid flow over a stretching cylinder. J. Therm. Anal. Calorim. 2019, 138,
1127–1136. [CrossRef]

9. Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid
in a pipe: Analytical solutions. Appl. Math. Model. 2013, 37, 1451–1467. [CrossRef]

10. Abd Elnaby, M.A.; Haroun, M.H. A new model for study the effect of wall properties on peristaltic transport
of a viscous flui. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 752–762. [CrossRef]

11. Mittra, T.K.; Prasad, S.N. On the influence of wall properties and Poiseuille flow in peristalsis. J. Boimech.
2018, 6, 81–693. [CrossRef]

12. Srivastava, V.P.; Srivastava, L.M. Influence of wall elasticity and poiseuille flow induced by peristaltic
induced flow of a particle-fluid mixture. Int. J. Eng. Sci. 1997, 35, 799–825. [CrossRef]

13. Muthu, P.; Kumar, B.V.R.; Chandra, P. Peristaltic motion of micropolar fluid in circular cylindrical tubes:
Effect of wall properties. Appl. Math. Model. 2008, 32, 2019–2033. [CrossRef]

14. Nadeem, S.; Maraj, E.N.; Akbar, N.S. Investigation of peristaltic flow of Williamson nanofluid in a curved
channel with compliant walls. Appl. Nanosci. 2014, 4, 511. [CrossRef]

15. Hassan, M.; Marin, M.; Alsharif, A.; Ellahi, R. Convective heat transfer flow of nanofluid in a porous medium
over wavy surface. Phys. Lett. A 2018, 382, 2749–2753. [CrossRef]

16. Ellahi, R.; Zeeshan, A.; Hussain, F.; Asadollahi, A. Peristaltic blood flow of couple stress fluid suspended
with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 2019, 11, 276.
[CrossRef]

17. Riaz, A.; Alolaiyan, H.; Razaq, A. Convective Heat Transfer and Magnetohydrodynamics across a Peristaltic
Channel Coated with Nonlinear Nanofluid. Coatings 2019, 9, 816. [CrossRef]

18. Bég, O.A.; Tripathi, D. Mathematica simulation of peristaltic pumping with double-diffusive convection in
nanofluids: A bio-nano-engineering model. J. Nanoeng. Nanosyst. 2011, 225, 99–114.

19. Akbar, N.S.; Maraj, E.N.; Butt, A.W. Copper nanoparticles impinging on a curved channel with compliant
walls and peristalsis. Eur. Phys. J. Plus 2014, 129, 183. [CrossRef]

20. Bhatti, M.M.; Rashidi, M.M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over
a porous shrinking/stretching sheet. J. Mol. Liq. 2016, 221, 567–573. [CrossRef]

21. Kuznetsov, A.V.; Nield, D.A. Double-diffusive natural convective boundary-layer flow of a nanofluid past a
vertical plate. Int. J. Therm. Sci. 2011, 50, 712–717. [CrossRef]

22. Akbar, N.; Khan, Z.; Nadeem, S.; Khan, W. Double-diffusive natural convective boundary-layer flow of a
nanofluid over a stretching sheet with magnetic field. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 108–121.
[CrossRef]

23. Akram, S.; Zafar, M.; Nadeem, S. Peristaltic transport of a Jeffrey fluid with double-diffusive convection in
nanofluids in the presence of inclined magnetic field. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850181.
[CrossRef]

24. Akbar, N.S.; Habib, M.B. Peristaltic pumping with double diffusive natural convective nanofluid in a
lopsided channel with accounting thermophoresis and Brownian moment. Microsyst. Technol. 2019, 25, 1217.
[CrossRef]

25. Hayat, T.; Hina, S.; Awatif, A.H.; Asghar, S. Effect of wall properties on the peristaltic flow of a third grade
fluid in a curved channel with heat and mass transfer. Int. J. Heat Mass Transf. 2011, 54, 5126–5136. [CrossRef]

http://dx.doi.org/10.1080/10407782.2014.916101
http://dx.doi.org/10.1108/HFF-11-2018-0677
http://dx.doi.org/10.1166/jon.2015.1129
http://dx.doi.org/10.1007/s10973-019-08304-7
http://dx.doi.org/10.1016/j.apm.2012.04.004
http://dx.doi.org/10.1016/j.cnsns.2006.07.007
http://dx.doi.org/10.1016/0021-9290(73)90024-9
http://dx.doi.org/10.1016/S0020-7225(97)00053-0
http://dx.doi.org/10.1016/j.apm.2007.06.034
http://dx.doi.org/10.1007/s13204-013-0234-9
http://dx.doi.org/10.1016/j.physleta.2018.06.026
http://dx.doi.org/10.3390/sym11020276
http://dx.doi.org/10.3390/coatings9120816
http://dx.doi.org/10.1140/epjp/i2014-14183-2
http://dx.doi.org/10.1016/j.molliq.2016.05.049
http://dx.doi.org/10.1016/j.ijthermalsci.2011.01.003
http://dx.doi.org/10.1108/HFF-01-2015-0019
http://dx.doi.org/10.1142/S0219887818501815
http://dx.doi.org/10.1007/s00542-018-4094-9
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.036


Coatings 2020, 10, 154 16 of 16

26. Abbas, A.; Bai, Y.; Rashidi, M.M.; Bhatti, M.M. Analysis of Entropy Generation in the Flow of Peristaltic
Nanofluids in Channels With Compliant Walls. Entropy 2016, 18, 90. [CrossRef]

27. Srinivas, S.; Kothandapani, M. The influence of heat and mass transfer on MHD peristaltic flow through a
porous space with compliant walls. Appl. Math. Comput. 2009, 213, 197–208. [CrossRef]

28. Bhatti, M.M.; Ellahi, R.; Zeeshan, A. Study of Variable Magnetic Field on The Peristaltic Flow of Jeffrey Fluid
in A Non-Uniform Rectangular Duct Having Compliant Walls. J. Mol. Liq. 2016, 222, 101–108. [CrossRef]

29. Bhatti, M.M.; Ellahi, R.; Zeeshan, A.; Marin, M.; Ijaz, N. Numerical study of heat transfer and Hall current
impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys.
Lett. B 2019, 33, 1950439. [CrossRef]

30. He, J.H. Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 2006, 350,
87–88. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e18030090
http://dx.doi.org/10.1016/j.amc.2009.02.054
http://dx.doi.org/10.1016/j.molliq.2016.07.013
http://dx.doi.org/10.1142/S0217984919504396
http://dx.doi.org/10.1016/j.physleta.2005.10.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Modeling 
	Solution of the Problem 
	Graphical Results and Discussion 
	Conclusions 
	
	References

