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Abstract: Commercially pure titanium (c.p. Ti) is often used in biomedical implants, but its surface
cannot usually combine with the living bone. A coating of hydroxyapatite (HA) on the surface of
titanium implants provides excellent mechanical properties and has good biological activity and
biocompatibility. For optimal osteocompatibility, the structure, size, and composition of HA crystals
should be closer to those of biological apatite. Our results show that the surface of c.p. Ti was entirely
covered by rod-like HA nanoparticles after alkali treatment and subsequent hydrothermal treatment
at 150 ◦C for 48 h. Nano-sized apatite aggregates began to nucleate on HA-coated c.p. Ti surfaces
after immersion in simulated body fluid (SBF) for 6 h, while no obvious precipitation was found on
the uncoated sample. Higher apatite-forming ability (bioactivity) could be acquired by the samples
after HA coating. The HA coating featured bone-like nanostructure, high crystallinity, and carbonate
substitution. It can be expected that HA coatings synthesized from eggshells on c.p. Ti through a
hydrothermal reaction could be used in dental implant applications in the future.

Keywords: commercially pure titanium (c.p. Ti); hydroxyapatite; eggshell; hydrothermal reaction;
nanoparticle; simulated body fluid (SBF)

1. Introduction

Commercially pure titanium (c.p. Ti) has been used in dentistry, mainly due to its resistance to
corrosion, superior biocompatibility, and favorable mechanical properties [1]. However, Ti is regarded
as a bioinert metal, which cannot form a chemical bond with bone, and this biological inactivity often
results in fibrous tissue surrounding the implanted device [2]. In order to improve both osseointegration
rates and longevity of Ti implants, hydroxyapatite (HA) coating could promote the formation of real
bonds with the surrounding bone tissue. As previously reported, HA-coated Ti has shown better
long-term clinical survival rates than uncoated Ti due to its chemical similarity with natural bone tissue
and its high biocompatibility [3,4]. In order to shorten the surgical healing time of dental implants,
a rapid and reliable bonding with the bone is highly desirable.
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Among various surface-coating methods, the plasma spray technique is widely used for coating
implants with bioactive ceramics, especially HA coatings. However, there have been problems
associated with the poor clinical performances of conventional plasma-sprayed coatings [5]. Therefore,
different methods such as electrophoretic deposition, thermal spray deposition, sol–gel coating, and
biomimetic coating have been developed to coat Ti implants [6–10]. In particular, the biomimetic
apatite coating method is one of the most promising coating technologies, since it can prepare the HA
coatings on implant surfaces at a relatively low temperature [6,11]. A bone-like HA coating is formed
on a Ti surface by immersing the implant in a Ca-, P-containing solution [11].

In recent years, natural materials such as animal bones, corals, eggshells, and oyster shells have
been used to synthesize HA. Wu et al. [12] reported the successful fabrication of HA from oyster shell
powder by solid-state reaction and subsequently heat treatment at 900–1100 ◦C. Recently, our research
group [13] proposed an environmentally beneficial and cost-effective method of preparing HA or
tri-calcium phosphate (TCP) bioceramics from eggshell biowaste. The eggshell mainly consisted of a
major component, i.e., calcium carbonate (94%), besides calcium phosphate (1%), magnesium carbonate
(1%), and organic matter (4%) [14]. It is worth mentioning that the crystal structure and composition
of HA prepared from natural sources like eggshells are similar to those of human bones because
eggshells notably contain several trace elements (Na, Mg, Sr, etc.). Thus, eggshell could be a valuable
and promising raw material [15]. In spite of these advantages, there are still few studies concerning
ceramic coatings made from natural sources and biowastes. Qaid et al. prepared HA coatings on
Ti–6Al–4V substrates using micro-arc oxidation (MAO) in electrolytes at various concentrations of
eggshells-derived HA [16]. Roudan et al. used an electrophoretic deposition method to deposit HA
from eggshells on a Ti substrate and studied the thermal stability of the resulting coating [17]. Also,
eggshells-derived HA was prepared on low-modulus Ti–5Nb–5Mo alloy by hydrothermal heating
processing [18].

In this study, we hypothesized that eggshell-derived HA coating, prepared on c.p. Ti surface
after alkali treatment, could promote apatite formation and bioactivity. The samples were immersed
in simulated body fluid (SBF) for a period of time to evaluate their bioactivity. In order to test this
hypothesis, the surface of c.p. Ti was coated with HA by hydrothermal treatment followed by heat
treatment in air, using eggshell biowaste as the source of Ca. The hydrothermal reaction could enhance
the crystallinity of the product at relatively low temperatures without significantly increase of grain
size. The characteristics of the HA coatings after hydrothermal treatment for different periods of time
from 0 to 48 h were then analyzed.

2. Materials and Methods

2.1. Research Material

C.p. Ti (Grade II) was cut to make plates with the dimension of 5.0 × 5.0 × 0.7 mm. The metal
surfaces were sanded to the final level using 600-grit paper and then ultrasonically cleaned twice
with ethanol and deionized water for 5 min. An alkali treatment, which increased hydrophilicity, was
performed by soaking the specimens in 50 mL solution of 5 M NaOH at 60 ◦C for 24 h. Finally, the
samples were ultrasonically cleaned twice in deionized water for 5 min each time and dried in air at
45 ◦C for 24 h.

The eggshell powders (2 g) were put into 15 mL of deionized water and completely dissolved
after adding 5 mL of hydrochloric acid. The solution was then stirred at 200 rpm for 40 min. A total
of 0.85 mL of H3PO4 (85%) was added dropwise while the mixture was continually stirred for 40
min. The molar Ca/P ratio was set to 1.67. A NH4OH solution was added to maintain the pH of the
solution at 10, which resulted in a white HA suspension. Details of this method can be found in some
previous works [12,18]. The pretreated c.p. Ti samples were placed into the HA suspension and sealed
in Teflon-lined stainless-steel autoclaves. The hydrothermal treatments were performed at 150 ◦C for
12, 24, and 48 h. The autoclave was allowed to naturally cool to room temperature. After the respective



Coatings 2020, 10, 112 3 of 11

periods of reaction, the hydrothermally treated samples were removed, rinsed with deionized water,
and dried at 45 ◦C in air. The sample without a hydrothermally treated HA coating was used as a
control. Finally, all the samples were heat-treated at 500 ◦C for 2 h to increase the crystallinity of the
HA coating.

2.2. Research Methodology

In this experiment, the samples before and after the heat treatment were placed in deionized
water and subjected to ultrasonic vibration at 200 W for 3 min to determine the effect of heat treatment
on the adhesion between the coating and the substrate [19]. After ultrasonic cleaning, the surface
morphology of the coating was observed using field-emission scanning electron microscopy (FE-SEM;
JSM-6700F, JEOL, Tokyo, Japan). After the hydrothermal reactions, the samples were immediately
immersed in 30 mL of SBF to examine the bioactivity of the HA-coated c.p. Ti. For comparison
purposes, the same immersion test was performed on alkali-treated c.p. Ti without hydrothermal
treatment. The bioactivity of all samples was evaluated by soaking the samples in SBF for 6, 12, and 24
h, maintained in a water bath at 37 ◦C. Reagent-grade chemicals, NaCl, NaHCO3, KCl, K2HPO4·3H2O,
MgCl2·6H2O, CaCl2, and Na2SO4, were sequentially dissolved in deionized water to prepare SBF,
using the method described by Kokubo and Takadama [20]. Table 1 lists the ion concentrations of
SBF used in this experiment and that of human blood plasma [20]. The SBF was renewed every 2
days to ensure its fixed ion concentration. At each soaking time point, the samples were taken out,
washed with deionized water, and then air-dried. Before and after the various treatments and the
soaking in SBF, the c.p. Ti surfaces were analyzed using FE-SEM (JSM-6700F, JEOL, Tokyo, Japan) and
X-ray diffractometry (XRD; D8-Discover, BRUKER, Karlsruhe, Germany). The coated surfaces of the
specimens were examined using Fourier-transform infrared (FT-IR; FTS-40, Bio-Rad, Cambridge, MA,
USA) reflection spectroscopy. After 24 h of immersion, the chemical surfaces were examined using
energy-dispersive X-ray spectroscopy (EDS) attached to an SEM. Changes in weight over the time
periods (6, 12, and 24 h) were recorded and calculated according to the dry weight (Ws) of the samples
and the original dry weights (Wo) according to the equation:

Weight gain (%) = (Ws/Wo − 1) × 100% (1)

Table 1. Ion concentrations (mM) of simulated body fluid (SBF) used in this experiment and human
blood plasma [20].

Na+ K+ Mg2+ Ca2+ Cl− HPO42− SO42− HCO3−

Blood plasma 142.0 5.0 1.5 2.5 103.0 1.0 0.5 27.0
SBF 142.0 5.0 1.5 2.5 147.8 1.0 0.5 4.2

3. Results

3.1. Characterization of Surfaces under Various Treatment Conditions

Figure 1 shows FE-SEM images of the c.p. Ti surfaces subjected to hydrothermal treatment for 12,
24, and 48 h. A nanoscale fine network structure, composed of many feather-like, elongated features
placed perpendicularly to the surface, formed on the c.p. Ti surface after the initial NaOH treatment,
as shown in Figure 1a. When c.p. Ti was hydrothermally treated at 150 ◦C, the treatment time had an
obvious effect on the formation of nano-HA. Few particles were formed on the c.p. Ti surface after 12 h
(Figure 1b). More rod-like particles were formed and completely covered the surface after treatment
time reached 24 and 48 h (Figure 1c,d). As the time of the hydrothermal reaction increased, the amount
and size of the rod-shaped HA particles also increased significantly.



Coatings 2020, 10, 112 4 of 11

Coatings 2020, 10, 112 4 of 11 

 

 
Figure 1. Field-emission scanning electron microscopy (FE-SEM) photographs of the surfaces of 
commercially pure titanium (c.p. Ti) subjected to hydrothermal treatment at 150 °C for (a) 0, (b) 12, 
(c) 24, and (d) 48 h. 

Figure 2 shows the SEM images of the non-heat-treated surfaces of the HA-coated c.p. Ti samples 
and the samples that were heat-treated at 500 °C for 2 h in air. After heat treatment, the HA particles 
still retained a rod-like nanostructure, while the size of the nanoparticles slightly increased to around 
90 nm in length and 23 nm in width. Figure 3 shows the XRD patterns of the non-heat-treated and 
heat-treated HA-coated c.p. Ti samples. For the non-heat-treated samples, besides the HA and Ti 
peaks, only broader peaks could be identified for the surface after NaOH treatment. After heat 
treatment at 500 °C for 2 h, peaks corresponding to the anatase phase of TiO2 were detected, as shown 
in Figure 3b. 
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for 48 h: non-heat-treated surface (a) and heat-treated surface at 500 °C for 2 h (b). 

 
Figure 3. X-ray diffractometry (XRD) patterns of HA-coated c.p. Ti samples after hydrothermal 
treatment at 150 °C for 48 h: non-heat-treated surface (a) and heat-treated surface at 500 °C for 2 h (b). 

Figure 1. Field-emission scanning electron microscopy (FE-SEM) photographs of the surfaces of
commercially pure titanium (c.p. Ti) subjected to hydrothermal treatment at 150 ◦C for (a) 0, (b) 12,
(c) 24, and (d) 48 h.

Figure 2 shows the SEM images of the non-heat-treated surfaces of the HA-coated c.p. Ti samples
and the samples that were heat-treated at 500 ◦C for 2 h in air. After heat treatment, the HA particles
still retained a rod-like nanostructure, while the size of the nanoparticles slightly increased to around
90 nm in length and 23 nm in width. Figure 3 shows the XRD patterns of the non-heat-treated and
heat-treated HA-coated c.p. Ti samples. For the non-heat-treated samples, besides the HA and Ti peaks,
only broader peaks could be identified for the surface after NaOH treatment. After heat treatment at
500 ◦C for 2 h, peaks corresponding to the anatase phase of TiO2 were detected, as shown in Figure 3b.
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The FT-IR spectra of the non-heat-treated and heat-treated HA-coated c.p. Ti samples are shown
in Figure 4. The non-heat-treated and heat-treated samples had similar FT-IR spectra, indicating that
the same functional groups were observed in the HA coatings. Bands assigned to OH−, PO4

3−, CO3
2−,

and H2O were present. The FT-IR bands also identified the functional groups that are characteristic of
carbonate-incorporated HA.
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treatment at 150 ◦C for 48 h: non-heat-treated surface (a) and heat-treated surface at 500 ◦C for 2 h (b).

In order to examine the adhesion between the c.p. Ti substrate and the nano-HA layer, both
the non-heat-treated and the heat-treated samples were ultrasonically cleaned at 200 W for 3 min in
deionized water. The experimental results are shown in Figure 5. The coating of the heat-treated
sample appeared to be strongly adhesive to the c.p. Ti substrate. The loosely bound HA coating on the
non-heat-treated sample was almost completely removed during ultrasonic cleaning, exposing the
original alkali-treated surface, while the nano-HA crystals remained intact on the coated surface of
the heat-treated samples. Accordingly, the adhesive strength of the HA coating on the surface of the
heat-treated samples was relatively high due to heat treatment.
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Figure 5. FE-SEM images showing the effect of ultrasonic cleaning on the surface morphology of
HA-coated c.p. Ti samples after hydrothermal treatment at 150 ◦C for 48 h: non-heat-treated surface (a)
and heat-treated surface at 500 ◦C for 2 h (b).

3.2. Apatite-inducing Ability of HA-Coated c.p. Ti

Figure 6 shows FE-SEM micrographs of the surfaces of both NaOH-treated c.p. Ti and HA-coated
c.p. Ti that were subjected to heat treatment at 500 ◦C for 2 h after subsequent soaking in SBF for 6, 12,
and 24 h. The bioactivity of the HA-coated c.p. Ti was evaluated by examining apatite’s formation
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on the surface of the specimens after soaking in SBF. NaOH-treated c.p. Ti without an HA coating
was tested for comparison. Nano-sized particles in the form of aggregates were first observed on the
HA-coated Ti surface after 6 h of immersion in SBF, while no obvious precipitation was found on the
metal without an HA coating. In contrast, precipitates were observed on the NaOH-treated sample
after immersion in SBF for 12 h. In the same immersion period, larger numbers of nano-spherulites
were deposited on the HA-coated Ti. Dense, compact, and larger sized round-shaped apatite clusters
were formed on the HA-coated Ti samples after only 24 h of immersion. Conversely, rod-like apatite
nanoparticles in a loosely compact film covered the NaOH-treated Ti samples. This study found that
the morphology of apatite deposits was closely related to the surface modification conditions and the
underlying substrate material and topography.
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Ti samples (b, d, f, h) that were subjected to heat treatment at 500 ◦C for 2 h after subsequent soaking in
SBF for 6, 12 and 24 h, respectively.

Figure 7 shows the results of EDS analysis of both NaOH-treated c.p. Ti and HA-coated c.p. Ti that
were heat-treated at 500◦C for 2 h, after subsequent soaking in SBF for 24 h. EDS analysis identified the
mineral phase of the depositions on the surfaces of the two groups of samples as mainly composed of
calcium and phosphorous, with some magnesium uptaken from the SBF. The results for the HA-coated
c.p. Ti before soaking in SBF, used as a control, are shown in Figure 7c. It is clear that the intensities
of the Ca and P apatite peaks were greater for the HA-coated sample, when compared with those of
the control.
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HA-coated c.p. Ti (c,d) subjected to heat treatment at 500◦C for 2 h before and after subsequent soaking
in SBF for 24 h.

Figure 8 shows the weight change of the apatite deposition on the surfaces of both NaOH-treated
c.p. Ti and HA-coated c.p. Ti that were subjected to heat treatment at 500 ◦C for 2 h after subsequent
soaking in SBF for 6, 12, and 24 h. The samples were dried at 45 ◦C for 24 h prior to weighing. The
weight gain of the apatite deposition increased significantly with the immersion time for both groups.
The HA-coated substrate showed an increase in the deposition rate compared with its non-HA-coated
counterpart. It was noted that the non-HA-coated substrate showed little or no increase in weight
up to 6 h of immersion in SBF. The result confirmed that the samples with HA coating had a higher
apatite-forming ability, which suggests better bioactivity.
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higher apatite-forming ability, which suggests better bioactivity. 

 
Figure 8. Weight gain as a function of soaking time for the surfaces of NaOH-treated c.p. Ti and
HA-coated c.p. Ti that were subjected to heat treatment at 500◦C for 2 h after subsequent soaking for
different periods in SBF.
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4. Discussion

This study found that the amount and size of rod-shaped HA particles on the c.p. Ti surface
increased with the treatment time, from 12 h to 48 h (Figure 1). A possible explanation for this result
is that, when the hydrothermal reaction time is extended, a large number of hydroxyl groups are
promoted on the c.p. Ti surface, which is the key step to initiate the growth of HA on c.p. Ti [21]. The
ability to form nano-HA on Ti surface could be promoted by increasing the temperature and time
of the hydrothermal treatment. Hu et al. [21] and Nakagawa et al. [22] reported that, when Ti was
hydrothermally treated in an HA suspension solution, negatively charged basic OH and acidic OH
groups were formed on Ti surface. The abundant Ti–OH groups were negatively charged and could
combine with the positively charged ions of Ca2+ in the suspension. As the Ca2+ ions accumulated on
the surface, the surface became positively charged and reacted with the negatively charged phosphate
ions, thus nucleating HA.

The presence of a rough surface with many micropores on the nano-HA coated samples may
effectively enhance the fixation of an implant to bone [23]. After the hydrothermal reaction, the
aggregated particles had a tiny rod-like nanostructure with an average length of less than 100 nm. Liu
and Webster indicated that nano-HA coatings exhibit enhanced osteoblast cell functions due to the
large effective surface area and surface nano-roughness [24]. Therefore, the nano-HA coating prepared
by the hydrothermal method is very promising as an application prospect for implant materials. In this
study, the c.p. Ti sample hydrothermally treated at 150 ◦C for 48 h with a wholly HA-coated surface
was analyzed for its coating characteristics and apatite-forming ability in SBF.

It has been asserted [25,26] that the surface of Ti forms sodium hydrogen titanate
(NaxH2-xTi3O7·H2O) after NaOH treatment, which is subsequently transformed into sodium titanate
(Na2Ti6O13) and anatase through heat treatment. Also, after heat treatment at 500 ◦C for 2 h, peaks
corresponding to the anatase phase of TiO2 were detected, as shown in Figure 3. Wang et al. [27]
investigated c.p. Ti treated with a H2O2/TaCl5 solution at 80 ◦C for various times and found that
anatase was the primary phase detected in the surface layers after heating between 300 ◦C and 600 ◦C,
suggesting that anatase is necessary to trigger early apatite formation in SBF.

In Figure 4, carbonate substituted the OH− (A-type) and phosphate (B-type) groups, which
resulted in the transformation of HA into an AB-type carbonated structure. This carbonated HA is
similar to bone [28]. The most notable fact is that the FT-IR spectra of the samples reported in Figure 4
resemble those found in previous research [12], in which nano-sized HA powders were prepared with
eggshells through a hydrothermal reaction at 150 ◦C. For both non-heat-treated and heat-treated c.p. Ti
samples, the functional group OH− was also found on the surfaces: this is a proven positive factor for
bone-like apatite formation [29]. The result indicated that the OH− group formed on the heat-treated
c.p. Ti surface seemed to be more abundant, which might be attributed to the formation of the anatase
phase after heat treatment at 500 ◦C. Previous studies have shown that only weakly absorbed OH−

disappears at lower heat-treatment temperatures, while OH− that is strongly bounded with Ti remains
on the surface at temperatures up to 600 ◦C and more [30,31]. Moreover, it has been observed that only
strongly bounded OH− groups are responsible for the bioactivity of Ti surfaces [32,33].

The results of Figure 5 indicated that the adhesive strength of the HA coating was improved
after heat treatment. Lu et al. [34] also reported that the adhesive strength of HA/Ag coatings on a Ti
substrate was significantly raised after heat treatment. Additionally, a high degree of crystallinity (86%)
in the HA coating was observed after heat treatment at 500 ◦C. It is generally believed that crystallinity
is the dominant factor for the dissolution of an HA coating [35]. HA coatings with low crystallinity
have been shown to be more easily degraded in body fluids, and Hu et al. [36] have also confirmed
that more cells are absorbed and proliferate on well-crystallized HA coatings.

In a study by Nishigawa et al., the effect of silica-coated zirconia surfaces on bond strength was
also examined by using the ultrasonic cleaning test [37]. In the present study, the adhesion between the
c.p. Ti substrate and the HA coating was examined in the non-heat-treated and heat-treated specimens
using an ultrasonic washing process in deionized water. Due to the limitations of this test method,
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we could not obtain quantitative data to determine if the coating had sufficient adhesion to survive
implantation. In our future research, a micro-scratch tester will be adopted to quantitatively evaluate
the adhesion strength of the coating on the substrate.

Due to the chemical and structural similarities to bone and dental minerals, HA exhibits excellent
biocompatibility and possesses the ability to stimulate the formation of new bones, which makes
it a potential material of choice for coating metals for orthopedic, dental, and other biomedical
applications [21]. When the structure, size, and composition of HA crystals are closer to those of
biological apatite, optimal osteocompatibility of HA can be achieved [38]. In this study, the features of
the HA coatings such as nano-structure, high crystallinity, and carbonate substitution led to coatings
exhibiting bone-like structures. Additionally, HA prepared from eggshell powders contains several
important trace elements, such as Na, Mg, and Sr, which play a key role in bone metabolism and cell
proliferation [12,39–41].

5. Conclusions

In this study, nano-HA coatings on c.p. Ti were successfully developed through a hydrothermal
reaction and heat treatment using eggshell biowaste as a source of Ca. When c.p. Ti was hydrothermally
treated at 150 ◦C, the reaction time had an effect on the formation of nano-HA particles. The amount
and size of the prepared HA particles increased with the treatment time. The c.p. Ti surface was
entirely covered by HA nanoparticles after 48 h, and the aggregated HA particles exhibited a tiny
rod-like nanostructure, with an average particle length of less than 100 nm. After subsequent heat
treatment, the morphology of the HA particles was retained, while their size slightly increased to
around 90 nm in length and 23 nm in width. The FT-IR bands identified functional groups that were
characteristic of AB-type carbonate-incorporated HA. The HA coating achieved a high degree of
crystallinity (86%) after heat treatment at 500 ◦C for 2 h and strongly adhered to the c.p. Ti substrate.
Dense, compact, and larger sized round-shaped apatite granules accumulated on the HA-coated Ti
samples after only 24 h of immersion, while rod-like apatite nanoparticles with a loosely compact
film covered the NaOH-treated Ti samples. A higher apatite-forming ability could be acquired by the
samples coated with HA, suggesting better bioactivity.
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