

Supplementary Materials:

A Novel Simple Anti-Ice Aluminum Coating: Synthesis and In-Lab Comparison with a Superhydrophobic Hierarchical Surface

Marcella Balordi 1,*, Giorgio Santucci de Magistris 1,2 and Cristina Chemelli 3

- RSE, Ricerca sul Sistema Energetico, Strada Torre della Razza, 29122 Piacenza, Italy; giorgio.santucci@rse-web.it
- ² Facoltà di Scienze Chimiche, Università Degli Studi di Pavia, viale Taramelli 12, 27100 Pavia, Italy
- ³ RSE, Ricerca sul Sistema Energetico, via Rubattino 54, 20134 Milano, Italy; cristina.chemelli@rse-web.it
- * Correspondence: marcella.balordi@rse-web.it

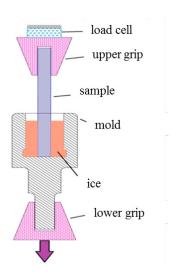


Figure S1. Home-made equipment for shear stress measures.

Table S1. Protocol for shear stress measures.

Protocol for Shear Stress Measures			
Step 1	Fill-up the mold with 40 ml of deionized water		
Step 2	Insert the sample bar into the mold		
Step 3	Freeze the mold and the sample at – 19 °C for at least 8 hours		
Step 4	Fix the mold into the machine		
Step 5	Extract the bar from the ice at a speed of 4 mm/min		
Chara (Calculate the ice adhesion strength τ = FA		
Step 6	where A is the sample surface in contact with the ice		

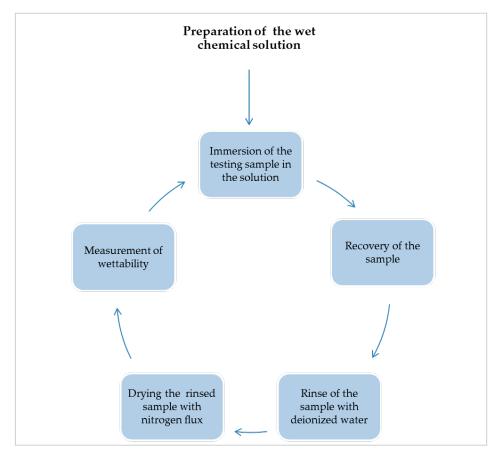


Figure S2. Sample treatment protocol for the durability testing in wet chemicals.

Table S2. Schedule of the wettability measures after the immersion in wet chemicals.

Time of Immersion	Acid Solution	Saline Solution	Basic Solution
0 hour	✓	✓	✓
2 hours			✓
8 hours			✓
16 hours			✓
1 day	✓	✓	✓
2 days	✓	✓	
3 days	✓	✓	
7 days	✓	✓	
10 days	✓	✓	
15 days	✓	✓	
20 days	✓	✓	
30 days	✓	✓	
50 days	✓	✓	
60 days	✓	✓	

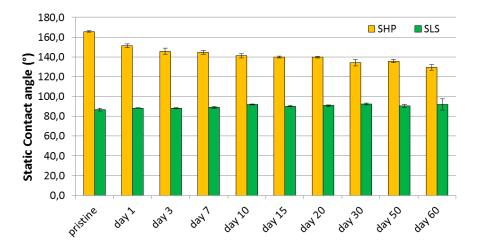


Figure S3. Durability in acid solution: Static Water Contact Angles.

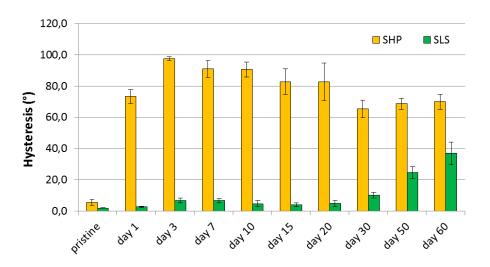


Figure S4. Durability in acid solution: Hysteresis.

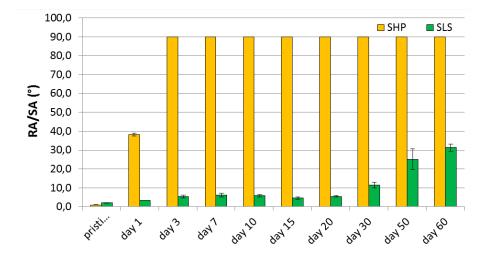


Figure S5. Durability in acid solution: Roll-off/Sliding angles.

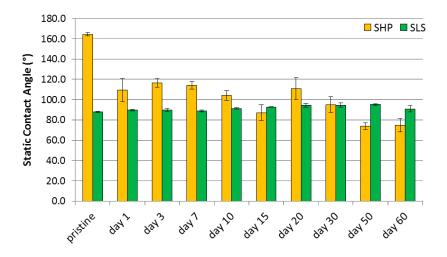


Figure S6. Durability in saline solution: Static Water Contact Angles.

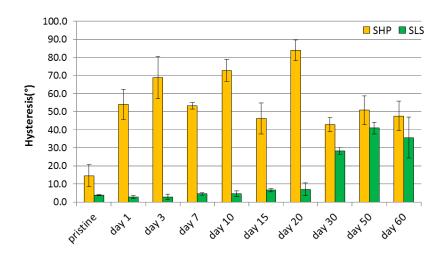


Figure S7. Durability in saline solution: Hysteresis.

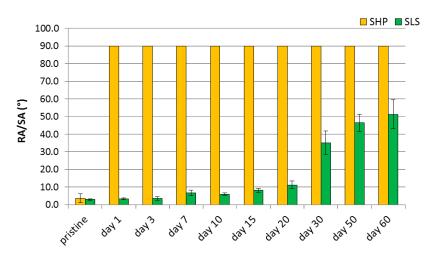


Figure S8. Durability in saline solution: Roll-off/Sliding angles.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).