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Abstract: The life span for a coating attached to its substrate is basic support for their desired protective
function. Therefore, it is necessary to find out the causes responsible for the failure of coatings
during service. This paper developed a finite element model to investigate the cracking behavior
of plasma-sprayed ceramic coatings induced by the mismatch strain of thermal expansion between
coating and substrate. Crack propagation affected by coating thicknesses was realized by the virtual
crack closure technique (VCCT). The residual stresses (σ22 and σ12) and the strain energy release rate
(SERR) induced at the tip of pre-crack in ceramic coatings are calculated. Results show that the σ22 and
σ12 at the tip of the pre-crack increases continuously with the thickening ceramic coatings. The SERRs
at the tip of the pre-crack in top-coat (TC) were increased with the thickness of ceramic coatings,
resulting in the propagation of cracks. The crack length increases with the thickening of ceramic
coatings. The crack propagation and coalescence lead to coating spallation, which is one of the main
failure modes for plasma sprayed ceramic coatings during service. Given that, strain tolerant design
was developed by inserting vertical pores in coatings. It was found that the SERRs were decreased
with the increase in the number of vertical pores, as well as their depth. Moreover, the coatings with
vertical pores appear to be crack-resistant, in particular for the thicker coatings. This suggests that the
strain tolerant design is helpful to extend the life span of thick coatings, which makes a fundamental
contribution to the design and preparation of advanced protective coatings in future applications.

Keywords: failure mechanism; thick ceramic coating; vertical pores; strain tolerant design;
long life span

1. Introduction

Ceramic coatings are often used to protect metallic substrate for desired functions, in particular
for high-temperature-related fields, such as thermal barrier coatings (TBCs) and radar-absorbing
coatings [1–3]. The coating thickness can be 200 µm–3 mm [4,5]. As one of the widely-used ceramic
protective coatings, TBCs are advanced materials system generally used for many years to protect the
metallic components of the gas turbine engine—such as nozzles, turbine blades, combustors, and vanes
that undergo hot gases—thus the temperature of the substrate surface can be significantly lowered [6–10].
TBCs with a thickness of 200 µm–1 mm serve to insulate the engine’s components from high and
large-time heat loads [11]. As a result, the TBCs are used to attain greater functioning temperatures [12],
which are highly needed for higher efficiency [13] and thrust–weight ratios. Therefore, the demand to
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coat turbine blades with TBCs becomes greater and greater with the continuous increase of working
temperature at hot section of turbine blades. The TBCs will play an increasingly significant role in
controlling the gas with elevated temperature corroding against the outside of turbine sharp edges,
and coated TBCs will enable the turbine sharp edges working at elevated temperature [14–16].

Commonly, standard TBCs or radar-absorbing coatings consist of three layers with different
materials: (I) substrate (SUB) that is typically made of metallic materials (e.g., nickel- or cobalt-based
superalloy) to bear mechanical load [17]; (II) ceramic top coatings (TC) to provide desired function [18];
(III) bond coat (BC, e.g., NiCrAlY or NiCoCrAlY) to enhance bonding between TC and substrate,
and to reduces the resultant oxidation [19,20]. Besides, a layer of thermally grown oxide (TGO) is often
formed during thermal service [21,22]. The thermal, physical and mechanical properties of all layers
are different which are emphatically influenced by the handling conditions [23,24]. During construction
and utilization, these layers interact mechanically and chemically. This energetic connection of layers
controls the strength of coatings. It should be noted that during service, the microstructures and
composition of layers incessantly change [17]. The thermal spraying process is one of the most efficient
and cost-effective techniques for improving the surface properties of components, structures, and parts.
For many years, a large number of thermal spraying techniques —such as atmospheric plasma spraying
(APS), vacuum plasma spraying (VPS), high-velocity oxygen fuel (HVOF), detonation gun spraying
(DGS), and wire arc spraying (WAS)—were successfully developed to produce coatings [25–27].
Among various thermal spraying techniques, APS has been used prominently in industrial applications
because of its low maintenance cost, operations simplicity, a wide range of feedstock materials, and the
possibility of deposition of relatively thick coating up to 2 mm [26]. Generally, the TC are deposited by
either atmospheric plasma spraying (APS) or electron beam physical vapor deposition (EB-PVD) [28–32].
Normally, APS ceramic coatings exhibit a lamellar structure [33,34], which is aligned parallel to the
substrate surface. The micro-cracks and micro-pores in ceramic TC are randomly distributed and
lead to low thermal conductivity of APS-TBCs. The one crack meets with a neighboring crack.
The crack coalescence leads to the coating spallation, which is responsible for the ultimate failure of
TBCs [35]. In contrast, TCs deposited by EB-PVD have columnar grains structural characteristics [36,37],
which aligned perpendicular to the substrate. The vicinal columnar grains are inclined with one another.
Usually, these columnar-structured TBCs with higher strain tolerance due to lower elastic modulus
can enhance their thermal-shock resistance [38,39] that prolongs the thermal life of coatings [28,40–44].
As the ceramic coatings were typically applied at worst service conditions, spallation, or delamination
phenomenon at an early stage is unavoidable. The short lifespan and service execution are normally
drawbacks for APS ceramic coatings. This problem would be even worse for thicker radar-absorbing
coatings, which often have a thickness of 1–3 mm.

Based on an idealized model, the structural parameters affected the properties of the TCs,
such as Young’s modulus, fracture toughness, and thermal conductivity [45,46]. In APS coatings,
a continuous network of cracks can form, which is ascribed to the connectivity of intra-splat cracks
and inter-splat pores. In coatings, this crack network leads to a result that the crack can propagate
in any directions [47,48]. Especially, the inter-splat cracks are propagated easily due to large stress
between adjacent splats even if the splat growth occurs [33,49,50]. The sintering of TC at elevated
temperature has a harmful effect on the failure of the coating when it is subjected to thermal shock
loading. The effect of sintering on the delamination of lamellar TCs was investigated, which suggested
many effective design methods for a greater thermal cyclic lifetime [37,51]. To enhance the spalling
resistance of TBCs, many efforts have been done, such as developing new materials [52] and design
multi-layered coatings [12,34,53].

The failure of APS ceramic coatings generally occurs through spallation which is due to the
growth of crack along with the lamellar interface and following coalescence of crack [54–57]. However,
during service conditions, the behaviors of crack propagation and coalescence responsible for the
main failure modes have not been precisely understood. Consequently, it is very difficult to further
understand the short life span of TBCs and to suggest some reasonable coating optimization methods.
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The failure tendency and failure modes of TBCs are often judged by the magnitude of maximum stress
and deriving force. The research methods are mostly static. Crack growth/fracture in which layers
are dissociated from one another, or material is damaged due to external load. With the build out of
finite element modeling (FEM) [58], many methods such as: virtual crack closure technique (VCCT),
cohesive zone model (CZM), extended finite element method (XFEM), and conventional finite element
method (CFEM) can be used to simulate the behavior of crack propagation [59–62]. Among various
methods, VCCT has been used prominently to investigate the dynamic failure behavior of coatings.
Because VCCT is very suitable to calculate the SERR (or J integral) during the crack propagation based
on the thought that the necessary energy when the crack propagates a tiny displacement is equal to the
work of making the crack closed [62].

This study mainly focuses on two aspects. On one hand, the dominant parameters on the spallation
of APS ceramic coatings were investigated by a finite element model, to understand the cracking
propagation during service. On the other hand, a strain-tolerant design for APS ceramic coatings was
proposed to enhance its crack-resistance, to extend the life span for thick coatings.

2. Model Development

2.1. Geometry of Model

The TBC system, which is made up of TC, BC, and SUB, was used to investigate the crack
propagation in TC. In this paper, the FEM software package ABAQUS (Version: 6.14-1) [63] is adopted
to carry out numerical calculations. Figure 1a shows the whole geometry of the model which is used
for finite element analysis (FEA). The length of the model is chosen as 10 mm and the thickness of the
substrate and BC are chosen as 5 mm and 150 µm. The effect of TC thickness on crack propagation was
investigated here, therefore, the thicknesses of TC were selected to be different. The pre-crack along
the coating surface is inserted in the model, as shown in Figure 1a, in this model, a is the crack length
and b is the vertical distance from TC/BC interface. In detail, a refers to 100 µm and b is 50 µm.
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Figure 1. Model of TBCs with the TC crack close to the interface: (a) the physical geometry model;
(b) FE mesh and boundary conditions; and (c) the refined meshes near the TC/BC interface.

In this study, models with and without vertical pores were investigated comparatively. For the
former case, vertical pores were inserted in TC for strain tolerant design. In this model, c is the width
of vertical pores, e is the distance between two vertical pores, and d is the depth of vertical pores.
Where htc, hbc, and hsub are the thickness of TC, BC, and Sub, respectively. The width of vertical pores
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is 5 µm. The influence of the number of vertical pores and depth of vertical pores on crack propagation
is also performed here. The model is periodic symmetry; therefore, a representative unit-cell was used
for simulation. This horizontal pre-crack shows a series of cracks. Once, this horizontal pre-crack
propagates to the left side of the model, it will intersect with the crack in the neighboring region and then
coating spallation will occur. The residual stresses will be calculating again due to the effect of crack.
The virtual crack closure technique (VCCT) [64], which is based on the fracture mechanics concepts,
is used to calculate the strain energy release rate (SERR) at the crack tip. The regular quadrilateral
element is used to mesh the model, and the overall mesh model is represented in Figure 1b. The mesh
improvement is accomplished near the crack region and interface because of our great interest in this
region. The refine mesh in this region is vividly presented in Figure 1c. At the crack tip, the SERR will
not be affected by the size of the mesh because the mesh grid is dense enough.

2.2. Boundary Conditions

The current finite element model is based on the following hypotheses: In this model, (1) TC layer
aside with a pre-existing crack and all other layers are homogeneous and isotropic. The geometric
morphology at the BC/TC interference is flat; (2) The mechanical properties such as the Poisson ratio
and Young’s modulus of all layers are listed in Table 1 [65–68]; (3) The SUB and BC layer behaved
as elastic-plastic material, and the TC layer was regarded as elastic behavior [69]. Table 1 shows the
properties of the materials used for SUB, BC, and TC. It is worth noting that the properties of the
materials were based on typical materials used for TBC.

Table 1. Material properties (Young’s modulus E, Poisson ratio ν, and Thermal expansion coefficient α)
of SUB, BC, and TC [65–68,70].

Layers E (GPa) ν α (10−6/K)

SUB 210 0.3 9
BC 200 0.3 13.6
TC 50 0.15 14.8

Since the representative unit a from the coating sample, periodic boundary conditions were used
in this study. The periodicity boundary constraint which can be understood by utilizing a multi-point
coupling (MPC), is applied on the right edge of the model shown in Figure 1b. Thus, all the nodes
located on the edge have similar displacement along direction 1. Simultaneously, all these nodes can
move freely along the y-direction. On the left edge of the model, a strain of 0.2% is applied to model the
mismatch strain between coating and substrate. Additionally, nodes of the bottom boundary of model
are restricted to move along the y-direction, which can stop the incident of rigid-body displacement.

2.3. Modeling Tool Used for Crack Propagation

When the crack growth is simulated in the TC layer, another crack surface must be made once a
predetermined criterion is met during the thermal cycling. In ABAQUS [63], by utilizing the “debond”
method, the growth of crack can be effectively captured. This crack propagation tool enables the crack
to propagate along a fixed way. The virtual crack closure technique (VCCT) method, based on the
principles of linear elastic fracture mechanics (LEFM) that was proposed by Rybicki and Kanninen [64],
is used to calculate strain energy release rate (SERR) referred to as the crack driving force. With this
technique, the components of SERR GI and GII can be effectively obtained.

The VCCT technique is one of the efficient and most popular tools to find the mode-dependent
components of SERR GI and GII by using nodal force and displacement. A relatively stiff spring is
placed between the node pair at the crack-tip to extract the internal nodal forces, while the node pair
behind the crack-tip is utilized to extract the information for displacement openings [35]. The schematic
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diagram of VCCT for four node elements is shown in Figure 2. The components of SERR GI and GII
can be expressed as [35]

GI =
Fv,3,4∆v

2B∆a
=

Fv,3,4(v1 − v2)

2B∆a
(1)

GII =
Fu,3,4∆u

2B∆a
=

Fu,3,4(u1 − u2)

2B∆a
(2)

where GI and GII are the SERR for Mode I and Mode II respectively, and Fν,3,4, and Fu,3,4 are the
components of nodal force at crack tip. The vi and ui are the components of nodal displacement behind
the crack tip and B is the thickness in third-direction and its value for the two-dimension (2D) model
normally equals 1, with unit thickness. In this work, the criterion of crack-propagation for a top-coat
layer can be examined by a power law [71], which is expressed as

f = Gequiv/Gequivc = (GI/GIc)am + (GII/GIIc)an (3)

where Gequiv and Gequivc are the equivalents and critical equivalent SERR, GIC and GIIC are the critical
SERR for mode I and II respectively, the value, 1.0, is chosen for both am and an. The crack propagation
occurs when the parameter f becomes 1.0. When the value 1.0 is chosen for power exponents (am and
an) [35,70], the power law stated as

Gequiv/Gequivc = (GI/GIc) + (GII/GIIc) (4)

Once the Gequiv reaches the Gequivc calculated by using the user specified mode-max criterion,
the nodes of the crack tip will debond [63]. The fracture toughness of the TC layer reported in previous
articles [72–74] is in the range of 5 to 15 J/m2. In current research, we presumed GIC = GIIC = 15 J/m2 [35,73]
for TC layer. It is noted that the value of critical SERR is surmised to be equivalent for mode (I and II)
due to the deficiency of relevant mode-dependent experimental data.
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Figure 2. Schematic diagram of the virtual crack closure technique (VCCT) used for the simulation of
crack growth in the TC layer.

3. Results and Discussion

3.1. Stress Distribution in TC with and without Vertical Pores

To investigate the effect of coating thickness on SERR of pre-crack, a very large critical energy
release rate (Gequivc) was used for cases with and without vertical pores, the stress distribution in TC
layer are primarily investigated to achieve some important data at the tip of pre-crack. Generally,
the residual stresses developed in ceramic coating due to the difference of thermal expansion coefficient
of elements, which cause the degradation of coatings. The formation of the cracks is usually attributed
to the quenching stress and thermal mismatch stress. The detailed of residual stresses can be seen
our published paper [4]. The black horizontal line in Figure 3 is the crack path and the point where
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stress is maximum on the line is the pre-crack tip. Figure 3a,b demonstrate the residual stresses field
including σ22 and σ12 at different thickness (3, 2, 1, 0,8, 0.5, and 0.3 mm) of TC. The residual stresses
(σ22 = 224 MPa and σ12 = 136 MPa) are very high when the thickness of TC is 3 mm and their values
gradually decrease (σ22 = 224 to 56 MPa and σ12 = 136 to 53.6 MPa) when decreasing the thickness
of TC up to 0.3 mm. The continuous increase in stresses is necessary to initiate or propagate the
crack [66,75]. It means that the crack is easier to extend with a larger thickness of TC.
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Figure 3. Variation of stress field: (a) σ22 and (b) σ12 at crack tip with different TC thickness.

Figure 4a,b shows that the residual stress distribution (σ22 and σ12) at the crack tip with a very
large critical energy release rate (Gequivc), when one vertical pore is inserted into top-coat of thickness
3 mm. The values of residual stresses (σ22 = 332.4 MPa and σ12 = 110.3 MPa) are high when the depth
of vertical pore is 0.5 mm and their values decreased with increasing the depth of vertical pore and its
value (σ22 = 119.6 MPa and σ12 = 85.5 MPa) when the depth of vertical pore is maximum which is
2.5 mm. When two vertical pores are inserted into TC, the investigation of residual stresses (σ22 and
σ12) at the crack tip with very high “Gequivc” as shown in Figure 5a,b. From Figure 5a,b, the values of
σ22 = 321 MPa and σ12 = 109 MPa are very high when the depth of vertical pores is minimum (0.5 mm).
The values of σ22 = 85.5 MPa and σ12 = 78 MPa decreased with increasing the depth of vertical pores
up to 2.5 mm. These results indicate that the ceramic coating with vertical pores has a lower value of
residual stresses compared to ceramic coating without vertical pores, as reported in the literature [4,76].

Figure 6a,b, Figure 7a,b, and Figure 8a,b show the stress distribution (σ22 and σ12) at the pre-crack
tip with very high critical strain energy release rate for different thickness (3, 2 and 1 mm) of TC
without, with one vertical pore and with two vertical pores. The values of σ22 (224, 185, and 129.3 MPa)
and σ12 (136, 99.8, and 83 MPa) at the crack tip are very high in TC of a thickness (3, 2, and 1 mm)
without vertical pores, respectively. Their values (σ22 = 119.6, 132.6, and 121 MPa) and σ12 = 85.5,
84, and 82.9 MPa) decreased when one vertical pore was inserted into TC and their value (σ22 and
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σ12) decreased further from (119.6 to 85.5 MPa, 132.6 to 89.4 MPa depends, and 121 to 104 MPa) and
from (85.5 to 78 MPa, 84 to76 MPa, and 82.9 to 75.6 MPa) when two vertical pores insert into TC of a
thickness (3, 2, and 1 mm), respectively. The value of σ22 and σ12 further decreased by decreasing the
thickness of TC.
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Figure 8. Variation of stress field: (a) σ22 and (b) σ12 at crack tip for 1 mm thickness of TC without,
with one vertical pore, and with two vertical pores. The depth of vertical pores was 0.9 mm.

Figure 9 exhibits the evolution of stresses in the TC with 3, 2, 1, 0.8, 0.5, and 0.3 mm thickness along
the perspective cracking path in top-coat. It is found that the stress σ22 at the crack tip is maximum
(224 MPa) when the thickness of TC is 3 mm and the stress magnitude continuously decrease up
to 56 MPa at the crack tip with decreasing the thickness of TC up to 0.3 mm as shown in Figure 9a.
From Figure 9b a similar trend can be observed for stress σ12. The continuous increase in stress is
necessary to initiate or spread the crack [66]. The variation of stress σ22 and σ12 at the crack tip in
Figure 9 is the function of TC thickness.
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Figure 10 shows the stress distribution in topcoat when one vertical pore and two vertical pores
were inserted into 3, 2, and 1 mm TC thickness with different depth, along the crack path in TC.
The stress (σ22, σ12) at the pre-crack tip is maximum when the depth of the vertical pore is minimum
and the value of stress continuously decreases with increasing the depth of the vertical pore at same
thickness (3, 2, and 1 mm) of TC and same number of vertical pores (1 and 2). The value of stress is
higher in case of one vertical pore as compared to the cases of two vertical pores in all 3, 2, and 1 mm
TC thickness, and at various depth of vertical pores. Here we also noted that the stress at the crack
tip along the crack path is maximum when one vertical pore and two vertical pores at same depth,
inserted into 3 mm thickness of topcoat. Its value has reduced at same number of vertical pores and
same depth when the thickness of TC is 2 mm. The stress is minimum at the crack tip in case of one
vertical pore and two vertical pores inserted into 1 mm thickness of TC. As a result, crack propagation
or crack growth depends upon the thickness of TC and also depends upon the number of vertical pores
in the top-coat and their depth in TC [76,77].
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3.2. Effect of General Feature on Cracking Driving Force

For the aim of simulating the cracking and coating delamination, the SERR values at the crack tip
must be evaluated and compared with the fracture toughness of the ceramic TC layer [35]. Before the
occurrence of propagation of crack, the typical results of changes in SERR with thickness of TC and
the number of vertical pores into TC with different depths are plotted in Figure 11. Gt represents
the total SERR, which is the sum of SERR components GI and GII [66]. The SERRs continuously
increase with increasing the thickness of TC as shown in Figure 11a. On the whole, the SERR GI, GII,
and Gt increase with increasing the thickness of TC. Here it needs to be noted that the crack driving
force has the largest value (0.2432 N/mm) occur when the thickness of TC is 3 mm and the lowest
value (0.0261 N/mm) occurs when the thickness of TC is 0.3 mm. When one vertical pore and two
vertical pores with different depth inserted into TC of different thicknesses as shown as in Figure 10b–g.
The variation of SERR GI, GII, and Gt as a function of a depth of vertical pores, shows a decreasing
trend with increasing the depth of vertical pores. It is also noted that the SERR GI, GII, and Gt depend
on the number of vertical pores and also depend upon the thickness of TC in which vertical pores are
inserted. The lowest values of SERR GI = 0.036 N/mm, GII = 0.0234 N/mm, and Gt = 0.0594 N/mm
have noted for two vertical pores as compare to one vertical pore when the thickness of TC is 3 mm.
It is also noted that the value of SERR GI, GII, and Gt is lowest when two vertical pores are inserted
into 1 mm thickness of TC as compare to 3 mm thickness, which means that the degradation of coating
strongly depends upon the number of vertical pores and thickness of TC. This phenomenon can be
explained easily. Due to vertical pores, the strain tolerance energy will enhance. Although the high
strain tolerance energy is beneficial to the improvement of the thermal shock resistance, which controls
the crack propagation [65,69]. Also, the stress σ22 and σ12 are largest when the thickness of TC is 3 mm
and lowest when TC thickness is 0.3 mm and in case of vertical pores their value is lowest when two
vertical pores were inserted in 1 mm TC thickness. Therefore, the crack deriving force is maximum
when TC is 3 mm and decreases continuously with decreasing the thickness. Its value is also lowest
in case of two vertical pores in 0.3 mm TC thickness. This indicates that the propagation or growth
of crack depends upon the thickness of TC and also depends upon the number of vertical pores and
depth of vertical pores.
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Figure 11. SERR11, SERR12, and SERRtotal at crack tip affected by, thickness of TC (a) and depth of
vertical pores at different thicknesses of TC (b–g).

3.3. Investigation of Crack Propagation

A pre-crack is inserted into the model. The growth of crack depends upon the thickness of
the ceramic TC. The crack length continuously increases with increasing the thickness of ceramic
TC. The variation of crack length with thickness of ceramic TC has been demonstrated in Figure 12.
Here the normalized crack length a = a/L is used to survey the overall damage, which is defined by the
ratio of total crack length “a” and length of model “L” [66]. The crack in TC is rapidly propagated
toward the left into the model due to more and more stress exerted on the tip of crack with variation of
TC thickness from 0.3 to 3 mm as shown in Figure 12. The one crack meets with a neighboring crack.
The crack coalescence leads to the coating spallation, which is responsible for the ultimate failure of
TBCs [35]. The growth of crack in TC can also be reduced by inserting vertical pores into the TC.
Figure 13 exhibits that overall crack growth trend with the depth of vertical pores. Here we noted that
the crack length (5.06005 mm) in case of without vertical pores is maximum. When one vertical pore of
depth 0.1 mm is inserted into TC, the crack length, (5 mm) is reduced as compared to the case without
vertical pore. The crack length is further reduced with increasing the depth of vertical pore and lowest
value of crack length (3.25115 mm) when the depth of one vertical pore was 0.9 mm. When two vertical
pores were inserted into TC, the crack length also exhibit decreasing trend with increasing the depth of
vertical pores. The crack growth has minimum value (2.18438 mm) when two vertical pores of 0.9 mm
depth were inserted into TC. From Figure 13, we noted that the growth of crack is reduced in case of
two vertical pores as compare to one vertical pore. From these results, it is clear that the growth of
crack depends upon TC thickness and also depend upon number of vertical pores and their depth.
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3.4. Strain Tolerant Design for Thick Coatings

Residual stresses σ22 and σ12, and SERR GI, GII, and Gt with respect to depth of vertical pores at
different crack density are plotted as shown in Figure 14. Crack density means the distance “e” between
two vertical pores divided by TC thickness “b”, crack density = e/b. The vertical pores in ceramic
coatings can instead release strain energy and enhance the strain tolerance which should be one of
the reasons to reduce crack growth and enhance the lifetime of coatings [4]. In Figure 14a,c,e residual
stresses σ22 and σ12 show a decreasing trend with increasing the depth of vertical pores when the
crack densities are 0.1, 0.15, and 0.3 respectively. Here we noted that the maximum values of residual
stresses σ22 and σ12 are 190 and 106.3 MPa, and minimum values 92.7 and 78.22 MPa respectively
when the crack density is 0.1. Their values reduce with increasing the crack density and show the
lowest values when the crack density is 0.3. Here SERR GI, GII, and Gt also exhibit the decreasing
trend with increasing the depth of vertical pores, when 0.1, 0.15, and 0.3 crack density as shown in
Figure 14b,d,f. The overall values of SERR GI, GII, and Gt are largest when the crack density is 0.1 and
their values reduce with increasing the crack density and show the lowest values when crack density
is 0.3. It is found from Figure 14 that the growth of crack also depends upon crack density. The growth
of crack extended with reducing the crack density.

For TBCs, a thicker coating means larger thermal insulation, and a thicker coating is necessary for
radar absorbing. Therefore, thick coatings have wide applications in engineering [69,78]. However,
based on our investigation, a larger thickness often refers to a larger SERR at crack tip. This means a
thicker coating is easier to be cracked or spalled. That is why these thicker coatings have a shorter
life span, which is undesired for coating application. Based on our investigation, inserting vertical
pores in thick coatings have a significant effect to reduce the SERR. The crack depth and density
also have a distinct effect on the reduced degree of SERR. Therefore, to enhance crack-resistance of
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thick coatings, inserting vertical pores with reasonable depth and density would be a feasible way.
Another problem, how to insert vertical pores in APS ceramic coating. The dense-vertical cracked
structure (DVC) method is used, the structure has to have a higher density than conventional TBC.
As a result, the thermal conductivity should be higher, and the thermal insulation is weakened [8,79].
In future work, it is necessary to develop new ways to insert vertical pores in porous APS coatings.
In this way, the function and life span can be simultaneously enhanced.
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4. Conclusions

In this study, the strain-induced cracking behavior of plasma sprayed ceramic coatings were
thoroughly investigated using a finite element model. The propagation of crack behavior in top-coat
was studied with different thicknesses of TC. Additionally, the strain tolerant design was proposed
by inserting vertical pores in coatings. The effect of the number of vertical pores and their depth on
stresses and SERRs were also investigated to broadly understand cracking-resistant behavior. The main
conclusions include:
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1. In top-coat (TC), the maximum stress are mainly concentrated at the tip of crack, which may lead
to incipient crack nucleate and can cause the crack propagation in TC. Besides, these stresses
(σ22 and σ12) and SERR increase continuously with the thickening of TC.

2. Vertical pores can enhance the strain tolerance of the TCs. The values of stresses (σ22 and σ12)
decrease when one vertical pore is inserted in TC as compare to without vertical pore and further
decreased for two vertical pores. Their values also decreased with an increase in the depth of
vertical pores.

3. The values of SERRs for TBCs with vertical pores decrease compared to the TC without vertical
pores. Their values also exhibit a decreasing trend with increasing the depth of vertical pores.
These results indicate that the TCs with vertical pores exhibits excellent cracking resistance. This
would contribute to extending the life span of thick coatings.
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