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Abstract: In the present study, the structural, morphological, compositional, nanomechanical, and
surface wetting properties of Bi2Se3 thin films prepared using a stoichiometric Bi2Se3 target and a
Se-rich Bi2Se5 target are investigated. The Bi2Se3 films were grown on InP(111) substrates by using
pulsed laser deposition. X-ray diffraction results revealed that all the as-grown thin films exhibited
were highly c-axis-oriented Bi2Se3 phase with slight shift in diffraction angles, presumably due to slight
stoichiometry changes. The energy dispersive X-ray spectroscopy analyses indicated that the Se-rich
target gives rise to a nearly stoichiometric Bi2Se3 films, while the stoichiometric target only resulted in
Se-deficient and Bi-rich films. Atomic force microscopy images showed that the films’ surfaces mainly
consist of triangular pyramids with step-and-terrace structures with average roughness, Ra, being
~2.41 nm and ~1.65 nm for films grown with Bi2Se3 and Bi2Se5 targets, respectively. The hardness
(Young’s modulus) of the Bi2Se3 thin films grown from the Bi2Se3 and Bi2Se5 targets were 5.4 GPa
(110.2 GPa) and 10.3 GPa (186.5 GPa), respectively. The contact angle measurements of water droplets
gave the results that the contact angle (surface energy) of the Bi2Se3 films obtained from the Bi2Se3

and Bi2Se5 targets were 80◦ (21.4 mJ/m2) and 110◦ (11.9 mJ/m2), respectively.
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1. Introduction

Bismuth selenide (Bi2Se3) is of great interest owing to its intriguing physical properties
as a three-dimensional topological insulator [1–5], and potential applications in spintronics [6],
optoelectronics [7] and quantum computation [8]. In addition, Bi2Se3 possesses excellent thermoelectric
properties at room-temperature [9,10] and low temperature regimes [11]. For fundamental
studies and application purposes, it is essential to grow Bi2Se3 thin films with high-quality and
to have comprehensive characterizations of their physical properties, including the mechanical
properties [12–14].

Nanoindentation is a versatile technique ubiquitously used to obtain the basic mechanical
parameters, such as the hardness and elastic modulus, as well as to delineate the deformation
mechanisms, creep and fracture behaviors of various nanostructured materials [15–18] and thin
films [19–23] with very high sensitivity and excellent resolution. On the other hand, wettability is
an important property of a solid surface, which is intimately related to the chemical compositions
and morphology of the surface [24]. The peculiar wetting behaviors exhibited on the surface of
two-dimensional and van der Waals layered materials have been receiving dramatically increased
interest in recent years [25–27]. It implies that specific water–substrate interaction features are relevant
to the atomic and electronic structures of the layered materials. In particular, the hydrophobic surface
(water contact angle, θCA > 90◦) can be used in many applications of self-cleaning surfaces and
antifogging [28,29]. Consequently, how to control the behavior of hydrophobicity or hydrophilicity of
films’ surfaces is also of great importance in realizing the designed functionality for device applications.

Because of the high volatility of selenium (Se), Bi2Se3 tends to form Se vacancies or antisites that
serve as donors to result in a sufficiently high carrier concentration and low carrier mobility [30,31].
When severe loss of Se-atoms occurs during the thin-film growth at elevated substrate temperatures,
pure phase Bi2Se3 film is usually not achieved, and the obtained films may present impurity phases
or even turn into another phase [32]. Thus, to overcome this problem and obtain high-quality
stoichiometric Bi2Se3 thin-films, a Se-rich environment is necessary during films’ growth. Indeed, this
strategy has been employed to grow high-quality Bi2Se3 thin films by creating a Se-rich environment
with a Se:Bi flux ratio ranging from 10:1 to 20:1 using molecular beam epitaxy (MBE) [33,34]. Pulsed laser
deposition (PLD) offers a high instantaneous deposition rate, relatively high reproducibility, and low
costs. The PLD has been used for growing epitaxial and polycrystalline Bi2Se3 thin films [9,30,35–37].
In 2011, Onose et al. [35] successfully grew epitaxial Bi2Se3 thin-films on InP(111) substrates using
a designed target with an atomic ratio of Bi:Se of 2:8. Yet, systematic investigations on the effects of
target composition, and hence the resultant films’ stoichiometry, on the properties of Bi2Se3 thin films
have been relatively scarce.

Herein, we conducted comprehensive characterizations of the structural, compositional,
morphological, nanomechanical, and wetting properties of Bi2Se3 thin films grown on InP(111)
substrates by PLD. In particular, two different targets (i.e., a stoichiometric target of Bi2Se3 and a Se-rich
target of Bi2Se5) were deliberately used to tune the stoichiometry of the resultant Bi2Se3 films and to
unveil its effects on the surface wettability and nanomechanical properties, since both characteristics
are of pivotal importance for their practical applications in Bi2Se3 thin film-based microelectronic and
spintronic devices.

2. Materials and Methods

In order to study the effects of film stoichiometry, two targets with different composition effects
were used. One is stoichiometric Bi2Se3 and another is a Se-rich target with a nominal composition of
Bi2Se5. The targets were purchased from Ultimate Materials Technology Co., Ltd. (Ping-Tung City,
Taiwan). Noticeably, though having differences in Se/Bi atomic ratios of 3/2 and 5/2, both Bi2Se3 and
Bi2Se5 targets were polycrystalline with the right Bi2Se3 phase. Bi2Se3 thin films were deposited on
InP(111) substrates using PLD at a substrate temperature of 350 ◦C in vacuum at a base pressure of
4 × 10−6 Torr (~0.53 mPa). For the PLD process, ultraviolet (UV) pulses (20-ns duration) from a KrF
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excimer laser (λ = 248 nm, repetition: 1 Hz) were focused on the polycrystalline Bi2Se3 or Bi2Se5 target
at a fluence of 5.5 J/cm2. The target-to-substrate distance was 40 mm. The target was ablated for
approximately 5 min in order to clean its surface before every deposition. The deposition time was
25 min, which resulted in an average Bi2Se3 film thickness of approximately 191 nm (the growth rate
of approximately 1.27 Å/pulse).

The crystal structure and surface morphology of the Bi2Se3 thin films were characterized by X-ray
diffraction (XRD; Bruker D8, CuKα radiation, λ = 1.5406 Å, Bruker, Billerica, MA, USA) and field
emission scanning electron microscopy (SEM, JEOL JSM-6500, JEOL, Pleasanton, CA, USA) operated
at an accelerating voltage of 15 kV, respectively. Film compositions were analyzed through Oxford
energy-dispersive X-ray spectroscopy (EDS, Inca X-sight 7558, Oxford Instruments plc., Oxfordshire,
UK) equipped with the SEM instrument at an accelerating voltage of 15 kV, dead time of 22–30%,
and collection time of 60 s. The atomic percentage of each film was determined by averaging the
values measured in 5 or more distinct 14 × 20 µm2 areas on the surface of films. Moreover, the surface
morphology and roughness of the thin films were examined using atomic force microscopy (AFM;
Veeco Escope, Veeco, New York, USA).

The nanoindentation was performed on a Nanoindenter MTS NanoXP® system (MTS Cooperation,
Nano Instruments Innovation Center, Oak Ridge, TN, USA) with a pyramid-shaped Berkovich diamond
tip. The nanomechanical properties of the Bi2Se3 thin films were measured by nanoindentation with
a continuous contact stiffness mode (CSM) [38]. At least 20 indentations were performed on each
sample and the distance between the adjacent indents was kept at least 10 µm apart to avoid mutual
interferences. We also followed the analytic method proposed by Oliver and Pharr [39] to determine
the hardness and Young’s modulus of measured materials from the load–displacement results. Thus,
the hardness (H) and Young’s modulus (E) of the Bi2Se3 thin films are obtained and the results are
listed in Table 1. Moreover, the surface wettability of the Bi2Se3 thin films under ambient conditions
was monitored using a Ramehart Model 200 contact angle goniometer (Ramé-hart, Succasunna, NJ,
USA) with deionized water as the liquid.

Table 1. The microstructural parameters, nanomechanical properties, contact angle and surface energy
of Bi2Se3 thin films. The mechanical properties of InP(111) are also listed.

Sample D
(nm)

Ra
(nm)

H
(GPa)

E
(GPa)

τmax
(GPa) θCA

(γd)s
(mJ/m2)

Bi2Se3 thin film on InP(111) substrate (Bi2Se3 target) 29.7 2.41 5.4 110.2 1.8 80◦ 21.4

Bi2Se3 thin film on InP(111) substrate (Bi2Se5 target) 26.0 1.65 10.3 186.5 3.4 110◦ 11.9

Bi2Se3 thin film on sapphire substrate [14] 34.2 8.5 ~2.1 ~58.6 ~0.7 — —

Single-crystal Bi2Se3 [13] — — ~0.4–0.9 ~2–9 — — —

Single-crystal InP(111) [40] — — ~5 72.4–76.2 1.96 — —

3. Results and Discussion

3.1. Structural and Morphological Properties

Bi2Se3 has a rhombohedral structure with a space group D5
3d

(
R3m

)
that can be described by

a hexagonal primitive cell with three five-atomic-layer thick lamellae of –(Se(1)–Bi–Se(2)–Bi–Se(1))–,
in which the atomic layers are stacked in sequence along the c-axis [9]. The XRD patterns of the Bi2Se3

thin films obtained from the Bi2Se3 and Bi2Se5 targets are shown in Figure 1. As is evident from
Figure 1, besides the diffraction peaks of InP substrates at 26.3◦ and 54.1◦ (JCPDS PDF#00-032-0452),
the films exhibited highly c-axis-preferred orientation with (006), (0015), and (0021) diffraction peaks of
the Bi2Se3 phase (JCPDS PDF#33-0214). However, minor diffraction peaks belonging to the BiSe phase
(PDF#29-0246) can be identified. It is noticed that, although both of the as-grown films exhibit highly
c-axis preferred orientation of the Bi2Se3 phase, a slight relative shift in diffraction angles indicative
of modification of the c-axis parameter is observed. Indeed, by using the dominant Bi2Se3 (006) and
Bi2Se3 (0015) peaks and the hexagonal unit cell relationship [32], the average c-axis lattice constant of
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the Bi2Se3 thin films prepared using Bi2Se3 and Bi2Se5 targets were 28.39 Å and 28.25 Å, respectively,
whose values were slightly smaller the c-axis lattice constant of 28.63 Å from the database of Bi2Se3

powder (JCPDS PDF#33-0214). This could be due to the difference in the internal stress built up during
the deposition.
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Figure 1. XRD patterns of Bi2Se3 thin films grown on InP (111) substrates from two different targets of
Bi2Se3 (a) and Bi2Se5 (b) using pulsed laser deposition.

The grain sizes (D) of the Bi2Se3 films were estimated using the Scherrer equation D = 0.9λ/βcosθ,
where λ, β, and θ are the X-ray wavelength, full width at half maximum of the Bi2Se3 (006)-oriented
peak, and Bragg diffraction angle, respectively. The estimated D values of the Bi2Se3 thin films prepared
using Bi2Se3 target and Bi2Se5 target were 29.7 nm and 26.0 nm, respectively.

Figure 2 shows the AFM and SEM-EDS results of Bi2Se3 thin films prepared using the Bi2Se3 and
Bi2Se5 target, respectively. As shown in Figure 2a,b, the films mainly consist of triangular pyramids
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with features of step-and-terrace structures. This is a clear indication that the films are growing along
the [0001] direction, which is consistent with XRD results displayed in Figure 1. The films also exhibit
highly smooth surfaces with the centerline average roughness Ra being ~2.41 nm and ~1.65 nm for
films grown from the Bi2Se3 target and from the Bi2Se5 target, respectively. In addition, the films
grown from the Bi2Se5 target also show clearer step-and-terrace structures with fewer large particle-like
outgrowth defects on the surface as compared to the film grown from the Bi2Se3 target (see 3D images),
indicating that these films are closer to the stoichiometric composition and, thus, are less defective.
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Figure 2. 2D and 3D AFM images of the Bi2Se3 thin films deposited from (a) Bi2Se3 target and (b)
Bi2Se5 target.

The top-view SEM images displayed in Figure 3a,b further confirmed the aforementioned surface
morphology. The cross-sectional view images shown at the bottom of Figure 3a,b indicate that the
films are rather uniform with their thickness being in the range of 185~197 nm. Furthermore, as is
evident from the EDS results displayed in the insets of Figure 3a,b and the typical EDS spectra of the
corresponding thin films shown in Figure 3c, the composition of the film prepared from the Bi2Se3

target clearly showed a substantial Se-deficiency of about 4.4 at.%, while the film prepared from
the Bi2Se5 target is nearly stoichiometric, which is consistent with the conjectures discussed above.
Intuitively, it is rather straightforward to explain why the Bi2Se3 target would lead to Bi-rich (or
Se-deficient) film by recognizing that the re-evaporation of Se from the heated substrate (~350 ◦C) is
much faster than Bi owing the much higher vapor pressure of Se [9,41]. The present results also suggest
that to obtain stoichiometric Bi2Se3 films, a Se-excessive target is essential. We note that stoichiometric
Bi2Se3 and Bi2Te3 films have been shown to exhibit reduced carrier concentration and increased carrier
mobility, which led to the enhanced thermoelectric properties and provided suitable conditions for
investigating the topological surface states [9,30,42].
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Figure 3. Top-view and cross-sectional SEM images of the Bi2Se3 thin films deposited from (a) Bi2Se3

target and (b) Bi2Se5 target. (c) EDS spectra of the corresponding Bi2Se3 thin films.

3.2. Nanomechanical Properties

The typical nanoindentation load–displacement curves of Bi2Se3 thin film deposited on InP(111)
substrates are shown in Figure 4a. The hardness and Young’s modulus of Bi2Se3 thin films were
calculated from the load–displacement curves [39]; the Poisson’s ratio of Bi2Se3 films is set to 0.25 in
this study. Figure 4b,c present the penetration depth dependence of hardness and Young’s modulus
are obtained using the CSM method. In 2004, Li et al. [15] indicated that nanoindentation depth should
never exceed 30% of the film’s thickness. In this work, the CSM technique system is applied to record
stiffness data along with load and displacement data dynamically, making it possible to calculate the
hardness and Young’s modulus at every data point and get their average values during the indentation
experiment [15,39]. The mechanical properties obtained under nanoindentation exhibit a convergent
manner and are steady with a rational tolerance around penetrating depths of 40~60nm, reflecting
that the material properties obtained are intrinsic and the substrate effect on the present thin films for
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hardness and modulus tests is negligible. The obtained values of hardness (H) and Young’s modulus
(E) are listed in Table 1 together with those reported in the literature for Bi2Se3 single crystals and thin
films deposited on sapphire substrates.
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Figure 4. (a) The load–displacement curves of Bi2Se3 thin films deposited on InP(111) substrates using
two different target compositions. A clear single “pop-in” behavior is displayed in both curves during
loading. (b) A hardness—displacement curve and (c) a Young’s modulus–displacement curve for a
Bi2Se3 thin films deposited using Bi2Se3 and Bi2Se5 targets.

From Table 1, it is somewhat surprising to observe that the values of hardness and Young’s
modulus of the Bi2Se3 thin films are much larger than those of single crystals. The reason for this
peculiar observation, especially the very low values for single crystals, is not clear at present. However,
by comparing the results for films, the two prominent mechanical property parameters appear to have
intimate correlations with the grain size (D) and surface roughness (Ra). For films grown on InP(111)
substrate, as in the present case, the lattice mismatch between the Bi2Se3 thin films and substrate is
about 0.2% [35], which, in turn, consistently resulted in films with better crystallinity, as indicated by the
narrower full width at half maximum of the diffraction peaks, namely ~0.3◦ for films grown on InP(111)
as compared to that of ~0.5◦ for the films grown on sapphire substrate [14]. Moreover, when comparing
the results for the films grown with different targets, it further indicates that stoichiometry of the film
can play an even more prominent role in determining the mechanical properties. Namely, the hardness
and Young’s modulus of the stoichiometric Bi2Se3 thin films are both about two times larger than that
of Se-deficient films, which are again about two times larger than that grown on sapphire substrate.
The enhancement of H and E values can be explained by considering the film crystallinity and surface
roughness. It has been reported that the crystallinity of Bi2Se3 thin films deposited on InP(111) substrate
was better than those deposited on Al2O3 and Si substrates [35]. In general, better film crystallinity
often results in superior nanomechanical properties [43,44]. Therefore, compared with those reported
in [14], the larger values of hardness and Young’s modulus of the present Bi2Se3 thin films could be
attributed to their better crystallinity. Furthermore, the film surface roughness can also be an important
factor. Jian et al. [45] reported that the nanomechanical properties of ZnO thin films were significantly
enhanced as the film surfaces became smoother. Even for AISI 316L stainless steel, the mechanical
properties were found to decrease with increasing surface roughness [46]. Since the surface roughness
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of the present films are all below 2.41 nm, it is reasonable to account, at least partially, for the enhanced
H and E values.

Turning to the deformation behaviors during nanoindentation, it is evident that there are several
pop-ins occurring along the loading segment for both load–displacement curves shown in Figure 4a.
It is noted that similar phenomena were found in the previous studies [13,14], where the pop-ins were
also observed in nanoindented Bi2Se3 single-crystal and thin films, despite the fact that the loads
at which the pop-ins took place varied in each individual measurement. Moreover, it is noted that
there is no sign of reverse discontinuity in the unloading portion of the load–displacement curves
(the so-called “pop-out” event) being observed. The reverse discontinuity is commonly ascribed to
the pressure-induced phase transformation that has been observed in Si or Ge single crystals [47,48].
The absence of these incidences indicates that pressure-induced phase transition did not occur for the
Bi2Se3 films in the pressure range applied in this study. In fact, Yu et al. [49] have reported that the
pressure-induced phase transition in Bi2Se3 occurred at pressures of 35.6 and 81.2 GPa as revealed,
respectively, by Raman spectroscopy and synchrotron XRD experiments conducted in a diamond anvil
cell. These values are much higher than the room-temperature hardness of the present hexagonal
Bi2Se3 thin films. On the other hand, the pop-in behaviors during nanoindentation have been reported
previously in other hexagonal structured materials, such as sapphire [50] and ZnO single crystals [51],
as well as GaN thin films [52–54] by using the Berkovich indenter tip. It is generally conceived that
the nanoindentation-induced deformation mechanism in these hexagonal-structured materials were
primarily dominated by the nucleation and/or propagation of dislocations. Thus, it is plausible to
believe that similar mechanisms must have been prevailing in the present Bi2Se3 thin films. Reasonably,
it can be seen from Table 1 that the hardness of Bi2Se3 thin films increases when D value decreases,
partially due to grain boundary hardening.

Within the context of the dislocation-mediated deformation scenarios, the first pop-in event may
reflect the transition from perfectly elastic to plastic deformation. Namely, it is the onset of plasticity
in Bi2Se3 thin films. Under this circumstance, the corresponding critical shear stress (τmax) under
the Berkovich indenter at an indentation load, Pc, where the load–displacement discontinuity occurs,
can be determined by using the following relation [55]:

τmax = 0.31
(

6PcE2

π3R2

)1/3

(1)

where R is the radius of the tip of nanoindenter. The obtained τmax values are 1.8 and 3.4 GPa for
Bi2Se3 thin films grown using Bi2Se3 and Bi2Se5 targets, respectively. The τmax is responsible for the
homogeneous dislocation nucleation within the deformation region underneath the indenter tip.

3.3. Wettability Behavior

The surface wettability of the Bi2Se3 thin films was examined by water contact angle measurements.
If the contact angle (θCA) is greater than 90◦, it is said to be hydrophobic, otherwise it is hydrophilic.
In Figure 5, the values of θCA for films are 80◦ and 110◦ for films grown using the Bi2Se3 target and the
Bi2Se5 target, respectively.

As described above, the surface roughness measured by the AFM indicated that the Bi2Se3 thin film
grown using the Bi2Se5 target have smaller surface roughness, suggesting that the wettability behavior
of the surface was significantly affected by the surface morphology of the films [56]. Alternatively,
the atomic arrangements and existence of surface defects might also play a role in the eventual
surface energy. In general, the surface wettability is a measurement of surface energy and is most
commonly quantified by θCA [57]. The surface energy for Bi2Se3 thin films was calculated by means
of the Fowkes–Girifalco–Good (FGG) theory [58]. According to the analysis of the FGG method,
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the considered critical interaction is the dispersive force or the van der Waals force across the interface
existing between the water droplet and the solid surface. The FGG equation is given as:

γls = γs + γl − 2
√
(γd)s + (γd)l (2)

where
(
γd

)
s

and
(
γd

)
l

are the dispersive portions of surface tension for the solid and liquid surfaces,
respectively. By combining Young’s equation [56] with Equation (2) and taking the nonpolar liquid
deionized water as the testing liquid and set

(
γd

)
l
= γl, the Girifalco–Good–Fowkes–Young equation

becomes as:
(
γd

)
s
= γl(cosθCA + 1)/4, where

(
γd

)
s

is the surface energy of measured materials. Using

γl = 72.8 mJ/m2, the values of surface energy obtained were 21.4 mJ/m2 and 11.9 mJ/m2 for films
grown with the Bi2Se3 target and Bi2Se5 target, respectively. The lower surface energy gives rise to
higher hydrophobicity. It is noted that the θCA of 110◦ for the present stoichiometric Bi2Se3 thin films
deposited on InP(111) substrates using PLD is even larger than that (θCA~98.4◦) of Bi2Se3 thin films
deposited on SrTiO3(111) substrate by MBE [59]. In any case, the present study suggests that both the
hydrophobic/hydrophilic transition behavior and nanomechanical properties of the Bi2Se3 thin films
can be manipulated by controlling the target compositions.Coatings 2020, 10, x FOR PEER REVIEW 9 of 12 
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4. Conclusions

The present study evidently illustrated that stoichiometry, which can be manipulated by tuning
the target composition, can give rise to significant effects on the microstructural, morphological,
compositional, nanomechanical and surface wetting properties of the Bi2Se3/InP (111) thin films.
The Bi2Se3 thin films were grown using PLD from a stoichiometric Bi2Se3 target and a Se-rich Bi2Se5

target at a substrate temperature of 350 ◦C in a vacuum with a base pressure of ~4 × 10−6 Torr. The
films were highly (00l)-oriented with smooth surfaces consisting mainly of triangular step-and-terrace
structures, which is the common feature of epitaxial Bi2Se3 thin films. Compared to the films grown
from the Bi2Se3 target, using the Bi2Se5 target is more favorable for obtaining stoichiometric films
with larger hardness and Young’s modulus. In addition, the contact angle (surface energy) of the
Bi2Se3 films deposited from the Bi2Se3 and Bi2Se5 targets were 80◦ (21.4 mJ/m2) and 110◦ (11.9 mJ/m2),
respectively. These results suggest that, in addition to the usual factors such as surface roughness and
grain morphology, stoichiometry as well as defect chemistry originated from Se-deficiency may also
play important roles in determining the eventual nanomechanical and wettability properties of Bi2Se3

thin films.
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