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Abstract: Herein, the wool fabric was mordanted with alum, treated with microbial transglutaminase
(m-TGase), and then dyed with madder. Different concentrations of alum and m-TGase were used to
find out the optimum condition to achieve the best color after dyeing the wool fabrics with aqueous
extract of madder. FT-IR spectroscopy and scanning electron microscopy (SEM) methods were applied
to characterize the as-prepared samples. Contact angle measurements showed that the water uptake
capability was increased in the case of the wool sample treated with alum and enzyme. Moreover,
the samples were assessed for color strength (K/S) and color fastness. Our results showed that the
optimal condition to get the highest color value was for the sample with 10% owf (of weight of fabric)
alum and 5% owf m-TGase. Furthermore, it was found that there was a critical concentration for
enzyme so that an increase in m-TGase amount would cause damage to the scales of fibers. The best
condition of the dyeing process was discussed in this study, and also the proposed mechanism was
presented. Indeed, treatment of wool with m-TGase led to a reduction in the amount of consumed
alum, while investigations in color performances demonstrated the enhancement in color fastness,
as well as color strength.
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1. Introduction

Recent developments in dyeing and the requirements of the market encourage using natural dyes
in the textile industry. Natural dyes have been attracting considerable attention to themselves due
to their uncommon soft, lustrous, and soothing shades, which are pleasing to the human eye, being
eco-friendly, producing a unique and harmonizing color, being renewable, and biodegradable [1–9].
Despite the mentioned advantages, there are some problems, such as limited access to natural dyes,
low color efficiency, long dyeing time, low fastness, and costly mordanting process. Therefore, it is
required to find a way to solve the difficulties of the dyeing industry.

To overcome these drawbacks, diverse techniques, such as cationization, plasma, enzyme,
gamma, and microwave treatments, were employed for pretreatment of various textile fibers [4,10–20].
Fundamentally, the adhesion of natural dyes to natural fibers without any treatment, mordanting,
or fixation is inferior [21–24]. Typically, mordants are metallic salts that can react with both dye and
fiber. Indeed, mordants can act as a bridge, and by accepting an electron, they lead to the formation
of coordination bonds with dye molecules. It is well known that by using mordant, the fastness of
natural dyes, along with dye uptake, will be increased. Moreover, it is possible to obtain various

Coatings 2020, 10, 78; doi:10.3390/coatings10010078 www.mdpi.com/journal/coatings

http://www.mdpi.com/journal/coatings
http://www.mdpi.com
https://orcid.org/0000-0003-4728-8737
http://www.mdpi.com/2079-6412/10/1/78?type=check_update&version=1
http://dx.doi.org/10.3390/coatings10010078
http://www.mdpi.com/journal/coatings


Coatings 2020, 10, 78 2 of 12

shades using only a single dye. There are some popular mordants, such as alum, copper, iron, chrome,
and tin, which are widely used in the textile dyeing industry [22,25]. Alum is the most abundant
metal salt in the earth, which is commonly used and considered as a safe mordant [26]. On the other
hand, a cost-effective substitution way to produce natural colorants is ecological enzymatic natural
dyeing [13,27–32]. Several studies have been reported on the enzymatic treatment of textile fibers to
take advantage of their lower energy consumption and environmentally friendly processes in order
to enhance dyeability, physical, and mechanical properties [23,33–40]. Microbial transglutaminase
(m-TGase) is one of the TGase enzymes that has been considered for application in textile, wool,
and leather processing due to the following special properties [41].

1. m-TGases can catalyze acyl transfer by forming covalent crosslinks between glutamine and
lysine [15,42].

2. As m-TGase widely exists in hosts of different organisms and microorganisms, it can be produced
at relatively low cost and the industrial level easily [41].

3. Since wool fibers are protein-rich fibers, m-TGase could be used to alter the characteristics of
wool keratin [29,30,43–45].

4. It has been reported that m-TGase not only increases the strength of wool [40] but also improves
the physical and mechanical properties [31,46–51], as well as washing fastness, and it also
facilitates surface modification [30].

Although several studies have been done on using m-TGase in wool textile, the majority of
them have been performed for the enhancement of mechanical properties. Therefore, employing
m-TGase as eco-friendly processing in the dyeing process remains a key challenge in the pursuit of
researches. The effect of m-TGase on dyeing properties of three natural dyes of curcumin, gardenia
yellow, and lac [46], as well as sappan dye [29], have been investigated before.

From the discussions outlined above, it can be found that it is necessary to seek alternative
methods to minimize the usage of dyes, mordants, and additives while retaining a desirable dyeing
efficiency. Herein, we tried to reduce the amount of applied alum, as one of the most common mordants,
with the help of enzymatic treatment. To do this, at first, the wool fabric was mordanted with different
concentrations of alum, and then treated with m-TGase, and finally dyed with madder to improve the
dyeability of wool through eco-friendly technique, as well as using less alum. Our findings brought a
deeper understanding of the effect of wool treatment by alum to improve its dyeability with madder
as a natural dye in the presence of m-TGase. Notably, to the best of our knowledge, there is no record
in the literature for using alum and m-TGase to enhance the dyeability of wool with madder.

2. Experimental Work

2.1. Materials and Apparatuses

A woolen fabric (10 cm × 10 cm) with plain weave structure (195 g/m2) made by Youngor Woolen
Textile Co., Ltd., Ningbo, China. Alum or Aluminum sulfate (K2SO4Al2 (SO4)3·24H2O) was procured
from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Microbial transglutaminase (m-TGase)
was provided by Yiming Biological Products Co., Ltd., Jiangsu, China. Madder, which is known with
the names of alizarine or the root of Rubia tinctorum L., is one of the ancient natural dyes and produces
the colors ranging from orange to violet. This color was prepared from the aqueous extract obtained
from the powdered roots of Iranian madder grown in Yazd. It is an old and famous plant widely
used in the Iranian carpet industry. Standard washing soap and standard synthetic detergent were
purchased from Shanghai White Cat Chemicals Co., Ltd., Shanghai, China. Acetic acid was supplied
by Merck, Darmstadt, Germany.

The surface morphology of the samples was observed by using SEM, Hitachi TM−1000, Tokyo,
Japan. FTIR (PerkinElmer Spectrum Two, Waltham, MA, USA, in the range of 4000–400 cm−1 at a
resolution of 4 cm−1) spectrometer was used to examine the chemical composition of the woolen fabric.
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Also, DSA30 (Kruss, Germany) water contact angle-meter was employed to measure the contact angle
of the samples. The deionized water was used with a volume of 5 µL in one drop.

2.2. Dye Extraction

The madder powder was obtained from madder root. Then, the required amount of natural dye
powder was dissolved in water along with continuous stirring at 100 ◦C for 1 h. The solution was
maintained at room temperature for 24 h. Finally, the dye solution was filtered and then diluted with
the addition of distilled water to the standard dye solution.

2.3. Mordanting, Pretreatment of Wool with Enzymes, and Dyeing Procedures

The conventional method of mordanting was performed on the wool fabric by using alum.
The woolen fabric was immersed in 5%, 10%, and 20% owf of the alum solution at a liquor ratio of 40:1.
The pH of the bath was adjusted at 4 using acetic acid. The bath temperature was increased from 40 ◦C
to boiling point over 20 min and was maintained at this temperature for 1 h. Afterward, the woolen
fabric was washed with water and finally dried. In the next step, the wool fabric was treated with
three different concentrations of m-TGase, 5%, 10%, and 20% w/w, at a liquor to fabric ratio of 40:1 in
the pH of 9–10 and at 37 ◦C for one hour. The enzymes were inactivated in a solution with pH 5, while
it was adjusted using acetic acid for 5 min at 80 ◦C, and then it was washed with water to prevent
the hydrolyzation of wool. Finally, the mordanted fabrics with alum and enzyme were dyed with the
madder (50% owf) and acetic acid (5% v/v) at a liquor ratio of 50:1 in the water bath shaker machine
(DL-2003 (16), Suzhou Sidale Printing and Dyeing Machinery Co., Ltd., Suzhou, China). The dyeing
bath temperature was set from the starting point of 40 ◦C to 80 ◦C in an over 20 min period and was
further continued for 60 min.

3. Results

3.1. FT-IR Analysis

FT-IR spectra of untreated wool and treated wool with alum, m-TGase, and alum-m-TGase
are presented in Figure 1. A closer look at the spectrum of untreated wool fibers showed divers
distinguished absorption peaks, including a broad peak in 3500–3100 cm−1 and several peaks at about
1612, 1506, and 1216 cm−1. The first broad one could be assigned to the –NH-stretching vibration,
while the other three peaks were related to amide-I, amide-II, and –C–N stretching of amide-III,
respectively [52,53]. All characteristics peaks of wool fiber, alum, and m-TGase were found in the
treated wool with alum and m-TGase samples with a little bit lower intensity as compared to the
wool-enzyme sample (gray circles). The lower intensity of peaks indicates the entanglement of amine
groups in the interaction between wool-enzyme, alum, and dye molecules [54].

In treated wool with alum spectrum, the band centered at about 1040 cm−1 belonged to sulfate
absorptions. The sulfate peak appeared after modification of wool with alum, as well as alum and
m-TGase. Further, the broad absorption band located at about 500–600 cm−1 probably was because of
the combined absorptions of sulfate, and the Al–O stretching vibrations. It should be noticed that in the
spectrum of treated wool with m-TGase, there was a peak at about 1020–1250 cm−1, which was related
to C–N stretch (aliphatic amines). The intensity of this peak was increased in the FT-IR spectrum
of the wool sample treated with alum and m-TGase, indicating the effect of both alum and enzyme.
The bands between 2750 cm−1 and 3000 cm−1 are related to stretching vibrations of C–H bonds in
–CH2 [55].

Moreover, it could be found that the intensity of observed peak at about 500–600 cm−1, which was
due to metal-O bond bending, was decreased in the wool-alum-enzyme sample as compared to
wool-enzyme. This behavior could be assigned to the interaction between Al from alum and specific
functional groups present in the madder [56]. In order to further investigate the above-discussed
results, the FT-IR spectra of the samples treated with different concentrations of m-TGase and alum
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were recorded, and the results confirmed that by increasing the alum concentrations, the intensity of
the mentioned peaks was decreased, demonstrating the involvement of amine group in the interaction
between wool, alum, and madder [57].
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Figure 1. FT-IR spectra of (a) untreated and treated wool with microbial transglutaminase (m-TGase),
alum, and alum-m-TGase; Treated wool with (b) 5%; (c) 10%; (d) 20% m-TGase with various
concentrations of alum.

3.2. Surface Morphology

The surface changes of wool fibers treated with various concentrations of m-TGase and alum
were investigated, and the SEM images are presented in Figure 2a–c. Our results showed that by
increasing m-TGase concentration, some surface damages appeared so that some of the scales were
damaged and led to less cuticle surface (Figure 2b). This phenomenon probably was because of alkali
condition, which is obtained as a result of more cross-link reaction by adding more m-TGase [43].
Indeed, m-TGase affected wool fiber by following cross-link reaction between glutamine and lysine,
which are present in wool structure:
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Therefore, it is essential to use the enzyme in a suitable amount.
Moreover, energy dispersive X-ray spectroscopy (EDS) mapping provided more and better

information about the elemental distribution on the surface of treated wool. The presence of Al
as a representative of alum along with C, S, N, and O as main elements of m-TGase confirmed
the modification of wool fibers with both alum and enzyme (Figure 3). Besides, the homogeneous
distribution of the elements throughout the surface was confirmed.
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3.3. Contact Angle and Wettability

The water contact angle on different samples was measured, and the results are presented in
Figure 4. As could be seen, the water contact angle was decreased on the wool sample treated with 10%
alum and 5% m-TGase, indicating the enhancement of hydrophilicity of treated wool fiber. It seemed
that the surface functionalization of wool with alum and m-TGase led to an increase in roughness and,
hence, improvement of dyeability of wool with madder.
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3.4. Colorimetric Analysis

The spectra flash-data color (SF-600) was used with a spectrophotometer to check the color
properties of colored specimens. The correlation of the CIELAB color (L*, a*, b*, C*, h◦) was measured
for each sample in the D65 light source with a standard observer of 10 degrees. The light reflection
method was used to calculate the color value (K/S) of the samples using the following equation:

K/S = (1 − R)2/2R (1)

where K is the absorbance coefficient; S is the coefficient of scattering, and R is reflectance percentage.
Table 1 shows the effects of alum and m-TGase concentrations on the colorimetric properties of the
mordanted wool fibers.

Table 1. Colorimetric properties of wool fibers dyed with madder treated with alum and m-TGase at
different conditions.

% L* a* b* C h K/S

Untreated - 56.56 ± 1.27 19.10 ± 0.57 17.18 ± 0.97 25.69 ± 0.81 41.97 ± 0.48 4.21 ± 1.32

Alum
5 40.10 ± 1.46 40.47 ± 0.76 27.35 ± 0.82 48.85 ± 0.45 34.05 ± 0.49 14.83 ± 1.40

10 37.50 ± 1.45 38.18 ± 1.28 26.92 ± 0.96 46.71 ± 0.61 35.19 ± 1.41 17.81 ± 1.00

20 37.24 ± 1.14 40.99 ± 1.05 26.44 ± 1.31 48.78 ± 0.85 32.82 ± 1.06 16.73 ± 0.89

Enzyme
5 40.72 ± 2.10 28.46 ± 0.79 24.76 ± 1.82 37.72 ± 1.32 41.03 ± 1.34 14.14 ± 1.04

10 40.01 ± 1.22 31.84 ± 1.38 26.96 ± 1.17 41.73 ± 1.41 40.25 ± 1.47 16.34 ± 1.05

20 39.79 ± 2.03 30.45 ± 0.96 25.89 ± 1.70 39.96 ± 0.79 40.37 ± 1.08 16.25 ± 0.86

Enzyme 5%
Alum 5 37.67 ± 1.12 39.73 ± 1.18 29.63 ± 0.83 49.56 ± 0.67 36.72 ± 1.72 20.33 ± 0.98

Alum 10 35.67 ± 1.26 39.53 ± 1.39 28.62 ± 0.85 48.81 ± 1.07 35.91 ± 1.22 21.55 ± 0.82

Alum 20 36.98 ± 1.22 42.25 ± 1.29 29.12 ± 1.63 51.31 ± 0.98 34.58 ± 1.55 20.54 ± 1.32

Enzyme 10%
Alum 5 37.81 ± 1.63 39.30 ± 0.62 27.05 ± 1.05 47.71 ± 0.90 34.53 ± 1.26 17.26 ± 1.12

Alum 10 39.43 ± 1.26 39.28 ± 1.10 29.52 ± 1.23 49.13 ± 1.00 36.93 ± 0.81 17.42 ± 1.04

Alum 20 38.14 ± 1.25 40.53 ± 1.12 29.86 ± 0.88 50.34 ± 1.25 36.37 ± 0.77 19.74 ± 1.01

Enzyme 20%
Alum 5 37.86 ± 1.75 37.20 ± 1.33 26.58 ± 0.63 45.72 ± 0.88 35.54 ± 1.52 17.35 ± 0.90

Alum 10 38.63 ± 2.51 38.38 ± 2.06 28.65 ± 1.10 47.90 ± 0.84 36.74 ± 0.52 18.14 ± 0.96

Alum 20 34.81 ± 2.16 38.96 ± 5.19 26.63 ± 0.79 47.20 ± 0.60 34.35 ± 0.85 21.54 ± 1.31
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By taking a closer look at the data, it could be found that the values of lightness (L*) for all treated
samples were less than untreated wool fabric, indicating better absorption of color in the treated
samples. Likewise, (a*) values were increased, demonstrating an increase in the color red. The a* and
b* values of dyed samples treated with alum and m-TGase indicated that all the samples were found
in the red-yellow zone.

The effect of different concentrations of mordants on the color strength (K/S) is illustrated in
Figure 5a. It showed that the K/S of the wool fabric treated with 10% alum and 5% m-TGase and
dyed with madder was the best as compared to others. In agreement with previous results, it could
be found that using more m-TGase not only does not improve the color strength, but it could also
have the opposite effect. Also, it was observed that by increasing alum concentration to 20%, the color
strength was decreased (pink). It might be assigned to the fact that by increasing alum concentration,
the surface of wool would be covered, and there would be few available places, which can be affected
by m-TGase. Therefore, using a 10% alum along with 5% m-TGase led to the maximum color strength.
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where ∆L = L* sample – L* standard; ∆a* = a* sample – a* standard; ∆b* = b* sample – b* standard
(ASTM Standards, D2244−11, 2011). Figure 5b elaborates on the ∆E results of the treated wool samples
with alum and m-TGase with different concentrations. As expected, the color difference (∆E) for wool
fabric dyed with madder accompanied by alum and 5% m-TGase showed the maximum values.

3.5. Color Variation

The effect of m-TGase and alum on the appearance of the wool dyed with madder is shown
in Table 2. The results showed that wool treated with alum and m-TGase changed the hue of the
samples from pink to a lovely red. It was observed that with increasing m-TGase with different
concentrations of alum, the hue of the samples was changed to dark red.
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3.6. Color Fastness Performance of Dyed Woolen Samples

Table 3 shows the light fastness, as well as washing fastness results. The results of color fastness
were based on the scale of blue wool (1–8), in which grade 1 means very poor, and grade 5 is
excellent. Obviously, it could be seen that the light fastness of the treated samples was more than the
untreated sample.

The properties of the washing fastness of the stained samples were measured according to the
ISO standard, which is a period equal to five general wash periods. According to grayscale, increasing
washing fastness for all samples was observed compared to the untreated one. It should be noticed that
although using alum along with enzyme brought about reduced washing fastness values for cotton,
but other obtained results demonstrated that the amount of used alum was decreased as compared to
other reported dyeing methods [58,59]. Indeed, any reduction in alum amount would be useful as it
is a very common mordant in the carpet industry on one side and is harmful to the environment as
well as people. Therefore, this work was focused on reducing the amount of used alum by employing
m-TGase, and the obtained results showed that using 10% alum and 5% m-TGase would lead to high
efficiency in dyeing performance.
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Table 3. Variation of color fastness under different treatments.

% Light Fastness Wash Fastness

Wool Cotton

Madder 50 2 3 3–4

Alum

5 3–4 4–5 5

10 3–4 4–5 5

20 3–4 4–5 5

Enzyme
5 2–3 3–4 4

10 2–3 4 4–5

20 2–3 3–4 4

Enzyme 5%
Alum 5 3–4 4–5 4–5

Alum 10 3–4 4–5 4–5

Alum 20 3–4 4–5 4–5

Enzyme 10%
Alum 5 3–4 4–5 4–5

Alum 10 3–4 4–5 4–5

Alum 20 3–4 4–5 4–5

Enzyme 20%
Alum 5 3–4 4–5 4–5

Alum 10 3–4 4–5 4–5

Alum 20 4 4–5 4–5

4. Discussion

Our goal is to reduce the amount of consumed alum due to its health and environmental problems.
Results showed that by applying a certain amount of m-TGase, this target could be attained by using
less alum to achieve the desired dyeing efficiency. Characterization data confirmed that treating of
wool with alum and m-TGase would cause some effects on wool fibers: At first by adding alum as
mordant, it would be attached to the fiber molecules of wool, and, on the other hand, by treating of
wool with m-TGase, cross-link reaction occurred between two amino acids of wool. As a result of
using m-TGase, up and down places were created, especially in the place of scales. The proposed
mechanism was that first aluminum sulfate mordant anchored to the fiber, and then by treating with
m-TGase, morphological changes were obtained in the wool fibers. Following which, the anchored
alum chemically combined with certain functional groups present in the madder, while the as-generated
rough surface provided the suitable places for trapping the madder molecules. Thus, the combination
of both physical and chemical effects improved the dyeing efficiency in the present work. The schematic
illustration for the proposed mechanism is presented in Figure 6.
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5. Conclusions

In summary, to extend an effective and robust dyeing system for madder as a widely used natural
color, treatment by alum, along with enzymatic modification of wool, was employed. Toward the
attainment of optimum preparation conditions, different concentrations of alum and enzyme were
tested. FT-IR analysis and SEM characterization results confirmed the presence of interaction between
alum, m-TGase, and wool fibers. Also, it was found that to achieve the most beneficial dyeing system
for madder through using alum and m-TGase, it was necessary to prepare the coatings with exact
concentration. The color strength (K/S) and color coordinates also were calculated for all samples
prepared at different concentrations. By considering all obtained results, it was found that the optimum
condition for preparing a new dyeing system for madder on wool fibers was using 10% owf alum and
5% owf m-TGase.
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