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Abstract: SmBa2Cu3O7-δ (SmBCO) films have been prepared by chemical solution deposition starting
from extremely-low-fluorine solutions (7% fluorine with respect to standard full trifluoroacetate
solutions). Smooth and homogeneous SmBCO films could be achieved at heating rates of up to
20 ◦C/min during pyrolysis. The best films were achieved at a crystallization temperature of 810 ◦C
and 50 ppm of oxygen partial pressure. At these conditions, the ~270 nm thick SmBCO films grow
mostly c-axis-oriented with Jsf

c values at 77 K of ~2 MA/cm2 and critical temperatures Tc of up to 95.0 K.
These results demonstrate that using extremely-low-fluorine solutions is very attractive since the
production rate can be largely increased due to the solutions’ robustness during pyrolysis retaining a
remarkable quality of the grown films. Nevertheless, further optimization of the growth process is
needed to improve the superconducting properties of the films.

Keywords: SmBCO; chemical solution deposition; rapid pyrolysis; metal-organic deposition; extremely
low fluorine

1. Introduction

The second-generation (2G) superconducting tapes or coated conductors (CCs) have promising
perspectives for a number of applications such as motors, generators or fault-current limiters. The CCs
are based on high-temperature superconductors, in particular REBa2Cu3O7-δ (REBCO, RE = rare earth)
compounds. These are compounds with a great potential due to their high values of critical temperature
(Tc), upper critical field and irreversibility field, as well as the associated large current-carrying capability
in applied magnetic fields [1–3].

Among various techniques to prepare REBCO films, the low-cost and easy-to-scale chemical
solution deposition (CSD) is an interesting approach for the industrial production of REBCO films and
CCs [4–9]. Most previous studies follow the well-known TFA-MOD route [10]. During the pyrolysis,
the fluorine-containing precursor solutions decompose to metal fluorides avoiding the formation of
BaCO3, which would be difficult to decompose during the crystallization stage [11–14]. Yet, TFA-MOD
needs long pyrolysis times to obtain defect-free pyrolyzed films [14–16] and, thus, process shortening
is required to allow for large production rates.

In order to overcome this limitation, several advanced MOD methods have been developed in
recent years [17–21]. In our previous work [22], various precursor solutions with different fluorine
contents have been tested, including the conventional low-fluorine (CLF) solution with a fluorine
content of 54% (F-54%), the super low-fluorine (SLF) solution (F-31%), and the extremely-low-fluorine
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(ELF) solution (F-7%) with respect to the full trifluoroacetates (TFA) solution (F-100%). As shown by
Li et al. [22], the heating rate of the pyrolysis step for YBCO films can be increased as the fluorine
content of the precursor solution decreases. However, the reduction of the fluorine content in the
precursor solution has other advantages, too: It is environmentally friendly and can also improve
the homogeneity of the films during the pyrolysis process. Using ELF precursor solutions, excellent
superconducting properties have been achieved in YBCO films with much faster heating rates than
with other types of solutions [20,22]. However, only little work has been spent to grow REBCO films
with other rare earth elements with ELF solutions.

As pointed out by Wu et al. [20] and Li et al. [22], the reaction mechanism for the formation of
REBCO films using ELF solutions is still a “BaF2” process, which is a well-understood process. There are
also multiple studies on the influence of the RE3+ ionic radius on the superconducting properties of
REBCO compounds, e.g., [23–27], and some of these compounds have been shown to exhibit larger Tc

and Jc values than YBCO [28–30]. However, the synthesis of some of these compounds is much more
complicated than for YBCO and requires more effort for both optimization and understanding. On the
one hand, large RE ions, like Nd3+ or Sm3+, tend to partially substitute the Ba2+ ions and, on the
other hand, small RE3+ ions, such as Yb3+ and Lu3+, do not fit properly in their lattice site introducing
vacancies. Both facts cause a drastic decrease of the REBCO phase stability [31–33]. In particular,
the synthesis of SmBCO is one of the most challenging among the REBCO phases because the tendency
of Sm3+ ions to substitute for Ba2+ is one of the highest among the RE3+ ions [28]. However, such films,
properly prepared, tend to present higher Tc values and irreversibility fields than YBCO as well as a
smaller field dependence of the critical current density Jc(T, B, θ) [34–37].

In this study, we have prepared pristine SmBCO films using ELF solutions for the first time.
The main objective was to explore the possibilities of using SmBCO-ELF solutions to reduce the
total time of the pyrolysis process with fast heating ramps for obtaining pyrolyzed films without
inhomogeneities. The reduction of the pyrolysis time is a key point for the economical use of the CSD
process in long-length processes. After investigating the influence of the heating rate during pyrolysis
on the homogeneity of the films, we have made a study of the crystallization process focusing in the
influence of crystallization temperature (Tcrys) and oxygen partial pressure (pO2) on the structure and
superconducting properties of the final SmBCO films, to determine the most appropriate crystallization
process for this kind of films.

2. Experimental Details

2.1. Solution and Thin Film Preparation

The preparation of the SmBCO-ELF solution consists of several steps. First, Sm, Ba, and Cu
acetates (purity > 99.99%, Alfa Aesar, Kandel, RLP, Germany) are weighed out in the stoichiometric
ratio of 1:2:3 for the metal cations. Then, 1/3 of the mass of the Ba acetate is dissolved in trifluoroacetic
acid and deionized water to convert it to trifluoroacetate while the rest of the acetates is dissolved
in propionic acid (99%). Both solutions are dried by a rotary evaporator resulting in highly viscous
residues that are re-diluted in anhydrous methanol (99.9%). In order to reduce the undesired residual
water and other impurities, the methanol is evaporated again three times. Finally, after a last re-dilution
in methanol, the two remaining solutions are mixed, and the final concentration of 2 mol·L−1 (sum of
total metal concentration) is adjusted by adding or evaporating methanol. With this procedure, a ratio
F/Ba = 2 is achieved, which is the minimum amount of F necessary to allow a full conversion of the Ba
precursor to BaF2 avoiding the formation of BaCO3 [12].
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For the preparation of the full-TFA solution (SmBCO-TFA) we used the procedure described in
our previous works [17,27]. In summary, this is a 1.5 molar solution (over all cations) with a 1:2:3 ratio
of Sm, Ba, and Cu dissolved in dry methanol.

Both precursor solutions, SmBCO-TFA and SmBCO-ELF, were deposited on (001)-oriented LaAlO3

(LAO) single crystal substrates via spin coating (6000 rpm, 2 min). The as-deposited films were thermally
treated in a tubular furnace. For the SmBCO-ELF films, the pyrolysis was performed in a single-step
thermal process at 500 ◦C, which was kept for 30 min in humidified pure oxygen with a dew point of
25 ◦C. Several heating ramps from 5 ◦C/min to 20 ◦C/min were tested. For the SmBCO-TFA films we
used the “standard pyrolysis process” described by Erbe et al. [17]. Subsequently, the SmBCO-ELF
films were crystallized using a similar growth process to the one described by Cayado et al. [27]. In this
particular case, the films were heated for 90 min in a humid O2/N2 gas at several Tcrys (780–840 ◦C)
and pO2 (20–100 ppm). The following oxygenation process was carried out at 450 ◦C for 2 h.

2.2. Thin Film Characterization

Microstructure and phase purity of the ~270 nm films were investigated by X-ray diffraction (XRD)
using a Bruker D8 diffractometer with CuKα radiation. The surface morphology of the pyrolyzed films
was analyzed by a Keyence VHX-1000 digital microscope with motorized z-axis while the surface
morphology and the cross-sections of the grown films were analyzed by a LEO 1530 scanning electron
microscope (SEM) with field emission gun by Zeiss and by a Bruker Dimension Edge atomic force
microscope (AFM). The AFM images have also been used for the thickness measurements by measuring
the step between film surface and substrate after etching some areas of the films with nitric acid.
Self-field Jc at 77 K, Jsf

c , was measured inductively with a Cryoscan (Theva, 50 µV criterion). Tc (Tc,90,
i.e., the temperature at which the resistance is 90% of the value above the transition) and Tc (Tc,90 –
Tc,10) were determined from resistivity-temperature curves measured with a 14-T Quantum Design
Physical Property Measurement System (PPMS) in four-point method.

3. Results and Discussion

3.1. Influence of the Heating Rate during Pyrolysis

The thermal profile of the pyrolysis had to be newly designed for the SmBCO-ELF films since
no previous results were reported for this particular type of films and the temperature ramp towards
the pyrolysis dwell temperature is one of the decisive parameters for good film growth [38,39].
Heating rates of 5, 10, 15, and 20 ◦C/min were tested for their influence on the surface morphology for
both SmBCO-ELF and SmBCO-TFA films.

With ELF solutions, homogeneous, smooth, and defect-free films were achieved even with the
highest heating rate of 20 ◦C/min (Figure 1). For TFA films, on the other hand, even the lowest ramp of
5 ◦C/min led to an inhomogeneous surface with buckling, and higher heating rates resulted in worse
morphologies, yet. This is a very remarkable result, since the pyrolysis can be drastically shortened by
the use of ELF solutions. As shown in the experimental section, the used ELF solutions are free of any
extra additive often used to increase the elasticity of the films during pyrolysis and avoid the formation
of inhomogeneities. The use of such high heating rates during pyrolysis with an additive-free solution
has no precedent in literature.
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In general, as it was observed for YBCO-ELF, the films grown from ELF solutions tend to form 
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means than for this type of solutions the supersaturation values that allows the fully epitaxial growth 
are more difficult to reach and it is necessary a more carefully optimization of the growth parameters. 
SmBCO-ELF films show a similar trend towards texture deterioration and probably even more due 
to the difficulties of the synthesis of the SmBCO phase itself that, as mentioned before, come from the 
great tendency of Sm3+ ion to partially substitute the Ba2+ ions. 

Figure 1. Surface morphology of pyrolyzed SmBCO-ELF and SmBCO-TFA films at different heating
rates observed in optical microscope images taken in reflection mode with white illumination and
without polarization filters.

3.2. Optimization of the Growth Process

The SmBCO phase is formed for all explored Tcrys with a significant preference of the SmBCO
(00l) orientation in all films (Figure 2a). However, additional reflections of SmBCO (103) and SmBCO
(108) are observed, which are associated to randomly oriented grains. In order to estimate the amount
of misoriented grains (represented by the (103) SmBCO peak) formed in comparison with the epitaxial
fraction (represented in this case by the (005) SmBCO peak), one can use the following expression
(Equation (1)):

I(103)SmBCO
I(103)SmBCO + I(005)SmBCO

(1)

Figure 2b shows the evolution of the ratio (103)/(005) after applying Equation (1). One can conclude
that the intensities of the reflections associated to misoriented grains increase both at low and high
Tcrys reaching a minimum at 810 ◦C. Secondary phases such as Sm2O3 are found in the films as well.
The amount of these secondary phases is also larger at low and high temperatures being almost
negligible between 800 and 820 ◦C. Thus, temperatures of 800–820 ◦C are the most suitable Tcrys

window for SmBCO-ELF films with respect to both phase purity and crystallographic orientation.
The increase of the pO2 up to 100 ppm at a constant Tcrys = 810 ◦C reduce the formation

of misoriented grains but enhances the formation of a-axis grains enormously (marked with + in
Figure 2c). Moreover, the intensities of the reflections associated to (00l)-oriented grains decrease.
This enhancement of a-axis grains with pO2 is common also in other REBCO compounds and was also
observed previously in the particular case of SmBCO-TFA films [38]. At 20 and 50 ppm, the films show
rather similar characteristics but with slightly lower intensities of the (00l) reflections at the lowest
partial pressure of oxygen, Figure 2d). Therefore, 50 ppm is the optimal pO2 at 810 ◦C.

In general, as it was observed for YBCO-ELF, the films grown from ELF solutions tend to form
more misoriented grains than films grown from TFA or conventional low-fluorine solutions [22].
This means than for this type of solutions the supersaturation values that allows the fully epitaxial
growth are more difficult to reach and it is necessary a more carefully optimization of the growth
parameters. SmBCO-ELF films show a similar trend towards texture deterioration and probably even
more due to the difficulties of the synthesis of the SmBCO phase itself that, as mentioned before, come
from the great tendency of Sm3+ ion to partially substitute the Ba2+ ions.



Coatings 2020, 10, 31 5 of 10
Coatings 2019, 9, x FOR PEER REVIEW 5 of 10 

 

 
Figure 2. XRD patterns of SmBCO films grown (a) at different crystallization temperatures and pO2 = 
50 ppm and (c) at different oxygen partial pressures and Tcrys = 810 °C. The evolution of the 
(103)BCO/(005)SmBCO peak intensity ratio calculated using Equation (1) with Tcrys and pO2 for is 
shown in (b) and (d), respectively. The intensity ratio of the peaks marked with # and * come from 
the experimental setup. 

The tendencies found in XRD are, to some extent, reflected in the surface morphology observed 
in SEM (Figure 3). Clearly, the areal density of randomly oriented grains (needle-shaped structures 
oriented in any possible direction) increases at low temperatures and low values of pO2. Increasing 
the pO2 up to 100 ppm results in an enhancement of the areal density of a-b grains (needle-shaped 
structures with orthogonal orientation to each other). At high temperatures, the films present less 
misoriented grains at the surface, but they seem to be embedded in the films and with a much larger 
size (white arrows in Figure 3, 840 °C). In general, the films appear very dense. 

20 30 40 50 60 70
10-5

10-4

10-3

10-2

10-1

100 Sm
2O

3(4
44
)

Sm
2O

3(2
22
)

Sm
B
C
O
(0
05
)

Sm
B
C
O
(1
03
)

Sm
B
C
O
(0
04
)

780 °C

In
te

ns
ity

, I
 (a

rb
.u

.)

Angle, 2θ(°)

LA
O
(1
00
)

Sm
B
C
O
(0
03
)

800 °C

810 °C 

Sm
B
C
O
(1
08
)

820 °C

*

840 °C

#

# #

LA
O
(2
00
)

*

Sm
B
C
O
(0
08
)Sm

B
C
O
(0
07
)

Sm
B
C
O
(0
06
)

20 30 40 50 60 70
10-5

10-4

10-3

10-2

10-1

100

Sm
BC

O
(1
08

)

Sm
2O

3(4
44

)Sm
2O

3(2
22

) Sm
BC

O
(0
05

)

Sm
B
C
O
(1
03

)
Sm

BC
O
(0
04

)

20 ppm

In
te

ns
ity

, I
 (a

rb
.u

.)

Angle, 2θ(°)

Sm
B
C
O
(0
03

)

50 ppm

100 ppm 

LA
O
(1
00

)

++

*

#

# #

LA
O
(2
00

)

*

Sm
B
C
O
(0
08

)Sm
B
C
O
(0
07

)

Sm
B
C
O
(0
06

)

a)

b)

pO2 = 50 ppm Tcrys = 810 °C

d)

c)

780 790 800 810 820 830 840
0.00

0.01

0.02

0.03

0.04

0.05

In
te

ns
ity

 ra
tio

 [(
10

3)
/((

10
3)

+(
00

5)
)]

Tcrys (K)
0 20 40 60 80 100 120

0.000

0.003

0.006

0.009

0.012

0.015

In
te

ns
ity

 ra
tio

 [(
10

3)
/((

10
3)

+(
00

5)
)]

pO2 (ppm)

Figure 2. XRD patterns of SmBCO films grown (a) at different crystallization temperatures and
pO2 = 50 ppm and (c) at different oxygen partial pressures and Tcrys = 810 ◦C. The evolution of the
(103)BCO/(005)SmBCO peak intensity ratio calculated using Equation (1) with Tcrys and pO2 for is
shown in (b,d), respectively. The intensity ratio of the peaks marked with # and * come from the
experimental setup.

The tendencies found in XRD are, to some extent, reflected in the surface morphology observed
in SEM (Figure 3). Clearly, the areal density of randomly oriented grains (needle-shaped structures
oriented in any possible direction) increases at low temperatures and low values of pO2. Increasing
the pO2 up to 100 ppm results in an enhancement of the areal density of a-b grains (needle-shaped
structures with orthogonal orientation to each other). At high temperatures, the films present less
misoriented grains at the surface, but they seem to be embedded in the films and with a much larger
size (white arrows in Figure 3, 840 ◦C). In general, the films appear very dense.
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pO2 as observed in SEM. At the bottom of the figure a cross-section SEM image is displayed showing
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The AFM measurements carried out on the film grown at 810 ◦C and 50 ppm (Figure 4) present
similar features as the SEM image shown before. Randomly oriented grains are visible at the surface of
the film (Figure 4a)). Additionally, these AFM measurements allowed to confirm that the thickness of
the films is ~270 ± 30 nm.
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Figure 4. Surface morphology (a) and thickness of the films (b) obtained from AFM measurements
carried out on the SmBCO film grown at at 810 ◦C and 50 ppm.

The trends of Jsf
c at 77 K (Figure 5a) with Tcrys and pO2 are in agreement with the structural

observations discussed above. Films grown at 50 ppm show higher Jsf
c values than the films grown

at 20 or 100 ppm. This is due to the formation of multiple misoriented grains, see Figures 2 and 3,
at these pO2 values. The highest Jsf

c values are reached at 810 ◦C (820 ◦C for 100 ppm), which is again
attributed to larger amounts of misoriented grains at lower or higher temperatures. At the best growth
conditions Tcrys = 810 ◦C and pO2 = 50 ppm, Jsf

c at 77 K reaches 2.1 MA cm−2 with a Tc of 95.0 K and a
transition width Tc of 0.9 K (Figure 4b). To our knowledge, this Tc value is the highest reported for
SmBCO films deposited either on single crystals or on metallic tapes [35,37,39,40]. Additionally, the Jsf
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values at 77 K are among the highest reported for CSD-grown SmBCO film [39–41].
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4. Conclusions

SmBCO films were prepared by CSD with extremely-low-fluorine (ELF) solutions on LAO
substrates. This type of solutions is much more robust during pyrolysis than TFA solutions and,
consequently, the deposition of homogenous and defect-free pyrolyzed SmBCO films is much more
reproducible than with TFA solutions, even for extremely fast heating rates (20 ◦C/min). The films
present a certain tendency to generate misoriented grains during the crystallization with a minimum
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at a crystallization temperature of 810 ◦C and 50 ppm of oxygen partial pressure. The ~270 nm
SmBCO-ELF films obtained at these conditions present Jsf

c values at 77 K up to 2.1 MA cm–2 and
Tc values up to 95.0 K with a Tc of 0.9 K. These results show the promising perspectives of the ELF
solutions for the preparation of high-quality SmBCO films. However, more effort is needed to clarify
why this type of solutions tends to generate more misoriented grains than other solutions and to
optimize the growth process to procure fully epitaxial films. This will allow a further improvement of
the superconducting properties, especially Jc, which will make this type of solutions and films even
more attractive for their use in the long-length CC production.
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