Amidochelocardin overcomes resistance mechanisms 1 exerted on tetracyclines and natural chelocardin 2 **Supplementary Materials** 3 4 Fabienne Hennessen^{1,2,†}, Marcus Miethke^{1,2,†}, Nestor Zaburannyi^{1,2}, Maria Loose³, 5 Tadeia Lukežič^{1,2,4}. Steffen Bernecker^{2,5}. Stephan Hüttel^{2,5}. Rolf Jansen^{2,5}. Judith 6 7 Schmiedel⁶, Moritz Fritzenwanker⁶, Can Imirzalioglu⁶, Jörg Vogel⁷, Alexander J. Westermann⁷, Thomas Hesterkamp², Marc Stadler^{2,5}, Florian Wagenlehner³, Hrvoje 8 Petković⁸. Jennifer Herrmann^{1,2,*} and Rolf Müller^{1,2,*} 9 10 ¹Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research 11 Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy. 12 Saarland University Campus E8.1, 66123 Saarbrücken, Germany 13 ²German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 14 Braunschweig, Germany 15 ³Clinic for Urology, Paediatric Urology & Andrology, Justus-Liebig University Gießen, 35392 16 Gießen, Germany, and German Center for Infection Research (DZIF), Partner Site Giessen-17 Marburg-Langen ⁴National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia 18 19 ⁵Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 20 7, 38124 Braunschweig, Germany 21 ⁶Institute of Medical Microbiology, Justus-Liebig University Gießen, Germany, 35390 Gießen, 22 Germany, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-23 Langen 1

24	⁷ Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection
25	Research (HZI) and Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-
26	Schneider-Str. 2, 97080 Würzburg, Germany
27	⁸ Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana,
28	Jamnikarjeva 101, 1000 Ljubljana, Slovenia
29	
30	[†] These authors contributed equally to this study.
31	* Corresponding authors:
32	jennifer.herrmann@helmholtz-hips.de, Tel.: +49 681 98806 3101
33 34	rolf.mueller@helmholtz-hips.de, Tel.: +49 681 98806 3000
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	

Figure S1. Time-kill curves of *K. pneumoniae* DSM-30104 exposed to CHD (MIC: 1 μ g/mL) and CDCHD (MIC: 0.5 μ g/mL) at 0.5- and 2-fold MIC. Cell viability was determined over 24 h by three independent CFU (colony forming units) counts. Data are represented as mean values ± standard deviation.

Supplementary Tables

81

Table S1. MIC values of CHD, CDCHD and tetracycline (TET) for Gram-positive and

83 Gram-negative bacteria (non-clinical strains). amultidrug-resistant S. aureus; methicillin-

resistant *S. aureus*; vancomycin-intermediate *S. aureus*; n.d.: not determined.

Strain	MIC [µg/mL]					
	CHD	CDCHD	TET			
Bacillus subtilis DSM-10	16	8	1			
Enterococcus faecium DSM-20477	8	4	1			
Enterococcus faecalis DSM-20478	8	4	1			
Micrococcus luteus DSM-20030	32	16	4			
Mycobacterium smegmatis mc ² 155	4	4	n.d.			
Mycobacterium bovis BCG DSM-43990	1	4	n.d.			
Staphylococcus aureus						
DSM-346	4	2	0.125			
DSM-11822ª	4	2	n.d.			
ATCC-29213	4	8	0.125			
Newman	4	4	0.125			
N315 ^b	4	4	0.125			
Mu50 ^{b,c}	2	4	0.125			
Staphylococcus carnosus DSM-20105	4	4	0.25			
Citrobacter freundii DSM-30039	1	1	2			
Enterobacter aerogenes DSM-30053	16	8	32			
Escherichia coli						
DSM-1116	1	0.5	0.5			
ATCC-25922	2	2	n.d.			
ToIC-deficient	0.5	0.25	0.5			
Haemophilus influenzae DSM-11970	4	1	2			
Klebsiella pneumoniae DSM-30104	1	0.5	0.5			
Proteus vulgaris DSM-2140	0.25	0.25	1			
Proteus mirabilis DSM-4479	0.5	1	4			
Pseudomonas aeruginosa						
DSM-11128	32	16	64			
DSM-24599	64	16	32			
PA14	32	4	32			
PA14 ∆ <i>mexAB</i>	2	0.5	2			
PA14 Δ <i>mexCD</i>	32	8	n.d.			
PA14 ∆ <i>mexEF</i>	16	8	n.d.			
PA14 $\Delta mexXY$	32	4	n.d.			
Serratia marcescens DSM-30121	4	2	32			

Table S2. Minimal inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of CHD and CDCHD for *E. coli* and *K. pneumoniae* clinical isolates determined in artificial urine at different pH values. Values denote median of three independent measurements per isolate.

Isolate	рН	MIC	[µg/mL]	MBC [µg/mL]		
loolato	Pri	CHD	CDCHD	CHD	CDCHD	
	5.5	1	0.5	4	8	
E coli	6.5	1	1	4	2	
L. COII	7.5	1	1	8	4	
	8.5	1	1	8	2	
	5.5	1	1	8	2	
K pneumoniae	6.5	1	1	8	4	
R. pheumomae	7.5	2	2	16	4	
	8.5	2	2	16	32	

Table S3. Susceptibility of *K. pneumoniae* DSM-30104 wild type (Wt) and *K. pneumoniae*

Antibiotic					MIC [µg/m∟j				
compound	Wt	Mt8.1	Mt8.2	Mt8.3	Mt8.4	Mt8.5	Mt8.6	Mt8.7	Mt8.8	Mt8.10
CHD	2	16	8	16	16	32	16	16	16	8
CDCHD	2	4	4	4	4	4	4	4	4	4
Tetracycline	4	64	32	64	64	64	64	64	16	32
Minocycline	4	64	64	64	64	64	> 64	64	> 64	64
Oxytetracycline	2	32	32	32	32	32	16	32	16	8
Tigecycline	0.125	1	2	2	2	1	2	2	1	4
Rifampicin	8	16	16	16	16	16	8	16	8	8
Kanamycin	2	2	2	1	1	1	0.5	2	1	0.5
Erythromycin	8	32	32	16	32	32	32	8	32	32
Polymyxin B	4	0.5	0.5	0.25	0.25	0.5	0.5	1	1	0.5
Chloramphenicol	1	32	32	32	16	8	8	16	16	8
Ciprofloxacin	< 0.03	0.125	0.025	0.125	0.125	0.125	0.125	0.125	0.125	0.125
Vancomycin	> 64	> 64	64	64	64	64	64	> 64	> 64	> 64
Ampicillin	> 64	> 64	> 64	> 64	> 64	> 64	> 64	> 64	> 64	> 64

100 CHD-resistant mutants (Mt8.1 – Mt8.10) to various antibiotics.

109 **Table S4.** Mutations identified in *K. pneumoniae* DSM-30104 CHD-resistant mutants

- 110 (Mt8.1 Mt8.10) by whole genome sequencing. bp: base pair; Ins: insertion; Δ : deletion;
- 111 #: number of affected bp; RE: repeat expansion. Change of codon function indicated by
- 112 respective amino acids (in one letter code).

	RefSeq	Cono product					Mutation				
	accession		Mt8.1	Mt8.2	Mt8.3	Mt8.4	Mt8.5	Mt8.6	Mt8.7	Mt8.8	Mt8.10
	WP_0482 53720.1	RamR: TetR/AcrR family transcriptional regulator	11bp Ins	∆4bp	Δ4bp	Δ4bp	Δ1bp (#550); 11bp Ins	Δ1bp (#550)	11bp Ins	S137L	Δ1bp (#550)
	WP_0028	Phospho-		$2x \rightarrow 3x$	$2x \rightarrow 3x$						
	95089.1	glycerate mutase		7bp RE	7bp RE						
	WP_0029 14333.1	ABC transporter permease (AzIC family)							G231A		
113											
114											
115											
116											
117											
118											
119											
120											
121											
122											
123											

- **Table S5.** Relative transcription levels of *ramA*, *acrA* and *acrB* genes of *K. pneumoniae*
- 125 CHD-resistant mutants in comparison to *K. pneumoniae* DSM-30104 wild type (analyzed

K. pneumoniae	ramR	MIC [µg/mL]	Relative transcription level (fold-change)				
DSM-30104	mutations	CHD	ramA	acrA	acrB		
Wild type		2 - 4	1	1	1		
KP∆r <i>amR</i>	∆r <i>am</i> R	32	17.43 ± 2.42	1.38 ± 1.17	19.75 ± 0.73		
Mt8.1	11bp ins	16	18.47 ± 0.87	1.58 ± 0.74	n.d.		
Mt8.2	Δ4bp	8	41.08 ± 1.05	11.78 ± 1.89	66.64 ± 0.58		
Mt8.3	Δ4bp	16	14.01 ± 0.91	2.76 ± 0.73	n.d.		
Mt8.4	Δ4bp	16	8.19 ± 0.55	8.40 ± 1.07	4.91 ± 0.80		
Mt8.5	Δ1bp; 11bp Ins	32	23.46 ± 1.11	2.58 ± 0.71	1.41 ± 0.65		
Mt8.6	Δ1bp	16	31.13 ± 1.30	4.33 ± 1.97	1.96 ± 1.13		
Mt8.7	11bp Ins	16	17.78 ± 0.94	4.62 ± 2.11	1.28 ± 1.13		
Mt8.8	Ser \rightarrow Leu	16	3.16 ± 0.97	9.37 ± 0.71	1.47 ± 0.94		
Mt8.10	Δ1bp	8	10.40 ± 1.08	3.13 ± 1.87	1.28 ± 0.85		

126 by qPCR). n.d.: not determined.

- **Table S6.** Activity of *K. pneumoniae* DSM-30104 wild type and CHD-resistant mutants in
- 137 the presence of phenylalanine arginine β -naphthylamide dihydrochloride (PA β N). TET:
- tetracycline; TIG: tigecycline; CM: chloramphenicol; CIP: ciprofloxacin.

K. pneumoniae		MIC [µg/ml]								
DSM-30104	PAPN -	CHD	CDCHD	TET	TIG	СМ	CIP			
Wildtypo	-	2	1	2	0.125	1	≤ 0.03			
wildtype	+	2	1	2	0.25	2	≤ 0.03			
∆ rom₽	-	16	4	8	2	8	0.06			
Διαιτικ	+	8	2	4	0.25	1	≤ 0.03			
M+O 1	-	8	2	16	1	32	0.125			
IVILO. I	+	8	2	4	0.125	2	≤ 0.03			
M+9 0	-	16	2	32	2	32	0.25			
1010.2	+	8	2	4	0.5	2	≤ 0.03			
M+0 2	-	16	2	32	2	32	0.125			
1010.5	+	8	2	4	0.125	1	≤0.03			
M+9 /	-	16	2	16	2	16	0.125			
1010.4	+	2	2	4	0.25	1	≤ 0.03			
Mt8 5	-	16	2	16	1	8	0.125			
Wite.5	+	4	2	4	0.25	0.5	≤ 0.03			
Mt8 6	-	16	2	16	2	8	0.125			
1010.0	+	4	2	2	0.5	1	≤ 0.03			
M+9 7	-	16	2	32	2	16	0.125			
IVITO.7	+	2	1	4	0.125	2	≤ 0.03			
M+0 0	-	8	2	16	1	16	0.125			
101.0	+	4	1	2	0.125	1	≤ 0.03			
Mt8 10	-	16	2	32	4	8	0.125			
	+	8	1	4	0.5	1	≤ 0.03			

Table S7. MIC values of CHD-resistant mutants (selected strains C2087 - C2100) developed from *A. sulphurea* $\Delta chdPKS \Delta chdAR$ (parent strain); determined in TSB medium.

	Antibiotic					MIC [µg/mL]				
	compound	parent	C2087	C2088	C2092	C2094	C2095	C2096	C2098	C2099	C2100
	CHD	2.5	10	15	10	20	20	10	15	20	10
	CDCHD	4	6	6	3	10	10	7	5	7	8
148											
149											
150											

151 **Table S8.** Mutations identified in *A. sulphurea* Δ*chdPKS* Δ*chdAR* CHD-resistant mutants

152 (strains C2087 - C2100, see Table S7) by whole genome sequencing. Change of codon

153 function indicated by codon number and respective amino acids (in one letter code).

	RefSeq	eq Gene product ssion		Mutation									
	accession		C2087	C2088	C2092	C2094	C2095	C2096	C2098	C2099	C2100		
	PFG48851.1	AfsR/SARP regulator	G317D	R675S	R645C	R645C	L469F	L469F	G671R	F261L	L469F		
	PFG48186.1	Sensor kinase						S187L					
	PFG50225.1	Glutamate dehydrogen- ase									A1321A		
154													
155													
156													
157													
158													
159													
60													

Table S9. Primers for *K. pneumoniae ramR* and *A. sulphurea chdAR* gene deletions and

162 vector constructs.

Primer	Sequence (5' \rightarrow 3' direction)
RamRKO_fwd	CCTGGTCAGACGTGCCAAGATCGGCGGTTTGTTTAAACCTGCGTGAG
	GAAAAAGTAGTGATTCCGGGGATCCGTCGACC
RamRKO_rev	CGATACGGTGAGCGCAGGGATGCAGCATCTCAGGGGTCATTTGGCG
	TCCGCCTCATGCAGTGTAGGCTGGAGCTGCTTC
RamRconf_fwd	GATATAACTTGATTATGAGT
RamRconf_rev	GCCCGCGAATAGTCATGGT
chdAR	TATATAGAATTCCGAGTTCGTCAAGGCGACC
chdRR	TATATATCTAGAGGACCTCCGCATCAGGC
chdRF	TATATACATATGAAGGACAATCTCGCGAGA
chdARLF	TATATAGCATGCGACGAGTCCTGGCTGTCCAC
chdARLR	TATATAACTAGTCACGCACTGGTGGATCGTC
chdARRF	TATATACATATGTGTGATCGACGAGCAGCG
chdARRR	TATATAGAATTCGACGTCCTGCTGACCGTTTC
DrrAF	TATATACATATGTCACACGCGATCCGG
DrrBR	TATATATCTAGACCGCGGACCTCAGACG

- **Table S10.** Primers used for qPCR.

Primer	Sequence (5' \rightarrow 3' direction)	Target Gene
RamA_fwd	GGCATCTGCAACGGCTG	rom A
RamA_rev	GCAGCAGCTTCCTTTCGC	Tama
AcrA_fwd	ACCAAAGTCACCTCGCCG	oorA
AcrA_rev	TGTTGCGGTACCAGCAGG	acia
AcrB_fwd	GGACGGTTCCCAGGTTCG	aarB
AcrB_rev	TTTTCCTCACCCGGACGC	acib
16S_fwd	ACGGGCGGTGTGTACAAG	168 - DNIA
16S_rev	GGCCCCCTGGACAAAGAC	103 IKINA