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Abstract: Salmonella enterica serovar Typhimurium (ST) remains a major infectious agent in the USA,
with an increasing antibiotic resistance pattern, which requires the development of novel antimicrobials
capable of controlling ST. Polyphenolic compounds found in plant extracts are strong candidates as
alternative antimicrobials, particularly phenolic acids such as gallic acid (GA), protocatechuic acid
(PA) and vanillic acid (VA). This study evaluates the effectiveness of these compounds in inhibiting
ST growth while determining changes to the outer membrane through fluorescent dye uptake
and scanning electron microscopy (SEM), in addition to measuring alterations to virulence genes
with qRT-PCR. Results showed antimicrobial potential for all compounds, significantly inhibiting
the detectable growth of ST. Fluorescent spectrophotometry and microscopy detected an increase
in relative fluorescent intensity (RFI) and red-colored bacteria over time, suggesting membrane
permeabilization. SEM revealed severe morphological defects at the polar ends of bacteria treated
with GA and PA, while VA-treated bacteria were found to be mid-division. Relative gene expression
showed significant downregulation in master regulator hilA and invH after GA and PA treatments,
while fliC was upregulated in VA. Results suggest that GA, PA and VA have antimicrobial potential
that warrants further research into their mechanism of action and the interactions that lead to ST death.

Keywords: Salmonella enterica serovar Typhimurium; phytochemicals; phenolic acids; antimicrobials;
gallic acid; protocatechuic acid; vanillic acid

1. Introduction

Death because of enteric infections was found to be the third highest transmittable cause of death
in the world, with diarrheal disease being the main source and infection by the bacterial pathogen
Salmonella spp. responsible for at least 18.7% of those deaths [1]. Even though incidence is most
pervasive in developing parts of the world, enteric disease caused by foodborne pathogens still
accounts for substantial cases of illness, hospitalization, death and economic loss in the USA [2]. Of
the major 31 pathogens associated to foodborne illness in the USA, Salmonella enterica is the leading
bacterial etiological agent as it is estimated to be responsible for over 1 million cases of illness, 15,000
hospitalizations, 300 deaths, and an estimated loss of 3.5 billion dollars yearly, associated with the loss
of productivity that accounts for cost of care, treatment, recovery and hours of work lost [3,4]. Though
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many of the already identified and sequenced Salmonella enterica serovars (>2500) have been linked
to disease, Salmonella enterica serovar Typhimurium (ST) remains one of the most clinically relevant
strains because of its ubiquitous presence in produce, meat and the environment, as well as being a
major source of outbreaks and disease [5–7].

Though self-limiting for healthy individuals, at-risk populations such as children, elders and
immunocompromised individuals can experience more invasive forms of the pathogen, requiring more
intense treatment with antibiotics [8]. Invasive Salmonella enterica serovar Typhimurium (ST) infections
are mediated through the activation of the genes found in the Salmonella Pathogenicity Island 1 (SPI-1),
which code for an assembly of proteins known as the Type III Secretion System (T3SS) that aid in the
attachment and subsequent invasion of host cells [9]. The intracellular survival of the bacteria is later
achieved through the activation of the genes found in SPI-2, allowing it to avoid the immune system
and resist lysis [10]. Strains found to be resistant to antibiotics have been corelated with high virulence
and a more aggressive invasive capability towards their host, which subsequently results in a harder
to treat infection [11–13]. The continuous and increasing discovery of antibiotic-resistant ST isolates
from human samples [14], as well as in farm animals meant for consumption, poses a growing public
health threat, greatly exacerbated by the need for novel antimicrobial compounds that do not add to
the development of resistance.

New antimicrobial agents need to be accessible, easy to synthesize or extract, and effective, but
must also be sustainable by not contributing to the rise of antibiotic resistance in ST, or in other bacteria
by way of horizontal gene transfer and the antimicrobial resistome [14]. Plants and their byproducts
are important candidate sources in the discovery of novel antimicrobials, primarily because of their
availability, diversity of compounds and their complex chemical makeup [15,16]. Extracts prepared
from various plant sources have been found to contain a vast array of bioactive organic small molecules
with antimicrobial properties, particularly polyphenols. These polyphenols are often consumed as
a part of ingesting foods that contain them, such as grains, vegetables, herbs and fruits. The range
of species and concentration of polyphenolic compounds that can be found in these foods can vary
among them and even within the same food group, as these are subject to external factors such as
the growth conditions of the plant, environmental parameters, harvesting procedure, and extraction
method [17]. Studies reporting on phenolic concentration within specific food groups have found
cereals to contain a range from 26 to 3300 mg per 100 g (depending on the cereal), cocoa to range from
1204 to 4437 mg per 100 g, tea beverages to range from 29 to 103 mg per 100 mL, and fruits to range
from 15 to 2556 mg per 100 g (depending on the fruit) [18,19].

Previous research on plant extracts with antimicrobial properties found that berry pomace, a
byproduct containing the seeds and shell of the berry fruit after juicing, from blueberries (Vaccinium
corymbosum) and blackberries (Rubus fruticosus) contains a high concentration and variety of polyphenols,
which can be extracted economically [20]. This berry pomace extract (BPE) was shown to have significant
antagonistic effects on ST growth and other cellular functions related to virulence [21]. The two major
polyphenolic compounds that make up the majority of the phenolic content in plant extracts, which
could be responsible for conferring antimicrobial effects, are flavonoids and phenolic acids. Though
the exact mechanism of action is not yet understood, research on the antimicrobial capabilities of
phenolic acids has shown potential, particularly against Gram-negative bacteria, since it is believed
that they can diffuse passively through the outer membrane, bypassing one of the main defensive
barriers against conventional antibiotics and making their way into the cytoplasm, which will lead
to acidification and cell death [22–24]. Though membrane damage has been cited as one of the main
outcomes of phenolic acid treatments, the events that lead to this damage and eventual cell death
in ST treated with gallic acid (GA), protocatechuic acid (PA) and vanillic acid (VA), which are some
of the most abundant phenolic acids in plants and in BPE, have not been well documented and the
mechanism has not been elucidated [25,26].

This study evaluates the antimicrobial potential of three phenolic acids known to be in BPE, with
the aim of comparing their individual effectiveness against ST. This will be determined by measuring
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patterns of growth inhibition, cell membrane permeability and visible morphological changes, as
well as impairment of cellular functions related to virulence. These findings will serve as a base for
discovering the mechanism of action of some of the components that make up BPE, allowing for better
guided use of this product in the future, as well as understanding the antimicrobial potential of the
phenolic acid family of compounds against increasingly resistant pathogens such as ST.

2. Results

2.1. Antimicrobial Effect on Bacterial Growth

A microdilution assay was used in order to determine the minimum inhibitory concentration
(MIC) and minimum bactericidal concentration (MBC) of each individual compound and to determine
phenolic acids with bactericidal/bacteriostatic antimicrobial potential when used individually against
ST. The MIC was taken as the concentration at which there was no visible growth of bacteria in LB
broth (Table 1). The MICs of GA, PA and VA were 3.5, 2.0 and 1.5 mg/mL, respectively. The MBC
was determined as the concentration at which bacteria showed no detectable growth on LB agar after
plating from LB broth aliquots. The MBCs of GA, PA and VA were 4.5, 2.0 and 2.0 mg/mL, respectively.
(Figure 1). These concentrations exhibited the most acute antimicrobial effect; however, significant
reduction as compared to the control was also recorded at lower concentrations. GA exhibited a
statistically significant (p < 0.05) inhibition of bacteria up to 2.5 mg/mL; PA exhibited a statistically
significant inhibition up to 1.5 mg/mL; VA exhibited a statistically significant inhibition up to 1.0
mg/mL. Calculating the ratio of MBC:MIC found the three compounds to be bactericidal, as they fell
on or below a ratio of 2.

Table 1. Antibacterial effect of phenolic acids.

Treatment MIC (mg/mL) MBC/MIC Bactericidal/Bacteriostatic

Gallic acid 3.5 1.28 Bactericidal
Protocatechuic acid 2 1 Bactericidal

Vanillic acid 1.5 1.33 Bactericidal
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Figure 1. Concentration-dependent antimicrobial evaluation for individual phenolic compounds by
determining minimum bactericidal concentration (MBC) (log CFU/mL) for Salmonella enterica serovar
Typhimurium (ST) treated with increasing concentrations (0.25–4.5 mg/mL) of gallic acid (GA) (A),
protocatechuic acid (PA) (B) and vanillic acid (VA) (C). Letters denote statistically significant difference
(p < 0.05) as compared to control and between concentrations (a–e).
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2.2. Evaluation of Resistance Development

Bacteria were transferred from a well containing sub-MICs of each compound that permitted
substantial bacterial growth over time. Transfers were performed 12 times (generations) while the
MIC from the aliquot was recorded and used as the indicator for changes in susceptibility or resistance
(Figure 2). Though no continuous or consistent increase during this period was shown, by the end of
the 12 passages, the MIC values for GA stabilized at 3.5 mg/mL, while PA increased to 2.5 mg/mL,
showing an increase of 1 mg/mL from the beginning of the experiment, while VA remained at 1 mg/mL
from the 4th passage.
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12 generations.

2.3. Plasma Membrane Permeability and Damage

Changes in outer membrane permeability were measured using BacLightTM Bacterial Viability
Assay, which uses SYTO9 and propidium iodide (PI) as indicators of membrane integrity. SYTO9
freely crosses the cell membrane and intercalates with DNA, emitting a green fluorescence, while PI
is used as the main indicator for membrane damage, since it mainly crosses the bacterial membrane
when there is increased permeabilization, allowing it to compete with SYTO9 for DNA intercalation
within the bacterial cytoplasm, leading to the emission of red fluorescence that can be measured
spectrophotometrically in units of relative fluorescent intensity (RFI) and microscopically (Figures 3
and 4). There was no significant difference between control and treatments at 0 h. Significant (p <

0.05) differences between the RFI levels of the control and treatment were seen in GA at subsequent
timepoints, with an increase of 2584, 2123 and 2345 RFI at 4, 8 and 24 h. Overall RFI for GA decreased
at 8 and 24 h, but remained significantly higher as compared to the control. The RFI for PA and VA
experienced an increased to 1851 and 4062 RFI, respectively, at 4 h, which was significant (p < 0.05) as
compared to the control. At 8 h, the RFI for both PA and VA decreased, with only the latter remaining
slightly numerically higher than the control. At 24 h, both RFI values increased to 2441 and 3212
for PA and VA, respectively, as well as remaining significantly higher than the control. The results
from fluorescent microscopy (Figure 4) showed an untreated bacterium to mostly take up SYTO9,
as evidenced by the prevalent green coloration of the bacteria, though the presence of slightly more
yellow bacteria at increasing timepoints signals a low take-up of PI. In treated bacteria, an increasing PI
buildup could be seen at 4 h particularly for GA and VA, while at 8 h all bacteria exhibited a PI buildup
and higher counts of red bacteria. At 24 h, all treated bacteria had comparatively more presence of red
bacteria than green.
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2.4. Morphological Alterations of ST

Physical changes in ST were examined using scanning electron microscopy (SEM), which allows
for a detailed visualization of the bacterial outer membrane after treatment and a later comparison to
the untreated control (Figure 5). The untreated control exhibited the usual rod shape associated with
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ST. However, a distinct inward collapse of the cell membrane, that could be visualized as a hole, was
observed at the polar ends of rods treated with GA and PA. On the other hand, VA did not exhibit the
same morphological defect as its other two phenolic counterparts; however, cells from this sample
featured a vast number of rods in the middle of binary fission, with a clearly formed division ring.
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(A2–D2) magnification.

2.5. Relative Gene Expression of ST

Changes in the expression of ST virulence genes were evaluated through the use of qRT-PCR and
gene-specific primers for fliC, hilA, hilD, invH, prgH, prgK and sipA. When compared to an untreated
control, samples from bacteria treated with individual phenolic acids mostly showed a downregulation
of examined virulence genes (Figure 6). All virulence genes from bacteria treated with GA showed
downregulation when compared to the untreated control, with hilA, hilD, invH, prgH, prgK and sipA
being significant (p < 0.05) by 2.51, 3.02, 2.35, 2.24, 2.33 and 2.06 log-folds, respectively. PA-treated
samples demonstrated statistically significant (p < 0.05) downregulation in fliC, hilA and invH by 1.87,
2.0 and 0.78 log-folds, respectively, with only a numerical decrease in all but prgH. Samples treated
with VA showed significant upregulation for fliC with an increase of 2.35 log-folds, while the rest of the
genes showed a numerical decrease.
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3. Discussion

The use of plant-derived polyphenolic compounds against Gram-negative pathogenic bacteria has
gained notice because of the need for novel antimicrobial agents that can counteract the increasing trends
of antibiotic resistance. Though polyphenolic compounds belonging to groups such as flavonoids,
tannins and catechins have received much attention for their antimicrobial potential, many researchers
have focused on compounds belonging to phenolic acids. These comprise at least one-third of the
polyphenolic compounds found in plants, are readily solubilized without need for toxic solvents, and
have been proven to have antibacterial potential [27,28]. The low molecular weight of phenolic acids
compared to other polyphenols has been cited as a factor that potentially allows for more interactions
with bacterial structures, resulting in greater antimicrobial effects [29]. Though the compounds
evaluated in this study share a strong structural similarity, differences in their functional groups could
play an important role when it comes to efficiency, half-life and target specificity [30]. Hydroxyl (-OH)
and methoxy (-OCH3) groups have been cited as key attributes that affect molecular interactions, as
these create differences in polarity and oxidation rates [31].

The phenolic acids evaluated in this study have been previously noted by other researchers,
primarily for their roles as antioxidants, documented use as food preservatives, and antimicrobial
potential against Gram-negative bacterial pathogens [32]. GA, PA and VA specifically have been shown
to inhibit the growth of Pseudomonas spp., Listeria monocytogenes, Mannheimia haemolytica, Pasteurella
multocida, Escherichia coli and some strains of Salmonella spp., as well as being able to reduce the
pathogenicity of other bacteria such as Proteus mirabilis [33–36]. However, the effectiveness against ST,
specifically, has not been consistently documented, in addition to the mechanisms of action underlying
the molecular interactions that precede cell death remaining poorly understood. Previous research
that has delved more profoundly into studying the effects that phenolic acids have on Gram-negative
bacteria have cited a decreased metabolic activity, inhibition of enzyme function and cell membrane
damage as common outcomes of exposure to these compounds [37]. Though these could all contribute
to cell death, outer membrane damage has been consistently documented, which warrants further
study, since the outer membrane of Gram-negative bacteria is of extreme importance for survival in
adverse environments and resistance to antibiotics [38].
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The results from this study suggest that GA, PA and VA have concentration-dependent
antimicrobial capability against ST, with all of them being able to inhibit bacterial growth to the
point of non-detection at specific concentrations, as exhibited by the MBC values (4.5, 2 and 2
mg/mL, respectively). GA was outperformed by PA and VA in both MIC and MBC tests, with PA
and VA requiring lower concentrations of the compound to significantly inhibit growth. However,
it is important to note that bacteria treated with VA were further challenged by the ethanol used
for preparing the solution. Considering the factors mentioned above, PA could be considered the
better of the three compounds as it is more potent and exhibits its effects without interference from
additional solvents.

The emergence of antimicrobial resistance poses one of the main concerns and challenges for
novel antimicrobial discovery, development and sustainability [39]. The use of individual compounds
in particular has become increasingly challenging as research has demonstrated that bacteria have
intrinsic mechanisms that serve to minimize susceptibility to a variety of known bioactive molecules,
in addition to having the ability to adapt to new ones [40,41]. In this study, resistance to individual
compounds was measured throughout 12 passages and found ST to still be susceptible to all phenolic
compounds at the end of the passages. Even though there was an increase of 1 mg/mL for the MIC value
of GA and PA, the concentration did not increase beyond that point. VA’s MIC remained stable from
early on in the experiment and showed no significant increase at the final passage. The development
of resistance could be related to how easily the compound could be oxidized by environmental factors
or by the bacteria [42]. The methoxy group of VA makes it more stable and less prone to oxidation
than GA and PA, which are more susceptible to direct oxidation of their respective hydroxyl groups by
bacteria and to the effects of media acidification as a result of bacterial growth [43]. With this in mind,
the observed increase in resistance to GA and PA could be an indirect result of changes in the metabolic
pattern of bacteria and not a direct response to the compounds [32]. Future studies will involve more
extensive and numerous passages, as well as experiments that further elucidate the mechanism of
action and bacterial response, which will be important for preventing the risk of developing resistance
and potentially novel ways in which it can be actively counteracted.

The outer membrane of Gram-negative bacteria serves as the first defensive barrier against
antimicrobials and is responsible for conferring resistance to a variety of antibiotics, as well as to
multiple environmental stressors [44]. Research on food contaminated with E. coli has discovered
that the communities found in these environments resemble stationary phase bacteria that are well
adapted to a lower pH, higher temperatures and osmotic pressure [45]. This potentially means that
more virulent pathogens can survive the passage through the gastrointestinal tract and are also initially
more virulent. However, one of the characteristics of these bacteria is an increased re-enforcement of
the cell envelope [46]. On the other hand, resistance to cationic antibiotics that target outer membranes
has been reported to be usually mediated through the modification of lipopolysaccharides (LPS),
leading to an alteration of the net charge of the outer membrane [47]. Phenolic acids have long been
hypothesized to damage bacterial outer membranes through mechanisms mediated by electrostatic
and ionic interactions, or by passive diffusion to the cell interior, but the exact interaction that leads to
this outcome has remained undefined [25]. Previous studies have reported this effect to be dependent
on the relative acidity and oxidation of the compound in the solution at the time of contact with the
bacteria, which will affect whether it will be able to penetrate the outer membrane and the extent
to which it will interact with bacterial lipids and proteins located in the cytoplasm and periplasmic
space [25,26]. Measuring PI RFI served as an indicator to measure changes in membrane permeability
as a result of treatment and the time of exposure. This experiment demonstrated a significant increase
for all treatments at the 4 and 24 h timepoints when compared to the untreated control at that same time,
with GA and VA accounting for the highest reported RFI reads, though at 24 h PA had similar value as
GA. The reasons behind the decrease in RFI at 8 h is unclear, but could be related to a delay in growth
and cell death because of the treatments, yielding a lower cell count that resulted in a lower RFI signal
for PI, but leaves open the possibility that this occurred as a result of some acid tolerance response
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mechanism. Previous research on membrane-permeable organic acids suggests that small molecules
such as phenolic acids readily cross the outer membrane and damage the cell from the inside through
cytoplasm acidification, which is known to be a factor in increasing membrane permeability [48].
Another review on weak acid interactions with bacteria suggested that when weak acids disassociate,
there is an accumulation of anions in the periplasmic space that can lead to a disruption of membrane
function and metabolic processes, despite the various resistance mechanisms that ST has developed to
counteract weak acids [49]. The time that this mechanism takes to activate and take effect is unclear,
but a decrease in PI uptake at 8 h could be a result of the activation of these tolerance mechanisms,
but an increased exposure time overwhelms the bacteria leading to a resurgence of PI uptake at later
timepoints such as the one seen at 24 h.

Further investigation on alterations to membrane integrity were examined through microscopy.
Through fluorescent microscopy, there was a visible representation of the increasing membrane
permeabilization as the exposure time to the treatments increased, evidenced by the increasingly
red coloration of treated cells as time passed. Further investigation on this effect was conducted
through SEM, which allows for a detailed viewing of cell morphology. Images taken of GA and PA
treatment showed bacteria that shared a similar morphology, suggesting a similar mode of action of
the compounds and a similar cellular response, even though the lethal dose required for achieving cell
death was significantly higher for GA, as explained previously. The most notable cellular defects that
were observed in bacteria treated with GA and PA were inward dents located at the polar ends of the
rod-shaped cell, while the central body of the cell remained relatively unchanged as compared to an
untreated control. The reason for this change is yet to be determined, as this kind of phenotype has
not been reported previously for bacteria treated with phenolic acids. Possible explanations for this
particular morphology could be related to damage or alterations to proteins more commonly collocated
at cellular poles, such as osmotic pressure regulators and division complexes [50], or could be related
to changes in the integrity of bacterial cytoskeletal proteins [51,52]. The morphotype observed for VA
was different than the other phenolic acids, as these did not show clear evidence of membrane damage,
or cell structure change; however, the overwhelming majority of bacteria observed were found to be
mid-division. These contained a clearly formed division septum, but separation of the cell membrane
was arrested as the daughter cell remained attached. These findings suggest a perturbation of the cell
division process that allows for septum formation but prevents finalization.

In addition to growth inhibition and cell death, a reduction in virulence as a result of treatment
is a desired outcome, especially for ST cases, which are known to be invasive pathogens and use
these strategies to prolong survival in the host and create further health complications [53]. Relative
expression was measured for genes responsible for synthesis and the assembly of the T3SS, specifically
hilA, hilD, invH, prgH and prgK as well as genes related to other aspects of virulence such as fliC,
which increases motility and sipA which is responsible for intracellular survival. The results of this
experiment demonstrated a downregulation after individual treatment with GA, PA and VA in most
of the genes that were tested for, with the exception of the notable upregulation of fliC in VA and a
slight numerical increase in prgH in PA. The most significant reduction in all genes was in bacteria
treated with GA as all genes related to the structural assembly of the T3SS that were tested for were
downregulated, with the addition of one related to intracellular survival. Downregulation in PA was
more evident for fliC, which is important for motility, but also in hilA and invH, the former being a
key master regulator for the initiation of the T3SS and the latter being a pilot protein responsible for
the co-localization of the base of the needle in the bacterial inner membrane. Though the proposed
mechanism of action for these compounds is damage to the membrane and bacterial structure, previous
research has reported that damage to the envelope of ST, particularly alterations to the LPS of the outer
membrane, leads to the downregulation of genes related to flagellum synthesis and assembly [54]. The
same study found other virulence-related genes from SPI-1 and SPI-2 to be downregulated. To our
knowledge, the specific effects of phenolic acids on changes in virulence have not been examined before
for ST, leaving room for further exploration by applying these products for reducing the incidence of
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invasive salmonellosis, in addition to revealing one of the potential routes by which plant extracts
reduce virulence and could have protective qualities towards host cells, as has been reported in the
past [21,55]. In this specific experiment, GA demonstrated the greatest amount of promise as it was
able to reduce the expression of most virulence genes, though PA should not be discounted since it
also reduced key regulatory genes. The way in which VA impacts virulence is yet unclear, though
an increase in fliC could be a sign of stress that could warrant deeper investigation into that possible
mechanism. These differences in outcome are favorable if in the future there is an attempt to use these
compounds synergistically.

Plant extracts are promising candidates because the diversity of bioactive compounds they contain
are thought to exert multiple adverse actions over a given bacterium, reducing the risk of developing
resistance [56]. However, understanding the mechanisms of action of the individual constituents
of these extracts will allow for their use in a more guided and efficient manner, even allowing for
the possibility of rescuing conventional antibiotics [57,58]. The antimicrobial efficiency of individual
phenolic compounds is not as effective as that of leading antibiotics or to that of many raw plant
extracts, but in the future may provide alternatives to infections considered as untreatable by antibiotics.
This study also presents a way to uncover new targets and mechanisms that could be further exploited
when developing and evaluating novel antimicrobials, in addition to exploring the cellular response to
weak phenolic acids that lead to the changes in shape and gene expression patterns that were seen in
this study, which have not been reported in the past.

4. Materials and Methods

4.1. Bacterial Strain and Their Growth Conditions

In this study, Salmonella enterica serovar Typhimurium (ATCC 14028) (ST) was used. ST was
grown in Luria-Bertani (LB) (Becton, Dickinson and Co., Franklin Lakes, NJ, USA) agar at 37 ◦C under
aerobic conditions (Thermo Fisher Scientific Inc., Marietta, OH, USA). All experiments described were
performed in LB broth (Becton, Dickinson and Co., Franklin Lakes, NJ, USA) and were incubated
under aerobic conditions for 24 h in 37 ◦C with continuous aeration at 150 rpm through the use of a
shaking incubator.

4.2. Compounds and Stock Solution Preparation

GA (Acros Organics, Geel, Belgium), PA (Sigma-Aldrich, St. Louis, MO, USA) and VA (Alfa
Aesar, Ward Hill, MA, USA) were purchased in solid powder form. Stock solutions of gallic acid
and protocatechuic acid were prepared by dissolving in sterile deionized water, while vanillic acid
was prepared by dissolving in 30% ethanol (Pharmco-Aaper, Brookfield, CT, USA). Stocks for all
compounds were prepared to a concentration of 10 mg/mL. Phosphate buffer saline (PBS) was prepared
to a pH of 7.2.

4.3. Determining MIC and MBC

The MIC and MBC values for individual phenolic compounds were determined using the broth
microdilution method as described by Clinical and Laboratory Standards Institute Performance
Standards for Antimicrobial Susceptibility Testing M100 [59] and performed previously [21], with
slight modifications. Briefly, an overnight culture of ST cultured on LB agar was used to prepare a
bacterial suspension in PBS fixed to an optical density (OD600) of 0.1 (8 log CFU/mL). This bacterial
suspension was further diluted and used to inoculate 24-well plates containing LB broth with increasing
concentrations of phenolic acids (from 0.5 to 4.5 mg/mL) to achieve a final bacterial load of 4 log
CFU/mL in each well. Controls were prepared to have an equivalent media-to-solvent ratio with
their respective treatment counterpart. MIC was determined as the lowest concentration at which
there was no visible bacterial growth in the well after 24 h. MBC was determined as being the lowest
concentration after 24 h at which there was ≥99.9% eradication of bacteria after plating in LB agar.
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The MBC:MIC ratio was calculated in order to determine if the treatments were bactericidal (<2) or
bacteriostatic (>16).

4.4. Resistance Development over Time

Development of resistance to the phenolic acids in ST was evaluated using methods previously
described on resistance development to antibiotics with modifications [60]. Briefly, a 24-well plate was
prepared following the same set up as the microdilution assay. The bacteria from the well with the
highest concentration of each of the respective treatments, below MIC, and that allowed growth after
24 h, were selected. An aliquot from the bacteria in this well was taken and again fixed to an OD600 of
0.1 to repeat the process of inoculation of a new 24-well plate. This was performed over 12 generations
and changes in the MIC were recorded over this time.

4.5. Measuring Membrane Damage and Permeability Using Fluorescent Dyes

Damage to the cell membrane of ST that might have led to increased permeability of the membrane
during treatment with phenolic acids was evaluated through the use of a Cytation 3 fluorescence
microplate reader (BioTek, Winooski, VT, USA) to measure RFI and later fluorescent microscopy was
performed using the Zeiss AxioObserver Florescence microscope (Carl Zeiss AG, Jena, Germany).
Nucleic acid dyes SYTO9 and PI from a BacLightTM Bacterial Viability Kit (Invitrogen Molecular Probes,
Carlsbad, CA, USA) were used as indicated by the manufacturer, with some modifications. Briefly,
ST cultures set to a final OD600 of 0.1 in LB broth combined with lethal doses from the previously
calculated MBC doses of each compound, along with a negative untreated control, were individually
treated for 0, 4, 8 and 24 h, at which times 1 mL aliquots were taken from the total suspension. At
the given timepoints, aliquots were prepared as per the manufacturer recommendations by spinning
down the samples, washing with and resuspending in a 0.85% NaCl solution. SYTO9 and PI were
both added to the samples and incubated for 15 min, after which the fluorescence of both dyes was
measured in a black 96-well plate with a fluorescent plate reader set to an excitation of 485 nm with
emissions of 530 mm and 630 nm for SYTO9 and PI, respectively. In addition to the plate reading, 5 µL
aliquots from each sample at 4, 8 and 24 h timepoints were taken and fixed using 10% formaldehyde
for preparing slides that were later observed using fluorescent microscopy. Pictures taken with the
Zeiss AxioObserver Florescence microscope were minimally processed using the default Zeiss ZEN
software from the same company.

4.6. Scanning Electron Microscopy

Preparation of samples for observing changes in the cell shape of ST through SEM was performed
as described previously [61,62], with some modifications. Briefly, ST cultures in LB broth were
individually treated for 24 h with sublethal concentrations (below calculated MIC, namely 3.0, 1.5
and 1.0 mg/mL for GA, PA and VA, respectively) of phenolic compounds, in addition to an untreated
control. Bacteria were pelleted, washed and resuspended in PBS, after which samples were placed
in a polycarbonate membrane filter (GTTP 0.2 µm) (MilliporeSigma, Rockville, MD, USA) and fixed
with 2.5% (v/v) glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA, USA) for 1 h. Filters
were washed with deionized (DI) water and later dehydrated by sequentially soaking with increasing
concentrations of absolute ethanol (10%, 20%, 50%, 80% and 100%) for 5 min each. Filters were kept
overnight over anhydrous magnesium sulfate to eliminate residue moisture. Filters were prepared
for SEM by sputter-coating with gold and observed using the Hitachi SU-70 FEG Scanning Electron
Microscope (Hitachi High-Tech Corporation., Minato-ku, Tokyo, Japan).

4.7. RNA Extraction and cDNA Synthesis

Samples were prepared for RNA extraction by inoculating a bacterial suspension of ST to a final
concentration of 4 log CFU/mL and incubated overnight. They were individually treated with the
sublethal concentrations (below calculated MIC, namely 3.0, 1.5 and 1.0 mg/mL for GA, PA and VA,
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respectively) of each compound (concentration before MIC) and were subsequently collected. RNA
was extracted following the previously described methods with modifications [63]. Briefly, samples
were centrifuged at 14,000× g for 15 min to collect bacterial pellet, and TRI Reagent® (Molecular
Research Center Inc., Cincinnati, OH, USA) protocol was used to homogenize pellet and isolate the
RNA sample. RNA concentration in the sample was measured using a NanoDrop spectrophotometer
(Thermo Fisher Scientific Inc., Marietta, OH, USA) for standardization and to use as the template for
cDNA synthesis with the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA), in accordance with the manufacturer indications. The cDNA synthesis protocol was
set to incubate for 25 ◦C for 10 min, 37 ◦C for 120 min, and 85 ◦C for 5 min.

4.8. Quantitative RT-PCR Assay

Changes in the relative expression of genes related to the virulence of ST were measured using
qPCR. The qPCR reaction was prepared in accordance with the manufacturer indications of the
PerfeCTa SYBR Green Fast Mix protocol (Quanta Bio, Beverly, MA, USA), and performed using the Eco
Real-Time PCR system (Illumina, San Diego, CA, USA). Cycle protocol was set to 30 s at 95 ◦C, followed
by 40 cycles of 5 s at 95 ◦C, 15 s at 55 ◦C and 10 s at 72 ◦C. Custom primer sequences corresponding
to the conserved regions of respective virulence genes in ST were used to compared to a reference
house-keeping gene belonging to 16S-rRNA (Table 2).

Table 2. Primers used in determining gene expression of ST strains.

Gene Protein Primer Sequence (5’-3’)

16S rRNA 16S ribosomal protein F: GTAGTACGATGGCGAAACTGC
R: CTTCTCGACCCGAGGGACTT

fliC flagellum subunit F: GCAGATGACGGTACATCCAA
R: CCAGATCAGGCTGTGCTTTA

hilA SPI-1 transcriptional regulator F: AATGGTCACAGGCTGAGGTG
R: ACATCGTCGCGACTTGTGAA

hilD SPI-1 transcriptional regulator F: CTCTGTGGGTACCGCCATTT
R: TGCTTTCGGAGCGGTAAACT

invH adherence and invasion F: GGTGCCCCTCCCTTCCT
R: TGCGTTGGCCAGTTGCT

prgH T3SS needle support at membrane F: TGAACGGCTGTGAGTTTCCA
R: GCGCATCACTCTGACCTACCA

prgK T3SS needle support at membrane F: GGGTGGAAATAGCGCAGATG
R: TCAGCTCGCGGAGACGATA

sipA actin binding protein for cell invasion F: CGTCTTCGCCTCAGGAGAAT
R: TGCCGGGCTCTTTCGTT

4.9. Statistical Analysis

Data were analyzed using a Student’s t-test to determine the significant difference (p < 0.05)
between the untreated control and the separate treatment with the individual compound.

5. Conclusions

In the current study, widely distributed phenolic acids—GA, PA and VA—were tested for their
antimicrobial potential against ST. Results show that these compounds have the capacity to inhibit the
growth of ST and act as a bactericidal in a concentration-dependent manner. After 12 passages, there
was no significant development of resistance in ST to these compounds. The increased uptake in PI
measured in the fluorescent plate reader and observed through fluorescent microscopy suggests that
the membrane is permeabilized as a result of exposure to phenolic compounds over increasing bouts
of time. Alterations to the cell membrane were confirmed with SEM, in which there were structural
deformations in treated cells. GA and PA lead to the formation of dents at the polar ends of the bacteria,
whereas VA caused an arrest in the cleavage between dividing cells. These morphological changes
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provide insight into the mechanism of action of these compounds and the cellular responses that they
induce. In addition to this, GA and PA led to the significant downregulation of important virulence
gene regulators—though VA only showed a numerical decrease, it might have other effects over ST.
This knowledge can be used in the future to develop novel therapeutic approaches and techniques that
exploit the effects that phenolic acids have over ST, in order to control the pathogen and reduce the
severity of infections.
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