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Abstract: Sepsis is a life-threatening condition that accounts for numerous deaths worldwide, usually
complications of common community infections (i.e., pneumonia, etc), or infections acquired during
the hospital stay. Sepsis and septic shock, its most severe evolution, involve the whole organism,
recruiting and producing a lot of molecules, mostly proteins. Proteins are dynamic entities, and a
large number of techniques and studies have been devoted to elucidating the relationship between
the conformations adopted by proteins and what is their function. Although molecular dynamics
has a key role in understanding these relationships, the number of protein structures available in
the databases is so high that it is currently possible to build data sets obtained from experimentally
determined structures. Techniques for dimensionality reduction and clustering can be applied in
exploratory data analysis in order to obtain information on the function of these molecules, and this
may be very useful in immunology to better understand the structure-activity relationship of the
numerous proteins involved in host defense, moreover in septic patients. The large number of degrees
of freedom that characterize the biomolecules requires special techniques which are able to analyze
this kind of data sets (with a small number of entries respect to the number of degrees of freedom).
In this work we analyzed the ability of two different types of algorithms to provide information on
the structures present in three data sets built using the experimental structures of allosteric proteins
involved in sepsis. The results obtained by means of a principal component analysis algorithm and
those obtained by a random projection algorithm are largely comparable, proving the effectiveness
of random projection methods in structural bioinformatics. The usefulness of random projection
in exploratory data analysis is discussed, including validation of the obtained clusters. We have
chosen these proteins because of their involvement in sepsis and septic shock, aimed to highlight the
potentiality of bioinformatics to point out new diagnostic and prognostic tools for the patients.

Keywords: Sepsis; allosteric; albumin; cyclooxygenase; hemoglobin; PCA; random projection;
pathophisiology; bioinformatics tools; clinical chemistry

1. Introduction

Sepsis is a life-threatening condition that accounts for numerous deaths worldwide, usually as
complications of community infections (i.e., pneumonia, etc.), or infections in hospitalized patients.
Sepsis and septic shock, its most severe evolution, involve the whole organism, recruiting and
producing a lot of molecules, mostly proteins. Protein functions are closely related with their structure,
and the discovery of meaningful structure-function relationships is of overwhelming importance in
biochemistry. Conformational changes in proteins have been known for a long time and are crucial for
the biological activity of these molecules. These changes range from subtle side-chain displacement

Antibiotics 2019, 8, 225; doi:10.3390/antibiotics8040225 www.mdpi.com/journal/antibiotics

http://www.mdpi.com/journal/antibiotics
http://www.mdpi.com
https://orcid.org/0000-0001-5071-611X
https://orcid.org/0000-0002-3998-5324
https://orcid.org/0000-0003-2717-2489
https://orcid.org/0000-0001-5671-8124
https://orcid.org/0000-0002-3447-1535
http://dx.doi.org/10.3390/antibiotics8040225
http://www.mdpi.com/journal/antibiotics


Antibiotics 2019, 8, 225 2 of 12

or change in the flexibility in some loop to large whole domain motions. Conformational changes
have been involved in the enzymatic activities of proteins, in the recognition of substrates and in the
protein-protein interactions. Because of their importance, numerous experimental and computational
techniques were developed to allow the extensive characterization of these conformational changes so
that it is virtually impossible to remember them all here. In recent years there has been a considerable
increase in the ability to produce high-quality three-dimensional structures of proteins. To date more
than 126,000 structure are in the Protein Data Bank (PDB) [1–3]. This number continues to grow
dramatically and for many proteins multiple entries are present in the PDB. Important information
about conformational states of specific proteins can be extracted by the analysis of these redundant
entries for the same protein, generally obtained in different conditions. For single protein, redundant
data sets can be analysed using various mathematical tool [4]. A classical approach is the principal
component analysis (PCA), a multivariate statistical method based on the covariance of data [5–7].
This method has a wide range of applications in today’s data science [8–11]. If the number of data
(or different structures in the case of proteins) is sufficiently high, PCA even makes it possible to
reconstruct the main modes of protein motion starting from the (static) crystallographic structures,
in excellent agreement with the experimental and molecular dynamics data [12,13]. However, the fact
that the number of entries in these structural data sets is large but in general not comparable (i.e., less
than) the number of degrees of freedom that are needed to describe a typical protein imposes several
constraint to the algorithm to be used in such analyses. In this case, to perform a PCA type analysis,
it is necessary to use specialized state of the art algorithms [14], which are also able in this type of data
sets to reveal information on the dynamics [15] or the presence of functionally important clusters [16].

The reader should consider that crystal structures represent time and space averages of all
molecules present within the crystal lattice (which is not perfect). Conformational variations can
provide information about the flexibility or movement of regions of protein structure that might be
important for function and ligand binding. Even in the case of a single structure corresponding to
the minimum of a potential well, the protein is actually a family of structures that can be explored
as a result of thermal motion. Particularly in the case of subtle structural differences it is necessary
to consider not only if and how important are these, or are they related to some functional aspect
of the protein, but first of all if they can be simply due to thermal motion (so to speak, frozen in the
coordinates provided in the PDB), or also to refinement errors [17].

Here we show that a simple algorithm based on random projection [18] performs well in the
dimensionality reduction and unsupervised clustering of protein structure data sets. Furthermore,
if data clusters are effectively well separated, this will be true even in the case of random projection.
Therefore, if we find clusters of data in two-dimensional projections obtained by PCA that are not
observable even in the random projection, it is possible that the clusters are not reliable. In this case
caution is required in the interpretation of the data, which must be integrated with the biochemical
knowledge available on the particular proteins. We apply this algorithm in the exploratory data
analysis on three model proteins that represent different types of allostery from a structural point
of view: a monomeric allosteric protein that exhibits evident structural changes, a case of allostery
without dramatic structural changes, and a classical multimeric allosteric protein. All these proteins
are involved in various ways in sepsis and, to better understand this process, the study of the
conformational changes of existing and newly produced proteins that occur during an infectious
process is really interesting.

2. Results

2.1. The Human Serum Albumin: Allostery in a Monomer

The human serum albumin (HSA) [19], the most abundant protein in plasma, is a monomeric
multi-domain molecule. HSA is a non-glycosylated, all-α protein chain of 65 kDa, with a globular
heart-shaped conformation containing three homologous domains. Each domain is composed by two
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subdomains. It is an important transport protein with different binding sites able to accommodate
a number of chemically different ligands. HSA represents the main carrier for fatty acids, for which
there are seven binding sites. It is also a depot and carrier for exogenous compounds (mainly, but not
exclusively at the so called Sudlow’s sites I and II), thus affecting the pharmacokinetics of many drugs.
Hypoalbuminaemia is often associated with sepsis and/or critical illness, and the supplementation
of HSA still remains controversial in these patients [20]. In fact, the function of HSA is fundamental
in the infective and septic process, and is closely related to specific conformational modifications,
influencing the whole health status of the patients [21]. It is worth noting that a large number of
structural and functional works on HSA have lead to the conclusion that two structures, possibly
related to the presence of fatty acids, are discernible for this protein [19,22]. Short chain fatty acids
(SCFAs), a common product of microbial metabolism, affect albumin production and metabolism,
so they have a role in the evolution of the septic patients [23]. In fact, they directly influence the
hepatic albumin metabolism [24]. This three-domain organization of HSA is at the root not only of its
extraordinary ligand binding capacity, but also of the allosteric control of this last. The HSA structure
and reactivity (and also its enzymatic activity) is affected reversibly by pH and ligands, such as fatty
acids, heme or drugs.

Among the available structures, we selected 58 structure for the analysis. This data set has been
described in details elsewhere [18]. The α-carbon atom Cartesian coordinates of HSA were extracted
and arranged in a data matrix, such that each row represented a single HSA structure. Thus, the data
matrix was composed of 58 rows and 1695 columns (565 α-carbon atoms were finally included in the
analysis [18]). This is a degenerated data set, as it is impossible to obtain the true correlation matrix of a
multivariate system with 1695 degree of freedom by using only 58 samples. As recalled above, in order
to reduce the dimensionality and to obtain an unsupervised clustering of the structures present in the
data set, it is possible to use algorithms that estimate the principal components. Using the truncated
singular value decomposition (SVD) algorithm [14] to estimate the principal components, two clusters
of structures for the HSA data set can be discerned, as can be seen from Figure 1. However, the same
clusters can be obtained by the simple random projection algorithm. As can be easily appreciated
by inspecting the figure, these analyses clearly demonstrate that the only discriminant for such a
structural switch in the whole data set is the presence or absence of bound fatty acids [18].

Figure 1. The human serum albumin data set. Principal component analysis (left panel) and random
projection analysis (right panel) of the of the normalized HSA data set are reported. HSA structures
without bound fatty acids are reported as withe circles, while those with bound fatty acids are reported
as black circles. Both methods clearly allow to recognize two clusters of structures. Note the different
level of dispersion provided by the two methods.

2.2. The Cyclooxygenase: Allostery without Conformational Change

The cyclooxygenase (COX), also known as prostaglandin H2 (PGH2) synthase or prostaglandin
endoperoxide H2 synthase (PGHS), is a membrane bound, heme-dependent bis-oxygenase and
hydroperoxidase [25–27]. This enzyme participates to the prostanoid synthesis by two sequential
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reactions: the bis-oxygenation of arachidonic acid (the cycloxigenase reaction) and the reduction of
prostaglandin G2 (PGG2) (in the peroxidase site) to form PGH2. In mammals, arachidonic acid is the
major prostanoid precursor, which are a subclass of the eicosanoids. COX has a pivotal role in the
production of a large number of immune and inflammatory mediators, and the effectiveness of COX
inhibition as a treatment for severe sepsis has been extensively studied [28]. Two isoforms of COX
can be found in mammals, the constitutive COX-1 and the inducible COX-2. These two isoforms are
significantly different in their expression profiles and physiological roles and are involved in various
pathological situations. From a structural point of view, and as expected considering the sequence
similarity, the two isoforms are quite similar. COX functions as homodimer, and each monomer consists
of three domains [26]: an EGF domain at the N-terminal, a membrane-binding domain and a large
globular C-terminal domain. This last domain contains the heme binding site and is the responsible
of the catalytic activities of these enzymes. The EGF domain participates to the dimer interface and
probably to the interaction with membranes. The membrane-binding domain consists of four short
amphipathic α-helices. The bulk of COX is represented by the catalytic domain, which is composed
essentially by α-helices. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a drug class that inhibit
the COX activity. NSAIDs can be divided in two classes: the classical isoform non-specific, that inhibit
both COX-1 and COX-2, and the COX-2 inhibitors show a high selectivity for this particular isoform.
A large number of studies has demonstrated that COX is a dynamic and flexible molecule that does
undergo conformational changes upon binding of heme, substrates and drugs [26].

The fact that COX works as a homodimer and a series of data on its enzymatic activity strongly
suggest that this enzyme can undergo to allosteric regulation by its substrates [29–31]. However,
despite a growing number of crystal structures available in different conditions, no evident
ligand-induced conformational changes can be noticed [26]. We have analysed data sets of these
enzymes as example of proteins where only tiny (if any) structural changes can be observed.
We selected 38 Ovis ares COX-1 structures and from these we obtained a 38× 1653 matrix representing
the Cartesian coordinates of the α-carbon atoms (551 α-carbon atoms). The COX-2 data set included 78
entries from the Mus musculus specie, arranged in a matrix of dimension 78× 1608 (536 α-carbon atoms).

The results of the PCA (by the truncated SVD methods recalled above) and the random projection
analysis for the COX-2 data set are reported in Figure 2. Both methods show that all the analyzed
structures are distributed in a single cluster, in agreement with what is known about the structural
variability of this enzyme in different conditions. PCA analysis detects some putative outliers, indicated
as gray circles in the Figure, which are located at the peripheral region of the cluster obtained by
the random projection algorithm, but not linearly separable from the bulk of structures. Moreover,
the outliers distribution is not exactly the same using the two methods: this suggests that, in this case,
the separation obtained by PCA is probably strongly influenced by the noise due to the low number
of available samples. It should be noted that no meaningful partition of these data can be obtained
considering the presence (or absence) of ligands, such as NSAIDs, fatty acids or heme, in agreement
with the conclusion that probably only one cluster of structures is actually present in the data set.

The Ovis ares COX-1 data set shows different results, depending on the algorithm used for the
dimensionality reduction. As indicated by Figure 3, the PCA algorithm describes three different
clusters of structures (labeled as red, black and green circles in the Figure). One of this, the one shown
in green in the Figure 3, is particularly interesting because it is composed by entries that have been
crystallized as monomers with bound fatty acids [32–35]. The other two clusters are both composed by
unliganded molecules or structures containing bound NSAIDs.
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Figure 2. The Mus musculus COX-2 data set. Principal component analysis (left panel) and random
projection analysis (right panel) are reported of the normalized data set containing the COX-2
monomers. Outliers in the principal component analysis are reported as gray circles in both panels;
95% and 99% confidence levels are drawn in dark and light gray, respectively. Note that both methods
do not identify clearly separate clusters of structures.

Figure 3. The Ovis aries COX-1 data set. Principal component analysis (left panel) and random
projection analysis (right panel) are reported of the normalized data set containing the COX-1
monomers. Principal component analysis identifies on this data set three clusters of structures,
indicated as black, red and withe circles. On the contrary the random projection method returns
for this data set a single cluster; the entries are colored as in the left panel. The 99% confidence levels
for the clusters are reported are drawn in the same color.

The random projection algorithm shows for this data set only a single cluster of structure, in which
the structures that appeared in different cluster after PCA appear instead mixed. It should be noted
that the differences between structures that are reported in different clusters by PCA are extremely
small. In Figure 4 the superposition of the structures belonging to the cluster of structures with bound
fatty acids appears almost perfect. In the same Figure 4 it is reported also a COX-1 structure that is
very distant from those mentioned above [36]. As can be appreciated by inspecting the Figure, the
differences are really minimal, so much so that it is not inconceivable that the PCA algorithm has
operated a kind of over fitting of this data set. This observation is supported by the fact that the
separation in different clusters vanishes in the two-dimensional random projection, suggesting also in
this case that in reality only one cluster is present.
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Figure 4. COX-1 structures. The figure reports the structures of PDB entries 1IGZ, 1IGX, 1FE2, 1U67
and 1DIY, that represent the cluster of structures with bound fatty acids described in the text (red and
orange structures). The structure of the 1PGF (chain A) is reported in blue for comparison. All these
structures belong to E.C 1.14.99.1, prostaglandin-endoperoxide synthase.

2.3. Hemoglobin: The Quintessence of Allostery

Hemoglobin (Hb) is undoubtedly the archetype of allosteric proteins [37,38]. Human adult
hemoglobin (Hb A) has a tetrameric structure consisting of two α-chains and two β-chains with 141
and 146 amino acids respectively. Each of the chains in Hb contains a heme group, which is the
binding site for ligands, such as oxygen, carbon monoxide, cyanide and nitric oxide. Hemoglobin
usually drops in septic patients, due to a large number of factors, most of them still now undefined.
The concentration of Hb in blood samples is currently accepted as a potent prognostic marker [39–43].
It is one of the first proteins whose structure was resolved by X-ray crystallography since the 1960s [44].
From these crystallographic data the Peruz’s two-structure and the Monod-Wyman-Changeux models
for Hb allostery were proposed [45–47]. These classical models essentially postulates that the four
subunits in Hb assume simultaneously either the tense (T) or relaxed (R) structures. Both structures
can bind ligands but the affinity towards the ligands changes at the transition from the T to the R form.
The differences in the observed crystal structures of the Hb in its oxy- and deoxy- forms are correlated
with the T- and R- states of the Monod-Wyman-Changeux model.

Hb can be considered a dimer of αβ dimers. The two αβ dimers are in contact and assume a
two-fold symmetry with the symmetry axis passing trough a water filled cavity composed by the
four subunits. The helices B, G and H (the BGH frame) form a well packed structure that does not
change upon ligand binding. The C and G helices and the FG corner of the unlike subunits make the
sliding contacts that change upon oxygen binding. The classical results of Perutz suggested that upon
oxygenation the α2β2 dimer rotates relatively to the other dimer, the heme Fe(II) moves through the
porphyrin plane and several several inter-subunit and intra-subunit salt bridges are broken. Actually
dozen of different structures of Hb are available and the clustering and classification of these is still
an active research field. Obviously we are not interested here in a systematic analysis of all these
structure, but simply to a comparison between different methods of unsupervised clustering. However
it should be mentioned that these systematic analyses have shown that what emerges is significantly
more complicated than the simple two state model for the Hb structure [48].

We have included in the analysis only 30 Hb tetramer. The selection criterion was simply based
on the search for the structure with the highest rank in the in the PDB cluster containing the α-chain
of the human Hb A, using a 100% identity cutoff, and the constraint of exactly a tetramer presents
in the structure and the absence of multiple coordinates for the same α-carbon atom in the pdb file.
The structures are represented by a 30× 1722 matrix.

The results of these analyses are reported in Figure 5. As can be appreciated, the Hb structures
form two distinct groups in the two-dimensional projections, both in that obtained by means of the
truncated SVD algorithm and in that one obtained from the random projection algorithm.
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Figure 5. The human hemoglobin data set. Principal component analysis (left panel) and random
projection analysis (right panel) are reported of the normalized data set containing the hemoglobin
tetramers. Entries in this data set are reported as black circles if they represent liganded forms of the
hemoglobin, or as withe circles if they are unliganded species. Two clusters of structures and two
outliers are clearly detected by both algorithms. See text for further details.

These two clusters correspond essentially to liganded and unliganded forms of the Hb, with
few, and perfectly explicable, exceptions. The structures 1QSI, 1THB and 1YE2 [49–51], although
representing liganded forms of the Hb molecule, cluster with the deoxy-Hb if analysed by both
algorithms. However all the remaining structures represent T state of the molecule. Moreover
1SHR [52] clusters with the liganded forms of the Hb, despite being a deoxy-Hb, using both algorithms.
Its particularity is justified considering that it is the structure of the Hb A2 with ferrocyanide bound.
Interestingly, both algorithms report two structure as a separate mini-cluster, distinct both from the
cluster containing the liganded structures and from that formed by the unliganded ones. These two
structures (1SDK and 1SDL) have been obtained by using the trimesic acid for the avowed purpose of
trapping the intermediates of the transition between the T form and the form R [53].

3. Discussion

In this work we have compared the effectiveness in dimensionality reduction for exploratory data
analysis of two different algorithms. Both are capable to deal with degenerated data sets, i.e., data sets
whose number of entries is much smaller than the number of the degrees of freedom that are required
to describe the system. The first one is the truncated SVD method for the calculation of PCA [14],
whereas the second one relies on random projection [18] which is based on the properties of random
matrices [54–57] and the features of correlation matrices obtained from the protein dynamics [54–56,58,59].

The results of these analyses show that both algorithms are effective in the dimensionality
reduction task, as well as the related cluster identification activity. If the same clusters are identified by
means of the two algorithms, these can be considered valid. On the contrary, if clusters identified by the
PCA are not observable using the method of random projections (in the same number of dimensions),
a note of caution is required and the significance of the clusters must be evaluated in the light of
biochemical knowledge about the protein. In this way, the technique of random projection represents a
simple and intuitive way to evaluate the result of the PCA-based clustering algorithms.

We obtain the same cluster of structure by both algorithms in the case of HSA, COX-2 and Hb,
with the single exception of the COX-1 case. However, as recalled above, it is a well known fact that
a single stable structure is the dominant conformation of the COX-2, which is extremely similar to
COX-1. Although it is true that there must be other conformations in the catalytic cycle of the COX-2,
they must be only transient. This makes to think that, in the case of this enzyme, allostery models
without conformational changes should be seriously taken into account. In fact plausible models of
allostery without conformational changes have been proposed some time ago [60]. Our results suggest
that this could be also the case for the COX-2 enzyme. The obtained data also show that the random
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projection can be a simple way to validate the data obtained by PCA in the presence of a number of
data lower than the degrees of freedom of the system.

Sepsis induces changes in both protein synthesis and structure, independently from the general
inflammatory response. The underlying inflammatory process takes place in order to neutralise the
causative agents, also due to to various modifications of the metabolic asset and the generation of
molecular isoforms of the biochemical pre- and newly formed mediators [61,62]. The availability of
new tools for protein study may be perspectively useful to better understand such events and their
possible implications for new diagnostic tests and more effective therapies.

4. Methods

Atomic coordinates of the selected proteins were obtained from PDB [2]. To obtain the data sets
in a matrix form, the pdb files were loaded in VMD (Visual Molecular Dynamics) [63] and superposed
by a simple Tcl (Tool command language) scrip (www.tcl.tk). The α-carbon atom coordinates were
extracted from the updated pdb files and written in a text file such that each row described a structure
by Tcl scripting. The raw text file were edited by Vim (Vi IMproved) scripting (www.vim.org), so as to
obtain the data matrix in a readable file format by the numerical analysis software (see below).

When we are dealing with protein structure datasets, the correlation matrix (henceforth indicated
as C) should be obtained from the Cartesian coordinates of the atoms included in the analysis that
represent the degrees of freedom of the system (also covariance matrix could be used). In its classical
implementation, the normalized PCA is based on the eigenvector decomposition of the correlation
matrix [54,55,58,64–66]. After the centroid subtraction, the covariance matrix of the data set can be
obtained as

χij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉

where 〈. . . 〉 represents the average over all the conformations in the data set. Then the correlation
matrix is calculated from the C-matrix as

Pij =
χij
√

χiiχjj

and this square symmetric matrix is diagonalized as

RT PR = Λ

using standard numerical routines, where R is an orthonormal transformation matrix, the superscript T

means transposition and Λ is a diagonal matrix whose elements are the eigenvalues. The eigenvalues,
and the corresponding eigenvectors, are ordered in descending order of the eigenvalues. The empirical
matrix was projected onto the eigenvectors to give the so called principal components. To overcome
the limitations imposed by the number of replicas required for the correct evaluation of the covariance
matrix, algorithms have been proposed, able to estimate the principal components also in the case
of not well dimensioned data sets [14,67]. However, PCA is not the only algorithm that can perform
the dimensionality reduction and the related unsupervised clustering tasks. A new and promising
class of unsupervised learning algorithms [18,68–72] is represented by those that use some random
projection methods. Correlation matrices of the protein structures obtained from molecular dynamics
experiments [54–56,58,59] exhibit spectra whose bulk eigenvalues can be modeled by some symmetric
random matrices [54–57], suggesting that a random matrix [54–57] can be used to obtain a system
on which to project the data set [18]. The random projection algorithm that will be used here [18]
works exactly as PCA, with the only difference that the matrix C is replaced by a symmetric random
matrix of the same dimension of C. This relax the minimum number of samples required for the
analysis of data sets containing a large number of degrees of freedom, making then analyzable also
small crystallographic data sets, in which the number of different structures is much smaller than the
degrees of freedom required to describe a protein.
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PCA and random projection algorithms were implemented numerically in the Python language
(www.python.org) in an IPython notebook [73]. The NumPy numerical software library [74] was used,
which is part of the Scipy [75] software package. Matplotlib [76] package was used to obtain the all
graphical outputs (obtained from Scipy; www.scipy.org). Before proceeding with the analysis of data,
a preprocessing step that can be described as

xi
std =

xi − µx

σx

was applied [66], where µx is the sample mean of a particular degree of freedom column and
σx the corresponding standard deviation, using the appropriate scikit-learn [77] built-in function.
For PCA, the truncated SVD algorithm implemented in the scikit-learn software package was
used [14,77]. The random projection algorithm and its practical implementation has been described in
details elsewhere [18].

The confidence ellipses have been calculated assuming the normal distribution for the
projected data and considering that the sum of the squares of Gaussian data is described by the
Chi-square distribution.
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