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Abstract: The anti-microbial properties of acetone extracts from Hibiscus sabdariffa calyces, fractions
isolated by silica gel chromatography and hibiscus acid purified from some of these fractions and
additionally identified by nuclear magnetic resonance spectroscopy, mid-infrared spectroscopy and
X-ray diffraction, were studied against both multidrug-resistant Salmonella strains and pathogenic
Escherichia coli bacteria. Gel diffusion was used to determine the anti-microbial effects. The mode
of action of hibiscus acid was determined by crystal violet assay. Hibiscus acid and 17 of the 25
chromatographic fractions obtained, displayed an anti-microbial effect against all bacterial strains
tested. Hibiscus acid showed a greater anti-microbial effect than the acetone extract against most
of the bacteria strains, while chromatographic fractions IX–XIV exerted the greatest anti-microbial
effect against all bacteria. The minimum inhibitory concentration of the acetone extract was 7 mg/mL,
and the minimum bactericidal concentration was 10 mg/mL, while the corresponding values for
hibiscus acid were 4–7 and 7 mg/mL, respectively. The results of the crystal violet assay indicate
that hibiscus acid alters membrane permeability. Hibiscus acid is a potential alternative to control
multidrug-resistant bacteria. Due to its ready availability and easy extraction from H. sabdariffa,
hibiscus acid is potentially useful in the food industries.
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1. Introduction

Salmonella is one of the leading causes of foodborne diseases, and its infection (salmonellosis)
is spread worldwide. Due to its prevalence, salmonellosis has become a public health burden,
representing significant costs in many countries. A range of fresh fruit and vegetables, especially those
eaten raw (lettuce, sprouts, melon and tomatoes), are implicated in Salmonella infection [1]. S. enterica
subspecies enterica is composed of more than 1500 serotypes with some of great importance, such
as S. Typhimurium and S. Enteritidis. S. enterica subsp. enterica is responsible for more than 99% of
human salmonellosis and therefore it is widely studied [2].
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Another relevant group of foodborne bacteria is the diarrheagenic Escherichia coli pathotypes,
including enterotoxigenic, enteroinvasive, enteroaggregative, diffuse adherent and Shiga
toxin-producing strains [3]. Some studies documented the importance of diarrheagenic Escherichia coli
pathotypes as agents associated with acute and persistent diarrhoea in Mexican children [4–7].
These E. coli strains circulating in Mexico were identified in various food and beverages and diarrheic
faecal stool samples [5,8–11].

The emergence of multidrug-resistant Salmonella strains and E. coli pathotypes are related to the
use of antibiotics in animals. Resistant bacteria can be transmitted to humans through foods, especially
those consumed raw or of animal origin [12]. The presence of multidrug-resistant pathogenic bacteria
in food is an important public health issue [13].

The increased resistance of pathogenic bacteria to antibiotics has intensified the demand
for safe and natural alternative anti-microbial agents in food products. Plant species used for
medicinal purpose and human consumption are currently being studied since they may constitute
a source of anti-bacterial compounds. It was reported that extracts obtained from calyces of roselle
(Hibiscus sabdariffa) have an anti-microbial effect on antibiotic-resistant and non-resistant pathogenic
microorganisms [14–24]. The extracts from H. sabdariffa calyces are a possible alternative to control
antibiotic-resistant pathogenic bacteria.

Calyces of H. sabdariffa are known to contain chemical compounds, such as organic acids,
phytosterols, polyphenols and anthocyanins [25]. It was suggested that different compounds such
as anthocyanins, polyphenol or protocatechuic acid are responsible for the anti-microbial activity
of H. sabdariffa [21,25–27]. However, no prior studies fully demonstrated the anti-microbial effect of
the specific chemical compounds in H. sabdariffa or reported the isolation of specific anti-microbial
constituents from its calyces, which are used in many regions of the world in hot and cold beverages.
It is possible that in the H. sabdariffa calyces there are other compounds other than those suggested and
that they are primarily responsible for the anti-microbial activity.

Hydroxycitric acid, hibiscus acid and it derivatives as the major organic acids in the leaves and
calyces extracts of H. sabdariffa [28].

Hibiscus acid was demonstrated to have an inhibitory effect on pancreatic α-amylase and intestinal
α-glucosidase, resulting in reduction of carbohydrate metabolism and blood insulin levels [29].
Furthermore, hibiscus acid was demonstrated to have a vasorelaxant effect on the rat’s aorta [30].

Hibiscus acid is not commercially available; however, it is a chiral compound and its diastereomer,
garcinia acid from (Garcinia cambogia) is commercially available.

The present study sought to isolate and identify at least one chemical compound with anti-microbial
activity from H. sabdariffa calyces and evaluate its anti-microbial activity against multidrug-resistant
foodborne bacteria.

2. Materials and Methods

2.1. Preparation of Hibiscus Sabdariffa Extract

Ten kilograms of dehydrated calyces of H. sabdariffa (“Criolla de Oaxaca” variety) grown in Oaxaca,
Mexico were used in the study. The calyces were stored in a closed polyethylene container at room
temperature until use. The acetonic extract from calyces of H. sabdariffa was obtained exactly as we
previously described. Briefly, samples (100 g) of dehydrated calyces were placed in glass flasks and
900 mL of acetone were added (Sigma-Aldrich, Toluca, Mexico). The flasks were hermetically sealed
and stored at room temperature for 7 days with manual shaking for 1 min once a day. After, the liquid
phase was filtered through filter paper (Whatman Grade 4). The filtered extracts were concentrated in
a rotary evaporator (V-800, Vacuum Controller, BÜCHI, Switzerland). The acetone was completely
removed from the rotaevaporated concentrate by placing it in an air recirculation oven (Ambi-Hi-Low
Chamber, Lab-Line, Jefferson, MO, USA) at 45 ◦C for 24 h [22,31].
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2.2. Chromatographic Fractionation of Acetone Extract

Two hundred and thirty grams of dry acetone extract of H. sabdariffa calyces was separated by
column chromatography. The dried extract was mixed with silica gel (Sigma-Aldrich, Toluca, México),
previously activated at 120 ◦C for 1 h in a drying recirculation oven (Ambi-Hi-Low Chamber, Lab-Line,
Jefferson, USA), at a ratio of 1:2. A glass chromatography column was filled with the silica gel–acetonic
extract mixture. Different solvents (hexane, hexane–ethyl acetate, ethyl acetate, ethyl acetate–methanol
and methanol) were used as the mobile phase to recover consecutive 100 mL fractions from the packed
column. The fractions were concentrated on a rotary evaporator, placed in glass vials and analysed by
thin-layer chromatography. The fractions whose components showed the same level of displacement
in the plate were pooled and placed in an air recirculation oven at 40 ◦C to evaporate solvent residues.
The anti-microbial activity of the chromatographic collections against multidrug-resistant pathogenic
bacteria was determined.

2.3. Extraction of Hibiscus Acid

Two hundred and thirty grams of dry acetone extract of H. sabdariffa calyces was packed with
silica gel in a chromatographic column, as described in Section 2.2. Hexane was used as the mobile
phase to separate the oils in the extract, and 600 mL fractions were recovered in glass flasks. All the
chromatographic fractions obtained were rotary-evaporated to remove the solvents and concentrate
the separated compounds. After discarding most of the oils from the extract, the solvent mixture
hexane–ethyl acetate (9:1 v/v) was used as the mobile phase to remove all residual oils. The mobile
phase (8:2 v/v) passed through the packed column until some small crystals were observed in the
rotary-evaporated fractions and it was then used at a ratio of 7:3 (v/v) to obtain well-defined crystals in
the rotary-evaporated fractions. The crystals were analysed by thin-layer chromatography to determine
their purity, re-crystallised using 7:3 (v/v) acetone–ethyl acetate in a separatory funnel and then stored
for 24 h. Once the formation of crystals on the wall of the separation funnel was observed, the liquid
was decanted, and the crystals were recovered. Finally, the residual acetone was removed in an air
recirculation oven at 45 ◦C for 2 h.

2.4. Structural Identification of Hibiscus Acid

2.4.1. Nuclear Magnetic Resonance Spectroscopy

The crystals (Section 2.3) were examined by proton nuclear magnetic resonance (1H NMR)
spectroscopy, using deuterated acetone (acetone-d6; Sigma-Aldrich, Toluca, Mexico) to solubilize the
crystals, in a 400 MHz NMR spectrometer (Jeol, Tokyo, Japan). The acquired spectra were analysed using
MestReNova 2009 software (version 6.0.2-5475; Mestrelab Research S.L., Santiago de Compostela, Spain).

2.4.2. Infrared Spectroscopy with Attenuated Total Reflection

The crystals (Section 2.3) were ground in a mortar to reduce the particle size and analysed
using a diamond-accessorised attenuated total reflection infrared spectrometer (Frontier, Perkin Elmer,
Norwalk, CT, USA) at 25 ± 2 ◦C. Infrared spectra were recorded between 4000 and 400 cm−1 at a
resolution of 4 cm−1, and 64 spectra per sample were co-added to improve the sample-to-noise ratio.

2.4.3. X-ray Crystallography

The crystals were grown in aqueous acetone by slow evaporation. Diffraction data were measured
on a Gemini CCD diffractometer (Oxford Diffraction Ltd., Abingdon, Oxfordshire, England) at room
temperature using graphite-monochromated CuKα radiation (λ = 1.54184 Å) and processed using the
CrysAlis program (version 1.171.33.31, 2009; Oxford Diffraction Ltd., Abingdon, UK). The structure
was solved using Olex2 [32]) and SHELXT [33] structure solution program using intrinsic phasing
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or direct methods and refined with the crystal structure refinement program SHELXL [34] using
least-squares minimization.

2.4.4. Differential Scanning Calorimetry

The melting point of hibiscus acid was measured using a differential scanning calorimeter
(Q2000, TA Instruments, New Castle, NJ, USA), previously calibrated with indium (onset temperature
To = 156.6 ◦C, transition enthalpy ∆H = 28.4 J/g, respectively. Five milligrams of hibiscus acid crystals
were placed in an aluminum crucible, which was then sealed and heated from 25 to 250 ◦C at a rate of
5 ◦C/min. The transition temperatures and ∆H values were obtained directly using Universal Analysis
software version 4.4A (TA Instruments).

2.5. Determination of the Anti-microbial Effect of Acetone Extract, Chromatographic Collections and
Hibiscus Acid

2.5.1. Preparation of Test Solutions

Solutions of acetone extract, chromatographic collections and hibiscus acid were prepared at final
concentrations of 100 mg/mL. Only distilled water was used to prepare the solutions of acetone extract
and hibiscus acid. To obtain the solutions from the fraction collections, a mixture of distilled water and
20% Tween 80 (Sigma-Aldrich, Toluca, Mexico) was used.

2.5.2. Bacterial Strains

Eight multidrug-resistant bacteria strains were isolated from food as follows: Salmonella
Montevideo C1 and S. Typhimurium C65 from cilantro [24], S. Typhimurium C63 from carrots [18],
enteroinvasive E. coli MAC B from nopalitos [16], enteropathogenic E. coli MAC A from coriander [35],
and enterohemorrhagic E. coli EHEC A and two strains of Shiga toxin-producing E. coli C558 and C636
from raw beef, in our laboratory. All bacteria were resistant to the same 10 antibiotics (kanamycin,
neomycin, streptomycin, amikacin, tetracycline, erythromycin, chloramphenicol, ceftriaxone, nalidixic
acid and trimethoprim/sulphamethoxazole) according to the Clinical and Laboratory Standards
Institute (CLSI) criterion [36].

2.5.3. Preparation of Bacterial Strains

The eight antibiotic-resistant strains were inoculated in 3 mL of tryptic soy broth (TSB; Bioxon,
Becton Dickinson, Ciudad de México, Mexico) and incubated at 35 ± 2 ◦C for 18 h. The cultures were
washed twice in sterile isotonic saline (0.85% NaCl; ISS) by centrifugation at 3500 rpm for 20 min,
and the pellet was resuspended in ISS at approximately 109 colony forming units/mL (CFU/mL).
Finally, a decimal dilution of these washed cultures was done with ISS to produce a final approximate
concentration of 8 log CFU/mL [22,31].

2.5.4. Anti-microbial Activity of Acetone Extract, Chromatographic Collections and Hibiscus Acid

The gel diffusion technique with paper discs was used as follows: 100 µL washed bacterial
cultures, from a concentration of 1 × 108 CFU/mL, were inoculated onto trypticase soy agar plates
(Bioxon, Becton Dickinson) and distributed over the agar by the streak plate method. Sterilized paper
discs (Whatman Grade 5, 6-mm diameter) were placed on the surface of the inoculated agar. Then,
20 µL aliquots containing acetonic extract, chromatographic collections and hibiscus acid, respectively,
were placed on the paper disks (final dose per disk: 2 mg extract, chromatographic collection or
hibiscus acid). ISS was used as a negative control. Treatments were performed in triplicate. The plates
were incubated at 35 ± 2 ◦C for 24 h. For each treatment, the diameters (mm) of the resulting inhibition
zones were measured and expressed as the average [31].
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2.6. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

The broth macrodilution method [37] was used to obtain the minimum inhibitory concentration
(MIC) and minimum bactericidal concentration (MBC). Tubes were prepared with TSB containing
acetonic extract or hibiscus acid at concentrations of 1–100 mg/mL. The tubes were inoculated with a
final suspension of microorganisms at 1× 105 CFU/mL (from the culture washed in ISS at a concentration
of 1 × 109 CFU/mL, 2 decimal dilutions were made in TSB, and from the last dilution 10 µL were taken
and inoculated in a tube containing 990 µL to have a final concentration of 1 × 105 CFU/mL) and
incubated at 37 ◦C for 24 h. The MIC was the lowest concentration of acetone extract or hibiscus acid
to inhibit bacterial growth without turbidity in the tubes. To assess the MBC, TSB tubes containing the
lowest concentrate ions of extract or hibiscus acid and no turbidity were inoculated into trypticase soy
agar using the pour plate technique and incubated at 35 ◦C for 24–48 h. The MBC was defined as the
lowest concentration of acetone extract or hibiscus acid that showed no colony growth in TSB.

2.7. Measurement of Permeability with Crystal Violet

Alteration of membrane permeability was detected by crystal violet assay exactly as described
by Devil et al. 2010 [38]. Briefly, one hundred µL of S. Typhimurium C65 and enterohemorrhagic
E. coli EHEC A were inoculated in TSB and incubated at 37 ◦C for 6 h. The bacterial suspensions
were centrifuged at 10,000 rpm for 20 min. The supernatant was discarded and the cell pellets were
washed twice with 0.5 mM potassium phosphate buffer solution (PBS). The bacterial cell suspension
was prepared by re-suspending the cell pellet in PBS. The washed bacterial cell suspensions were
incubated with different concentration of hibiscus acid at minimum sub-inhibitory concentration
(MSIC; 1.25 mg/mL and 1.75 mg/mL for enterohemorrhagic E. coli EHEC A and S. Typhimurium C65,
respectively), MIC (5 mg/mL and 7 mg/mL for enterohemorrhagic E. coli EHEC A and S. Typhimurium
C65, respectively), 10×MIC (50 mg/mL and 70 mg/mL, for enterohemorrhagic E. coli EHEC A and
S. Typhimurium C65, respectively), MBC (7 mg/mL) and ethylenediaminetetraacetic acid (EDTA,
positive control, 0.25 M) at 37 ◦C for 60 min. Control samples were prepared similarly without
treatment and EDTA (0.25 M) was used as a positive control. The cells were harvested (10,000 rpm
for 5 min) and suspended in PBS containing crystal violet (10 µg/mL). The cell suspension was then
incubated (10 min at 37 ◦C) and centrifuged (10,000 rpm for 5 min). The optical density (OD) 590 of the
supernatant was measured using a UV-VIS spectrophotometer (Thermo Scientific, Nanodrop, Verona,
Wisconsin, USA). The OD value of crystal violet solution was considered to be 100% excluded. The OD
of the supernatant of the normal untreated cell was used as blank. The percentage of crystal violet
uptake for all samples was calculated using the following formula:

% uptake of crystal violet = (OD Value of sample)/(OD Value of CV solution) × 100 (1)

2.8. Statistical Analysis

Significant differences (p < 0.05) between treatments were calculated by analysis of variance and
Tukey’s test using SPSS Statistics 20 (IBM Corp., Armonk, NY, USA).

3. Results and Discussion

3.1. Anti-microbial Activity of Acetonic Extract of Hibiscus Sabdariffa

A total of 4.6 g of dry acetonic extract was obtained per 100 g of dehydrated H. sabdariffa
calyces. The dry extract had anti-microbial activity against the eight multidrug-resistant Salmonella
and pathogenic E. coli strains, while the radial inhibition zone on the culture medium varied from 9.8
to 12.6 mm. These results agree with those previously reported on the anti-microbial effect of extracts
obtained from H. sabdariffa calyces [18].
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3.2. Anti-microbial Activity of Chromatographic Collections against Pathogenic Bacteria

The acetone extract was separated by column chromatography into 903 fractions using different
solvent mixtures (Table 1). Fractions displaying the same or similar thin-layer chromatogram were
pooled together. Among these 25 collections (I–XXV; Table 2), 14 were anti-microbial against all
multidrug-resistant Salmonella and pathogenic E. coli strains tested (Table 3), while three showed an
effect against some of the Salmonella and pathogenic E. coli strains (Table 3). Collection VI was only
effective against Salmonella C1 and C65, and collection VII, only against Salmonella C65, respectively.
In contrast, collection XXII was not anti-microbial against E. coli C558, E. coli C636 and enteroinvasive
E. coli MAC B (Table 3). Finally, collections I, II, III, IV, V, VIII, XXIV and XXV had no anti-microbial
effect against any pathogenic bacteria. In general, statistically significant differences were observed
between the effects produced by some collections and within collections against different pathogenic
strains (Table 3).

Table 1. Chromatography fractions obtained from Hibiscus sabdariffa calyx acetonic extract.

Fraction Number Solvent Ratio Used in
Chromatography Column as Mobile Phase

1–37 Hexane
38–59 90–10% Hexane–ethyl acetate
60–131 80–20% Hexane–ethyl acetate
132–277 70–30% Hexane–ethyl acetate
278–348 60–40% Hexane–ethyl acetate
349–396 50–50% Hexane–ethyl acetate
397–441 40–60% Hexane–ethyl acetate
442–486 30–70% Hexane–ethyl acetate
487–535 20–80% Hexane–ethyl acetate
536–572 10–90% Hexane–ethyl acetate
573–616 Ethyl acetate
617–660 90–10% Ethyl acetate–methanol
661–693 80–20% Ethyl acetate–methanol
694–731 70–30% Ethyl acetate–methanol
732–771 60–40% Ethyl acetate—methanol
772–794 50–50% Ethyl acetate–methanol
795–810 40–60% Ethyl acetate–methanol
811–842 30–70% Ethyl acetate–methanol
843–868 20–80% ethyl acetate–methanol
869–886 10–90% ethyl acetate–methanol
887–903 Methanol

Table 2. Fraction collections from Hibiscus sabdariffa calyx acetonic extract classified according to
thin-layer chromatography.

Collection Fraction Collection Fraction

I 1–42 XIV 285–379
II 43–46 XV 380–407
III 47–59 XVI 408–447
IV 60–62 XVII 448–473
V 63–68 XVIII 474–564
VI 69–107 XIX 565–584
VII 108–116 XX 585–620
VIII 117–132 XXI 621–695
IX 133–155 XXII 696–740
X 156–176 XXIII 741–792
XI 180–200 XXIV 793–867
XII 201–256 XXV 868–903
XIII 257–284
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Table 3. Anti-microbial effect of chromatographic fraction collections from Hibiscus sabdariffa calyx acetonic extract against eight multidrug-resistant Salmonella and
pathogenic Escherichia coli bacteria.

Collection Salmonella C1 Salmonella C65 Salmonella C63 EHEC A EIEC MAC B E. coli C558 E. coli C636 EPEC MAC A

VI 1 7.0 ± 0.2 b, 2 7.2 ± 0.4 a - a - a - a - a - a - a

VII - a 7.5 ± 0.1 ab - a - a - a - a - a - a

IX 10.8 ± 0.2 g 12.6 ± 0.2 gh 13.3 ± 0.2 i 11.9 ± 0.2 gh 12.2 ± 0.3 h 9.3 ± 0.2 bcd 10.1 ± 0.5 efg 12.0 ± 0.4 h

X 13.5 ± 0.4 h 11.5 ± 0.4 f 13.3 ± 0.2 i 12.3 ± 0.2 h 11.6 ± 0.6 fgh 11.5 ± 0.2 g 11.6 ± 0.7 h 12.4 ± 0.2 h

XI 13.5 ± 0.2 h 11.6 ± 0.2 fg 15.2 ± 0.1 j 14.2 ± 0.2 i 12.5 ± 0.4 h 11.5 ± 0.3 g 13.2 ± 0.3 i 11.5 ± 0.2 gh

XII 11.1 ± 0.6 g 12.6 ± 0.2 gh 10.1 ± 0.1 defgh 9.6 ± 0.5 ef 10.5 ± 0.6 de 11.8 ± 0.3 g 10.2 ± 0.2 efg 9.5 ± 0.5 cde

XIII 10.5 ± 0.3 fg 15.2 ± 0.5 i 11.0 ± 0.1 h 11.5 ± 0.3 g 11.8 ± 0.5 gh 11.4 ± 0.3 fg 10.9 ± 0.1 gh 11.0 ± 0.3 fg

XIV 10.9 ± 0.4 g 11.9 ± 0.5 fg 10.7 ± 0.6 gh 10.2 ± 0.3 f 10.5 ± 0.1 def 11.5 ± 0.4 g 9.8 ± 0.4 def 10.3 ± 0.5 def

XV 10.8 ± 0.4 g 13.5 ± 0.2 h 10.5 ± 0.3 fgh 9.5 ± 0.3 ef 11.1 ± 0.5 efg 9.6 ± 0.5 cde 10.6 ± 0.4 fg 9.6 ± 0.1 cde

XVI 9.5 ± 0.1 def 9.7 ± 0.4 e 9.8 ± 0.4 defg 9.9 ± 0.1 f 10.1 ± 0.1 bcde 10.4 ± 0.3 ef 9.6 ± 0.4 de 10.4 ± 0.1 ef

XVII 9.1 ± 0.2 cde 9.7 ± 0.3 e 9.5 ± 0.4 de 10.0 ± 0.4 f 10.3 ± 0.7 cde 9.7 ± 0.1 cde 9.8 ± 0.4 def 9.4 ± 0.7 cd

XVIII 9.4 ± 0.6 de 9.6 ± 0.3 e 9.6 ± 0.5 def 9.1 ± 0.2 de 9.9 ± 0.6 bcd 10.1 ± 0.7 de 9.5 ± 0.1 de 8.8 ± 0.2 c

XIX 8.7 ± 0.2 cde 8.5 ± 0.7 bcd 9.3 ± 0.3 cd 8.4 ± 0.3 cd 9.5 ± 0.4 bcd 9.3 ± 0.2 bcd 7.4 ± 0.5 b 7.8 ± 0.1 b

XX 8.9 ± 0.4 cde 9.5 ± 0.0 de 9.9 ± 0.1 defg 9.0 ± 0.2 de 9.3 ± 0.1 bc 9.2 ± 0.3 bcd 8.2 ± 0.1 bc 8.7 ± 0.1 bc

XXI 8.1 ± 0.1 c 8.8 ± 0.3 cde 8.3 ± 0.2 b 7.8 ± 0.2 bc 9.0 ± 0.1 b 8.3 ± 0.3 b 8.5 ± 0.4 c 8.9 ± 0.4 c

XXII 8.5 ± 0.4 cd 8.3 ± 0.2 bc 8.6 ± 0.2 bc 7.5 ± 0.2 b - a - a - a 10.0 ± 0.2 de

XXIII 9.6 ± 0.5 ef 9.1 ± 0.4 cde 10.3 ± 0.2 efgh 8.6 ± 0.1 d 9.0 ± 0.7 b 8.9 ± 0.5 bc 9.1 ± 0.1 cd 10.1 ± 0.3 def

1 Chromatographic collections showing no effect against any microorganism are not in the table. 2 Mean ± standard deviation of three replicas of zone of inhibition diameter (mm). - No
anti-microbial effect, values with different letters in the same column per pathogen express significant difference at α = 0.05 by Tukey’s test. Salmonella C1 = S. Montevideo, Salmonella C65 =
S. Typhimurium, Salmonella C63 = S. Typhimurium, EHEC A = enterohemorrhagic E. coli, EIEC MAC B = enteroinvasive E. coli, E. coli C558 and C636 = Shiga toxin-producing E. coli, EPEC
MAC A = enteropathogenic E. coli.
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In a study on anti-microbial chromatographic collections from plants with solvents of different
polarities, Avila-Sosa et al. [39] obtained and fractionated the chloroform extract from Mexican
oregano (Lippia berlandieri Schauer) using chloroform and mixtures of chloroform–acetone (70:30,
v/v), chloroform–acetone (30:70, v/v), acetone–methanol (70:30, v/v) and acetone–methanol (30:70, v/v)
as mobile phases. Afterwards, they evaluated the anti-microbial activity of the chromatographic
fraction collections obtained against E. coli. While most of the chromatographic collections showed
anti-microbial activity against E. coli, the collections higher in polarity were less potent. Consistent with
that observation, the low and intermediate polarity collections displayed the greatest anti-microbial
effect in the current work (Tables 1–3). Furthermore, Kuete et al. [40] determined the methanolic
extract of Ficus polita (FP) was anti-microbial against S. Typhi (ATCC 6539) and two strains of E. coli
(ATCC 8739 and AG100). In addition, the researchers tested five chromatographic fractions from FP
(FPR1–FPR5), obtained using different mobile phases: hexane (FPR1); 75:25 (v/v) hexane–ethyl acetate
(FPR2); 50:50 (v/v) hexane–ethyl acetate (FPR3); ethyl acetate (FPR4); methanol (FPR5). Of the five
fractions, only those of low polarity (FPR1 and FPR2) exhibited anti-microbial activity against the
studied strains.

Do et al. [41] also investigated the anti-microbial effect of five chromatographic fraction collections
obtained from the methanolic extract of H. sabdariffa, using different solvent mixtures as mobile phases:
50% hexane–50% ethyl acetate (CF1); 30% hexane–70% ethyl acetate (CF2); 90% ethyl acetate–10%
methanol (CF3); 60% ethyl acetate–40% methanol (CF4); 70% ethyl acetate–30% methanol (CF5).
Among them, only CF3, which was active against E. coli, Staphylococcus aureus., Bacillus cereus and B.
subtilis, and CF4 and CF5, which were active against S. aureus and B. subtilis, possessed anti-microbial
properties. Moreover, only CF3, which showed the greatest anti-microbial action, contained the
flavonoid quercetin, among other unidentified compounds. However, further studies would be
required to conclusively identify the anti-microbial molecules in CF3–CF5 and the methanolic extract,
and any interactions responsible for the activity.

In the current study, collections IX, X, XI, XIII and XIV showed greater anti-microbial activity than
the rest. These collections were obtained with the polarities of the following mixtures: 70% hexane–30%
ethyl acetate, 60% hexane–40% ethyl acetate and 50% hexane–50% ethyl acetate (Tables 1 and 2). It is
important to note that defined crystals were formed in the pooled fractions IX, X and XI, which were
collected using 70% hexane–30% ethyl acetate as the mobile phase (Tables 1 and 2).

Since the preliminary NMR analysis of the crystals suggested the presence of hibiscus acid and
other compounds, a second chromatographic separation was completed using another sample of dry
acetonic extract (230 g) from H. sabdariffa to obtain a higher concentration of crystals for purification.
The aim was to confirm the presence and anti-microbial activity of hibiscus acid by different structural
analysis techniques. The second column chromatography separating the acetonic extract yielded
presumptive crystals of hibiscus acid.

3.3. Obtaining Presumptive Crystals of Hibiscus Acid from the Acetonic Extract

Following the procedure described in Section 2.3, a total of 413 fractions were grouped into
four collections, according to the mobile phase used: hexane (17 fractions), 90% hexane–10% ethyl
acetate (52 fractions), 80% hexane–20% ethyl acetate (61 fractions) and 70% hexane–30% ethyl acetate
(283 fractions). After purification, 65 g presumptive crystals of hibiscus acid (collection IV, fractions
113–413) were obtained from 230 g acetonic extract of H. sabdariffa (1.3% crystals from 5 kg dehydrated
calyces) and, additionally, characterized by NMR, infrared spectroscopy and X-ray crystallography, as
described in Sections 3.4.1–3.4.3, respectively, to identify the structure of hibiscus acid.
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3.4. Structural Identification of Hibiscus Acid

3.4.1. 1H NMR Spectrum

The 1H NMR spectrum of presumptive crystals of hibiscus acid corresponded to that of the
molecular structure of hibiscus acid (Figure 1). Most of the proton signals (1H) appeared between δH 0
and 12. The signal observed at δH 2.05 corresponds to the acetone-d6 used to dissolve the presumptive
crystals of hibiscus acid. The other signals were δH: 5.34 (1H, singlet [s], CH-COOH), 4.16 (1H, s,
COH-COOH), 3.25 (1H, doublet [d], J = 17.2 Hz, HaHbC-C=O), 2.77 (1H, d, J = 17.2 Hz, HaHbC-C=O),
where J is the coupling constant. Accordingly, the signals of the spectrogram shown in Figure 1
correspond to the molecular structure of hibiscus acid and the deuterated solvent used as the vehicle.
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Figure 1. 1H NMR spectrum at 400 MHz in acetone-d6 of purified crystals obtained from Hibiscus
sabdariffa calyces acetonic extract.

In an NMR (400 MHz) analysis of the structure of hibiscus acid determined using acetone-d6

to dissolve the crystals, Ibnusaud et al. [42] detected signals at δH 5.38 (1H, s, CH-COOH), 3.30
(1H, d, J = 17.1 Hz, HaHbC-C=O) and 2.80 (1H, d, J = 17.1 Hz, HaHbC-C=O). In previous 1H NMR
analysis of hibiscus acid prepared from H. sabdariffa calyces extracts, the crystals were dissolved in
deuterated water [43], deuterated dimethylsulphoxide [39] and deuterated methanol [40]. The resulting
spectrograms showed two doublets at δH 2.88 and 3.41, respectively (J = 18.4 Hz) [38] signals at δH

5.31 (1H, s), 3.23 (1H, d, J = 17.19 Hz) and 2.77 (1H, d, J = 17.18 Hz) [43]; and signals at δH 5.25 (1H, s),
3.20 (1H, d, J = 17.3 Hz) and 2.69 (1H, d, J = 17.3 Hz) [44]. In this context, the parameters published
by Ibnusaud et al. [42] and Rasheed et al. [45] are most similar to those obtained in the present work
(Figure 1).

3.4.2. Infrared Spectroscopy

The infrared spectrum of the crystals prepared from the H. sabdariffa acetone extract contained
signals at 3410 cm−1 (OH groups), 1797 cm−1 (ester groups) and 1742 cm−1 (C=O stretching) (Figure 2).
These values corresponded strongly to those reported by Ibnusaud et al. [42], which were 3400, 1790
and 1735 cm−1.
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3.4.3. X-ray Crystallography

The molecular structure of hibiscus acid (Figure 3), was confirmed by X-ray diffraction which
was solvated with a water molecule through a hydrogen bond (O6-H6•••O8, distance = 1.841 Å, ]
O6-H6•••O8 = 162.62◦) (Figure 3). Hibiscus acid is a five-membered lactone ring, with four carbon
atoms and one oxygen atom. C3 (sp2) has a double-bonded oxygen atom, C1 an OH group and a
COOH group, and C2 a COOH group, respectively.
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The crystallographic details and refined structure of hibiscus acid are provided in Table 4
and Tables S1–S5. Analogous X-ray crystallographic data of hibiscus acid, albeit attached to a
dimethylsulphoxide molecule, were presented by Zheoat et al. [44]. Figure 4 shows the possible
hydrogen bond donors of the hibiscus acid molecule, in which the interactions that can be established
with other molecules of hibiscus acid and water molecules are observed.

Table 4. X-ray spectroscopy details of crystal data and structure refinement parameters of hibiscus acid
isolated from Hibiscus sabdariffa calyx acetonic extract.

Experimental Data

Empirical Formula C6H6O7 • H2O
Molecular weight 208.12
Temperature (K) 293(2)
Crystal system, space group orthorhombic, P212121

Unit cell dimensions (Å, ◦)

a 8.2069(2)
b 9.9228(2)
c 10.1747(2)
α(◦) 90
β(◦) 90
γ(◦) 90
Volume (Å3) 828.58(3)
Z 5
Radiation type CuKα (λ = 1.54184 Å)
µ (mm−1) 1.797
ρcalc (g cm−3) 2.096
F (000) 545.00
2θ range for data collection 12.46–155.038
Index Ranges −10 ≤ h ≤ 10, −11 ≤ k ≤ 12, −11 ≤ l ≤ 12
Absorption Correction Multi-scan
Collected Reflections 11147
Independent Reflections 1754 (Rint = 0.0293)
Data/Restraints/Parameters 1754/0/133
Goodness-of-fit on F2 1.077
R1, wR2 [I ≥ σ2s(I)] 0.0309, 0.0859
R1, wR2 [all data] 0.0314, 0.0864
Largest Difference Peak/Hole (e Å−3) 0.25 and −0.21
Flack and Hooft Parameters 0.05(6) and 0.07(5)
Inverted Flack and Hooft Parameters 0.95(6) and 0.93(5)
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3.4.4. Hibiscus Acid Melting Point by Differential Scanning Calorimetry

The differential scanning calorimetry of the crystals of hibiscus acid showed a To of 186.87 ◦C,
peak temperature of 190.61 ◦C and a final temperature of 194.15 ◦C, while the fusion enthalpy (∆H)
was 146.7 J/g. Contrastingly, Ibnusaud et al. [37] reported a melting point of 182 ºC for hibiscus acid,
which differs from the current results, possibly because of either the equipment or the technique used
by the authors.

3.5. Anti-microbial Effect of Hibiscus Acid

Hibiscus acid demonstrated an anti-microbial effect against all multidrug-resistant Salmonella and
pathogenic E. coli strains (Table 5). In general, the anti-microbial effect of hibiscus acid was higher
(p < 0.05) than that of the acetonic extract (Table 5). Previous reports attributed the anti-microbial
activity of H. sabdariffa calyces to compounds, such as protocatechuic acid and anthocyanins, in the
plant [14,21,23,46]. However, no information regarding the isolation and identification of anti-microbial
compounds obtained directly from H. sabdariffa calyces has been published until now.

Table 5. Zone of inhibition diameter of Hibiscus sabdariffa calyx acetonic extract and hibiscus acid
against multidrug-resistant Salmonella and pathogenic Escherichia coli strains.

Bacteria
Treatment

Acetone extract Hibiscus Acid

Salmonella C1 1 12.6 ± 0.1 a 16.0 ± 0.4 b

Salmonella C65 10.8 ± 0.3 a 14.5 ± 0.1 b

Salmonella C63 10.3 ± 0.3 a 11.6 ± 0.2 b

EHEC A 10.7 ± 0.4 a 10.0 ± 0.3 a

EIEC MAC B 11.5 ± 0.1 a 13.4 ± 0.6 b

E. coli C558 11.8 ± 0.1 a 11.6 ± 0.4 a

E. coli C636 10.4 ± 0.5 a 11.1 ± 0.2 a

EPEC MAC A 9.8 ± 0.1 a 10.5 ± 0.3 b

1 Mean ± standard deviation of three replicas of zone of inhibition diameter (mm). Values with different letters in
the same row per pathogen express significant difference at α = 0.05 by Tukey’s test. Salmonella C1 = S. Montevideo,
Salmonella C65 = S. Typhimurium, Salmonella C63 = S. Typhimurium, EHEC A = enterohemorrhagic E. coli, EIEC MAC
B = enteroinvasive E. coli, E. coli C558 and C636 = Shiga toxin-producing E. coli, EPEC MAC A = enteropathogenic E.
coli. Final dose per disk: 2 mg.

It should be noted that while several publications described the anti-microbial effect of H. sabdariffa
calyx extracts obtained with solvents of varying polarities (including acetonic extract) when tested
against different pathogenic bacteria, no published article describes or suggests that hibiscus acid or
its derivatives are anti-microbial. Furthermore, there is no proof of their efficacy in the control and
elimination of multidrug-resistant pathogenic bacteria. In other words, this document constitutes the
first report on the anti-microbial activity of hibiscus acid, even against multidrug-resistant pathogenic
bacteria. The MIC and the MBC of hibiscus acid were determined to assess its potential use as an
anti-microbial agent in the industry.

3.6. Determination of the MIC and MBC of the Acetone Extract and Hibiscus Acid

The MICs and MBCs of the acetonic extract and hibiscus acid obtained from H. sabdariffa calyces
were determined using the eight multidrug-resistant pathogenic strains. For hibiscus acid, the MIC
values were 4–7 mg/mL, while the MBC range was 5–7 mg/mL (Table 6). The MIC of the acetonic
extract was 7 mg/mL for all the pathogenic strains, while the MBC was 10 mg/mL for most of the
pathogenic bacteria (Table 6). Abdallah [42] evaluated the MIC and MBC of the H. sabdariffa calyces
methanolic extract by broth dilution using five multidrug-resistant Acinetobacter baumannii strains and
obtained MIC and MBC values of 25–50 and 50–100 mg/mL, respectively. These MIC and MBC values
are higher than those obtained with the acetonic extract of H. sabdariffa (Table 6).
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Table 6. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and
MBC/MIC ratio of Hibiscus sabdariffa calyx acetonic extract and hibiscus acid on multidrug-resistant
Salmonella and pathogenic Escherichia coli strains.

Bacteria
Acetone Extract Hibiscus Acid

MIC
(mg/mL)

MBC
(mg/mL) MIC/MBC MIC

(mg/mL)
MBC
(mg/mL) MBC/MIC

Salmonella C1 7 10 1.4 4 5 1.3
Salmonella C65 7 7 1.0 7 7 1.0
Salmonella C63 7 10 1.4 5 7 1.4
EHEC A 7 10 1.4 5 7 1.4
EIEC MAC B 7 10 1.4 5 7 1.4
E. coli C558 7 10 1.4 5 7 1.4
E. coli C636 7 10 1.4 5 5 1.0
EPEC MAC A 7 10 1.4 4 7 1.8

Salmonella C1 = S. Montevideo, Salmonella C65 = S. Typhimurium, Salmonella C63 = S. Typhimurium, EHEC A =
enterohemorrhagic E. coli, EIEC MAC B = enteroinvasive E. coli, E. coli C558 and C636 = Shiga toxin-producing E.
coli, EPEC MAC A = enteropathogenic E. coli.

Yin and Chao [26] tested aqueous and ethanolic extracts of H. sabdariffa calyces, obtaining
MIC values of 0.112–0.144 and 0.072–0.096 mg/mL, respectively, for S. Typhimurium, E. coli, Listeria
monocytogenes, S. aureus and B. cereus. The MIC of the aqueous extract against Campylobacter strains
susceptible to antibiotics varied between 0.096 and 0.152 mg/mL [27].

As mentioned above, protocatechuic acid is a compound that was reported to be present in the
calyces of H. sabdariffa and is likely to be anti-microbial [21,26,27]. However, there is no information
available in the literature regarding the isolation, characterization or concentration of the protocatechuic
acid in H. sabdariffa calyces. Protocatechuic acid is widely distributed in a variety of plants [46].
Commercial protocatechuic acid showed anti-microbial activity against S. aureus, Klebsiella pneumoniae,
Pseudomonas aeruginosa and A. baumannii, with MIC values of 8, 16, 24 and 16 mg/mL, respectively [21].
In comparison, however, Chao and Yin [26] recorded much lower MIC values (24–44 µg/mL) for the
protocatechuic acid against S. Typhimurium, E. coli, L. monocytogenes, S. aureus and B. cereus. Since both
studies used a pure commercial compound, the difference in MIC values was expected to be small,
especially because they included a bacterial strain of the same genus and species (S. aureus). In this
study, hibiscus acid showed MIC values (Table 6) within the limits of those reported for protocatechuic
acid [26,47]).

Finally, the anti-microbial effect of the acetone extract and hibiscus acid from H. sabdariffa calyces
was determined as bactericidal or bacteriostatic. A compound is considered bactericidal when the
MBC/MIC ratio is ≤4 and bacteriostatic when this ratio is >4 [48]. Both the acetone extract and
the hibiscus acid were bactericidal against all eight multidrug-resistant pathogenic strains (Table 6).
Abdallah [49] also reported the bactericidal activity of methanolic extract from H. sabdariffa calyces
(MBC/MIC 1–2 mg/mL) against A. baumannii strains.

3.7. Measurement of Permeability with Crystal Violet

Hydrophobic crystal violet is known to display weak penetration of the outer membrane but on
the contrary, it is found to penetrate cells with impaired cell membranes thus, crystal violet assay may
be employed for the detection of membrane damage [38,50].

The uptake of crystal violet by enterohemorrhagic E. coli EHEC A was 9% in the absence of
hibiscus acid, but increased to 40%, 57% and 90% after MIC, MBC, 10×MIC hibiscus acid treatments,
respectively (Figure 5). The uptake of crystal violet by Salmonella C65 was 8% in the absence of
hibiscus acid, but increased to 66%, 68% and 82% after MIC, MBC, 10×MIC hibiscus acid treatments,
respectively (Figure 6). Minimum sub-inhibitory concentration (MSIC) of hibiscus acid showed no
effect, which reveals that it did not alter the membrane permeability in both pathogenic bacteria
(Figures 5 and 6).
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presence of different concentrations of hibiscus acid and EDTA. Percentage of crystal violet uptake
was plotted against the concentration of the treatment. The mean ± standard deviation for three
replicates are illustrated. Values with different letters express significant difference at α = 0.05 by
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ethylenediaminetetraacetic acid.
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Figure 6. Change in bacterial membrane permeability of Salmonella C65 (assayed by crystal violet
uptake) in presence of different concentrations of hibiscus acid and EDTA. Percentage of crystal violet
uptake was plotted against the concentration of the treatment. The mean ± standard deviation for
three replicates are illustrated. Values with different letters express significant difference at α = 0.05 by
Tukey’s test. MSIC: minimum sub-inhibitory concentration, MIC: minimum inhibitory concentration,
MBC: minimum bactericidal concentration, 10×MIC: 10×minimum inhibitory concentration, EDTA:
ethylenediaminetetraacetic acid.
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The results of the crystal violet absorption assay indicate that hibiscus acid alters membrane
permeability of enterohemorrhagic E. coli EHEC A and Salmonella C65.

The effect of hibiscus acid on outer membrane permeability was shown by the uptake of the
dye crystal violet. Crystal violet penetrates the outer membrane poorly, but it easily enters when the
membrane is damaged. A significant enhancement in the uptake of crystal violet was observed in
enterohemorrhagic E. coli EHEC A and Salmonella C65 treated with hibiscus acid when compared
to control cells. This shows that hibiscus acid alters membrane permeability and makes the cells
perpermeable to solutes. Furthermore, EDTA also significantly increased the uptake of crystal violet into
the cells (Figures 5 and 6). In Gram-negative bacteria, EDTA induces outer membrane permeabilization
and cell lysis [51].

4. Conclusions

The present work showed that hibiscus acid is one of the compounds responsible for the
anti-microbial effect of H. sabdariffa calyces. It was found at a level of 1.3% (13 g/kg) in dried H.
sabdariffa calyces, and 28.3% in the dry acetonic extract from H. sabdariffa calyces, respectively. Due to
its relatively high concentration, hibiscus acid is likely one of the main bactericidal compounds in H.
sabdariffa calyces, although other anti-microbial compounds yet to be reported may also contribute
to this effect. Both the hibiscus acid and the acetonic extract from H. sabdariffa constitute a potential
alternative in the control of multidrug-resistant pathogenic bacteria, such as Salmonella and E. coli
pathotypes. In addition, the hibiscus acid from H. sabdariffa calyces is potentially useful in the food
industries given its relative abundance and availability. Finally, further research is needed to identify
other anti-microbial compounds in H. sabdariffa and their mechanisms of action against bacteria. In
addition, hibiscus acid affected membrane permeability of enterohemorrhagic E. coli EHEC A and
Salmonella C65.
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Isotropic Displacement Parameters (Å2 × 103) for hibiscus acid.
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