Supplemental Information

Lysoquinone-TH1, a new polyphenolic tridecaketide produced by expressing the lysolipin minimal PKS II in *Streptomyces albus*

Torben Hofeditz,¹ Claudia Eva-Maria Unsin², Jutta Wiese,³ Johannes F. Imhoff,³ Wolfgang Wohlleben^{2,4}, Stephanie Grond,^{1*} and Tilmann Weber^{2,5}*

¹Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076 Tübingen, Germany.

²Eberhard Karls Universität Tübingen, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Auf der Morgenstelle 28, 72076 Tübingen, Germany.

³GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.

⁴German Center for Infection Research (DZIF), partner site Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany

⁵The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet bygning 220, 2800 Kgs. Lyngby, Denmark

*corresponding authors: Tilmann Weber: tiwe@biosustain.dtu.dk; Stephanie Grond: stephanie.grond@uni-tuebingen.de

Table of Contents

1	Figure S1: Plasmid map of pCU12
2	Numbering of pentangular PKS II products3
3	Physicochemical properties with NMR data of lysoquinone-TH1 (7)4
4	Figure S2: HPLC and LC-MS of lysoquinone-TH1 (7) and proposed lysoquinone-TH2 (8) 5
5	Figure S3: NMR spectra of lysoquinone-TH1 (7)7
6	Figure S4: NMR spectra of ¹³ C-enriched lysoquinone-TH1 (7)9
7	Figure S5: 2D-NMR data of lysoquinone-TH1 (7)13
8	Figure S6: ¹³ C enrichment of 7: Structure, Table S116
9	Figure S7 – PDE-4B2 inhibition assay with lysoquinone-TH1

1 Figure S1: Plasmid map of pCU1

Figure S1: Plasmid map of pCU1. *aac(3)IV*: apramycin resistance gene; *int*: PhiC31 integrase gene; *IlpCI-CIII*: polyketide cyclase genes; *IlpF*: ketosynthase α gene; *IlpE*: ketosynthase β gene; *IlpD*: ACP gene; *IlpB'*: Fragment of *IlpB* gene coding for an hypothetical protein with unknown function; *ermEp**: *ermE** promoter; RP4ori: RP4 origin of transfer; *attP*: PhiC31 attachment site.

2 Numbering of pentangular PKS II products

Lysolipin (<u>1</u>) with classical chemical numbering (blue)

Lysolipin (<u>1</u>) with former numbering,

originally from X-Ray analysis (see ref. 17, 21);

with polyketide chain deduced

from feeding experiments with $^{\rm 13}{\rm C}\mbox{-labeled}$ acids

Dodecaketide-PKS-precursor (PKS-biosynthetic numbering (green))

Xantholipin (5) with classical chemical numbering (blue)

Fredericamycin A (3) numbering due to PKS-biosynthesis (see also ref. 18, Fig 2)

3 Physicochemical properties with NMR data of lysoquinone-TH1 (7)

Lysoquinone-TH1 (7) (from the doubly labeled $[1,2^{-13}C_2]$ acetate feeding experiments)

Lysoquinone-TH1 (7) was isolated as a red solid with following physical characteristics:

 $M_r = 462.10 \text{ g} \cdot \text{mol}^{-1} (C_{25}H_{18}O_9);$ **ESI-MS** (negative mode): m/z = 461.1 [M-H]. (positive mode): $m/z = 463.2 [M+H]^+$; **HR-ESI-MS** (calculated): m/z = 461.087806 [M-H]⁻. (measured): $m/z = 461.087756 \text{ [M-H]}^{-}$. (relative mass deviation = 0.11 ppm); **IR** (KBr): $\bar{u} = 3418, 2955, 2921, 2851, 1731, 1714, 1617, 1455, 1375, 1358, 1272, 1172,$ 1117, 1073, 799 cm⁻¹; UV (MeOH): λ_{max} (ϵ) = 515 (1940), 397 (1512), 276 (6231), 204 (22475) nm. (MeOH/HCI): λ_{max} (ϵ) = 477 (2532), 284, (5853), 204 (22261) nm. **(MeOH/NaOH):** λ_{max} (ϵ) = 592 (789), 525 (1628), 395 (1447), 329 (3979), 282 (4127), 248 (6560), 210 (11986), 207 (12479), 203 (4423) nm. ¹H-NMR (600 MHz, DMSO d_6): $\delta = 2.18$ (s, 3H, 17-H₃), 2.67 (d, J = 15.9 Hz, 1H, 2-H_a), 2.70 (s, 2H, 15-H), 2.91 (d, J = 15.9 Hz, 1H, 2-H_b), 3.01 (d, J = 15.9 Hz, 1H, 4-H_a), 3.25 (d, J = 15.9 Hz, 1H, 4-H_b), 6.55 (d, ${}^{3}J$ = 2.6 Hz, 1H, 10-H), 6.66 (s, 1H, 5-H), 7.09 (d, 1H, ${}^{3}J$ = 2.6 Hz, 12-H), 9.48 (s, 1H, 14-H) ppm. ¹³**C-NMR** (150.6 MHz, DMSO- d_6): $\delta = 32.4$ (C-17), 42.8 (C-4), 52.2 (C-2), 53.3 (C-15), 71.0 (C-3), 107.3 (C-6a), 108.0 (C-12), 108.7 (C-10), 110.3 (C-8a), 114.4 (C-5), 116.2 (C-7a), 117.7 (C-14b), 118.3 (C-14), 131.4 (C-13a), 135.6 (C-12a), 136.9 (C-14a), 150.6 (C-4a), 164.3 (C-7, C-9), 164.5 (C-6, C-11), 182.2 (C-13), 186.6 (C-8), 196.2 (C-1), 207.8 (C-16) ppm.

No CD-effect or angle of rotation was assessible.

4 Figure S2: HPLC and LC-MS of lysoquinone-TH1 (7) and proposed lysoquinone-TH2 (8)

Figure S2: A: LC-MS chromatogram of a pre-purified fraction of colored pigments. **7** $R_t = 13.7$ minutes; m/z = 461.1 [M-H]⁻ (red arrow). **8** $R_t = 16.5$ minutes; m/z = 487.1 [M-H]⁻ (violet arrow). **B:** HPLC-UV-DAD (diode array detector) chromatogram of the extract with lysoquinone-TH1 (**7**, red arrow) measured with an acid additive (at wavelength of 200 nm). **C:** Extracted UV spectrum of red pigment **7**. **D:** UV-DAD chromatogram of the extract with lysoquinone-TH1 (**7**, red arrow). **E:** HPLC-UV-DAD chromatogram of the extract with lysoquinone-TH2 (**8**, violet arrow), measured with an acid additive (at a wavelength of 200 nm). **F:** Extracted UV spectrum of xelength of 200 nm). **F:** Extracted UV spectrum of xelength of 200 nm). **F:** Extracted UV spectrum of xelength of 200 nm). **F:** Extracted UV spectrum of xelength of 200 nm). **F:** Extracted UV spectrum of xelength of 200 nm). **F:** Extracted UV spectrum of xelength of 200 nm). **F:** Extracted UV spectrum of xelength of 200 nm).

5 Figure S3: NMR spectra of lysoquinone-TH1 (7) A

Figure S3: NMR spectra (600 resp. 157.6 MHz, DMSO-d6) of lysoquinone-TH1 (7).

A: ¹H-NMR spectrum of **7** (DMSO-*d6*, 600 MHz). B: Expansions of the ¹H-NMR spectrum of **7** in a range of $\delta_{H} = 6.4$ –7.3 ppm. C: Expansions of the ¹H-NMR of **7** in a range of $\delta_{H} = 2.1$ -3.3 ppm. D: ¹³C-NMR of **7**. E: Detailed ¹H- and ¹³C NMR assignments (δ in ppm).

6 Figure S4: NMR spectra of ¹³C-enriched lysoquinone-TH1 (7)

23 22 21 20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 (D)

(E) to (O)

<u>Figure S4:</u> NMR spectra (600 resp. 157.6 MHz, DMSO-*d6*) of ¹³C-enriched lysoquinone-TH1 (**7**) from doubly labeled $[1,2-^{13}C_2]$ acetate feeding experiments.

A: ¹H-NMR (DMSO-*d6*; 600 MHz) of lysoquinone-TH1 (7) with ¹³C-enrichment. B: Expansions of the ¹H-NMR of enriched 7 ($\delta_{H} = 6.1-7.5$ ppm). C: Expansions of the ¹H-NMR of enriched 7 ($\delta_{H} = 2.60-3.60$ ppm). D: ¹³C-NMR (DMSO-*d6*; 150 MHz) of lysoquinone-TH1 (7) with ¹³C-enrichment. E: Expansions of enriched 7 ($\delta_{C} = 195-210$ ppm). F: Expansions of 7 ($\delta_{C} = 179-189$ ppm). G: Expansions of 7 ($\delta_{C} = 157-167$ ppm). H: Expansions of 7 ($\delta_{C} = 145-155$ ppm). I: Expansions of 7 ($\delta_{C} = 130-140$ ppm). K: Expansions of 7 ($\delta_{C} = 106-121$ ppm). L: Expansions of 7 ($\delta_{C} = 65-75$ ppm). M: Expansions of 7 ($\delta_{C} = 47-57$ ppm). N: Expansions of 7 ($\delta_{C} = 41-46$ ppm). O: Expansions of 7($\delta_{C} = 30-35$ ppm).

7 Figure S5: 2D-NMR data of lysoquinone-TH1 (7)

Structure of lysoquinone-TH1 (7)

with important HMBC (heteronuclear multiple bond correlation) correlations from 2D-NMR-experiments

Figure S5: HMBC cross correlations of lysoquinone-TH1 (7) within the chemical shift of carbon atoms (red) and hydrogen atoms (different colors for enhanced overview). Depicted two-dimensional NMR-spectra with selected cross correlations: COSY-, HSQC-HMBC-experiment (next pages).

Figure S5B: HMBC correlations

8 Figure S6: ¹³C enrichment of <u>7</u>: Structure, Table S1

of doubly labeled acetate-units (purple)

Figure S6: A: Suggested PKS chain of the tridecaketide as precursor of lysoquinone-TH1 (7).

B: Structural formula of **7** depicting intact acetate units from $[1,2^{-13}C_2]$ -labeled acetate on the basis of this study and previous results (see references) **C**: Lysoquinone-TH1 (**7**) with assigned ¹³C-¹³C-coupling constants and specific incorporation (calculation, see below).

 $[1,2^{-13}C_2]$ -labeled acetate was purchased with 99% enrichment (*Cambridge Isotope laboratories, Inc.*). ¹³C enrichment in the isolated lysoquinone-TH1 (**7**) was calculated as described by Scott *et al., J. Am. Chem. Soc.* **1974**, *96*, 8069-8080:

Integrals of coupling signals of carbon atoms were calculated as the sum of the integral of the full multiplets. Assigned to the natural enrichment, the central signal of the methyl 13 C carbon atom C-17 of lysoquinone-TH1 (**7**) was used as the non- 13 C-enriched internal reference signal.

Integrals for singlet signals of respective carbon atoms were calculated using the integral of the central line (I*CL*) of the multiplets and the usual singlet signals. All carbon atoms turned out to be enriched (Table S1, and see Fig S6 C).

enrichment [%] = 1.1% × $\frac{\text{integrated signal intensity (labeled compound)}}{\text{integrated signal intensity (reference)}} - 1.1\%$

specific incorporation = $\frac{\text{enrichment [\%]} \times 100}{\text{enrichment of precursor isotope [\%]}}$

<u>**Table S1:**</u> Level of enrichment and specific incorporation of lysoquinone-TH1 (7), resulted from the feeding experiment with doubly labeled $[1,2-^{13}C_2]$ acetate.

C-	δ _c	Integrated	Integrated	enrichment	specific	statistical
atom	[ppm]	Intensity	Intensity	[%]	incor-	coupling
		(labeled	(Reference)		poration	to
		compound)				
C-1	196.2	125680.67	39478.23	0.03	2.8	C-2
C-2	52.2	272409.62	67517.08	0.04	3.9	C-1, C-3
C-3	71.0	239294.07	39925.74	0.06	6.3	C-2, C-4
C-4	42.8	252561.56	56466.40	0.04	4.4	C-3
C-4a	150.6	119859.13	35293.11	0.03	3.1	C-5
C-5	114.4	164560.28	38021.24	0.04	4.3	C-4a
C-6	164.5	230040.07	36491.45	0.07	6.7	C-6a
C-6a	107.3	155109.45	26769.51	0.06	6.1	C-62
C-7	164.3	148500.54	26779.16	0.06	5.8	C-7a
C-7a	116.2	92927.53				C-7
C-8	186.6	106031.71				C-8a
C-8a	110.3	121111.92	28617.71	0.04	4.1	C-8
C-9	164.3	148500.54	26779.16	0.06	5.8	C-10
C-10	108.7	258956.65	38026.93	0.07	7.3	C-9
C-11	164.5	230040.07	36491.45	0.07	6.7	C-12
C-12	108.0	218910.11	38897.04	0.06	5.9	C-11
C-12a	135.6	128030.79	32670.37	0.04	3.8	C-13
C-13	182.2	113731.76	28538.17	0.04	3.8	C-12a
C-13a	131.4	116592.22	32613.67	0.03	3.3	C-14
C-14	118.3	126176.64	33066.76	0.04	3.6	C-13a
C-14a	136.9	121559.05	29922.87	0.04	3.9	C-14b
C-14b	117.7	156522.22	62356.91	0.02	2.0	C-14a
C-15	53.3	281943.39	58169.04	0.05	4.9	C-16
C-16	207.8	162065.11	36747.45	0.04	4.4	C-15
C-17	32.4	328644.60	72761.44	0.00	0.0	

9 Figure S7 – PDE-4B2 inhibition assay with lysoquinone-TH1

Figure S7: Inhibition assay of the enzyme PDE-4B2 by lysoquinone-TH1 (7). The results of two experiments are shown.