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Abstract: The mucosa and overlying fluid of the female reproductive tract (FRT) are portals 

for the heterosexual transmission of HIV-1. Toward the ongoing development of topically 

applied microbicides and mucosal vaccines against HIV-1, it is evermore important to 

understand how the dynamic FRT mucosa is involved in controlling transmission and 

infection of HIV-1. Cationic peptides and proteins are the principal innate immune effector 

molecules of mucosal surfaces, and interact in a combinatorial fashion to modulate HIV-1 

infection of the cervix and vagina. While cationic peptides and proteins have historically 

been categorized as antimicrobial or have other host-benefitting roles, an increasing number 

of these molecules have been found to augment HIV-1 infection and potentially antagonize 

host defense. Complex environmental factors such as hormonal fluctuations and/or bacterial 

and viral co-infections provide additional challenges to both experimentation and interpretation 

of results. In the context of heterosexual transmission of HIV-1, this review explores how 

various cationic peptides and proteins participate in modulating host defense against HIV-1 

of the cervicovaginal mucosa. 
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1. Introduction 

According to the World Health Organization (www.who.int), by the end of 2013, HIV/AIDS had 

claimed nearly 40 million lives. Approximately 35 million individuals worldwide were living with 

HIV/AIDS, and 2.1 million people were newly infected in that year alone. Nearly three-quarters  

(24.7 million) of infected individuals reside in sub-Saharan Africa, an area that accounts for almost 70% 

of the global total of new HIV infections. Since the 1980s, the spread of HIV has shifted from  

male-to-male sexual contact and needle sharing, to a predominantly heterosexually transmitted disease 

with women becoming more likely to be infected than men. One-half of infected individuals worldwide 

are women, a percentage that rises to nearly 60% in sub-Saharan Africa and over 75% in the young 

population (<25 years of age) of that region. Antiretroviral therapy (ART) is on the rise, with 12.9 million 

people receiving ART globally. While the numbers of individuals receiving ART are encouraging, to 

fully control the pandemic it will be necessary to employ multiple tactics including pre-exposure 

prophylaxes, which have shown promise [1], and HIV vaccines, which even after three decades of 

research have been terribly elusive [2]. As the field endeavors to develop these strategies, it will be 

evermore important to understand how the female reproductive tract (FRT) immune system is involved 

in controlling heterosexually transmitted HIV-1. 

Considering the number of individuals infected with HIV-1, the efficiency of heterosexual HIV-1 

transmission is surprisingly low. In an updated, comprehensive analysis of aggregated primary data 

regarding HIV transmission risk and modifying factors, Patel and colleagues estimated that the per-act 

HIV transmission risk for receptive uninfected females acquiring HIV-1 through penile-vaginal 

intercourse is 8 in 10,000 coital acts [3]. It is becoming evident that multiple physical, cellular and 

molecular mechanisms together contribute to keeping the incidence of transmission relatively low.  

The mucosal surfaces of the lower FRT, under healthy conditions are thought to act as efficient physical 

barriers to prevent cell-free and cell-associated HIV-1 from breaching the barrier and infecting 

underlying target CD4+ immune cells within the FRT. Indeed, the vaginal mucosa is overlain by a  

non-keratinized, stratified squamous epithelium approximately 150–200 microns thick on average—nearly 

impenetrable by 0.12 micron HIV virions unless the barrier can be subverted or compromised (e.g., 

abrasion, trauma). Maturation and proliferation of the vaginal epithelium is under hormonal control, with 

the maximum thickness occurring during time periods that normally correspond with peak circulating 

levels of 17β-estradiol of the late follicular phase of the menstrual cycle [4]. This would therefore suggest 

that times of the menstrual cycle when circulating estradiol is lowest (e.g., end of luteal phase), and thus 

the vaginal epithelium is thinnest, might provide a window of opportunity for HIV-1 transmission. 

The lower FRT is blanketed by commensal microbes, predominantly (but not exclusively [5]) 

Lactobacilli in healthy individuals, which are thought to play important roles in host defense of the 

vagina and ectocervix. Lactobacilli render the vaginal secretions acidic by metabolizing glycogen, 

released by vaginal epithelia, into lactic acid that exerts selective antimicrobial activity against 

nonresident microbiota [6]. Certain Lactobacilli also produce hydrogen peroxide, which is toxic to many 

microbes at the biological concentrations measured in vaginal secretions [7]. Less advantageous 

microbes, such as Gardnerella vaginalis, are also suppressed by natural antibiotic peptides produced by 

Lactobacilli, called “bacteriocins” [8–10]. As this review is focused on human-derived antibacterial 
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peptides and proteins secreted into vaginal fluids, it should be noted that at least a portion of the intrinsic 

antimicrobial activity of this fluid is of microbial origin. 

Ascending the FRT, the cervix transitions to a simple columnar epithelium, the pH of the overlying 

fluid normalizes, and very few microbes are present in healthy individuals. Using vaginal simian 

immunodeficiency virus (SIV) challenge in a rhesus macaque model [11], initial cervicovaginal 

infection was shown to occur in small clusters of susceptible target resting and activated T  

lymphocytes [12]. Clusters of SIV were routinely found in two primary regions of the FRT—the 

endocervix, and the cervical transformation zone between the endocervix and the ectocervix [12]. These 

regions are located in mucosal areas of rapid cellular turnover, have a single layer of columnar 

epithelium, and are populated with a high density of target CD4+ cells, collectively providing evidence 

that the cervix is the primary site for initial HIV-1 infection [13]. Furthermore, from single genome 

amplification and sequencing of plasma virion RNA obtained from early stages of infection, it can be 

inferred that infection is acquired from a single founder virus in heterosexual transmission [14]. Innate 

processes that act as the first line of host defense against HIV-1 transmission are evermore important in 

preventing the establishment of this initial infection event. While other reviews and chapters have 

comprehensively described various aspects of innate immunity to HIV-1 infection and transmission in 

the FRT [15,16], this review specifically focuses on antimicrobial peptides and proteins and their role in 

preventing heterosexual HIV-1 infection and transmission. 

2. Antiviral Peptides and Proteins of the FRT 

Since the pioneering work of Sir Alexander Fleming in his discovery of lysozyme [17,18], and later 

work by James Hirsch on bactericidal histones [19], it has been known that humans have evolved various 

antimicrobial peptides and proteins as a first line of defense against microbial pathogens [20,21]. Most 

of these proteins and peptides are broad-spectrum antimicrobials, targeting gram-positive and  

gram-negative bacteria, fungi, and certain enveloped viruses such as HIV-1. Their mode of action can 

vary immensely, involving microbial membranolysis, enzymatic degradation of key microbial structural 

components, depletion of environmental nutrients essential for microbial growth, masking or  

down-regulation of receptors required for host cell entry, or modulating inflammation, adaptive 

immunity, and other functions related to host defense. 

Although antimicrobial peptides and proteins can be structurally and evolutionarily diverse, there are 

common features that encompass most classes of molecules including overall net cationic charge at 

physiologic pH and amphipathic separation of polar and apolar residues [22]. These basic molecular 

features largely contribute to the membrane-active nature of most of these cationic peptides and proteins, 

with the cationic side groups binding to electronegative moieties on the microbial surface and the 

hydrophobic groups involved in membrane penetration, pore formation and lysis/dissolution. However, 

as is being increasingly recognized, other modes of action cannot be entirely explained by amphipathic 

sequestration and/or pore formation [23–26]. The canonical lytic pore mechanism is also in contrast to 

the anti-HIV-1 mechanism of action of many human-derived cationic peptides and proteins. Even though 

some directly affect the HIV-1 virion under certain conditions [27], many others interfere with one or 

more specific aspects of HIV-1’s lifecycle. A number of antimicrobial peptides and proteins that are 

active against HIV-1 have been identified throughout the upper and lower FRT, which are discussed in 
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the sections that follow. Importantly, while each peptide or protein has been shown to exert anti-HIV 

activity in vitro at supraphysiologic concentrations, within the cervicovaginal fluid the sum total of all 

of these components acting in concert is necessary for complete biological anti-HIV-1 activity [28]. 

Figure 1 provides a pictorial of major aspects of the HIV-1 lifecycle that are affected by cationic peptides 

and proteins of the FRT. 

Figure 1. Anti-HIV-1 mechanisms of action of cationic peptides and peptides of the female 

reproductive tract (FRT). Depicted is the lifecycle of HIV-1 infecting a target CD4+ cell, 

beginning from a free virion (“1”) to integration of viral cDNA into genomic DNA of the 

target cell (“7”); “8” indicates other aspects, including receptor downmodulation and cell 

signaling, that indirectly affect the ability of the virus to infect or propagate within host cells. 

Cationic peptides and proteins in green font are antiviral at the respective stage in the 

lifecycle, while peptides and proteins in red font promote HIV-1 infection. Viral envelope 

proteins (gp120, gp41), cellular receptor (CD4) and coreceptor (CXCR4 or CCR5) required 

for viral attachment and entry are provided. Events downstream of viral cDNA integration 

into host DNA are not depicted. 

 

3. Defensins 

Defensins comprise the most well-studied family of antimicrobial peptides, encompassing over 100 

different peptides with a β-sheet structure, expressed by epithelia and leukocytes of many mammals and 

birds [29–31]. There are three main classes of defensins—α, β and θ—subcategorized primarily based 

on the disulfide bonding patterns of their six cysteine residues. In humans, α-defensins can be further 

divided into four peptides that are stored in neutrophil granules (human neutrophil peptides 1–4; HNP1–4), 

and two peptides that are inducible and mostly of epithelial origin (human defensins 5 and 6; HD5  

and HD6). 



Antibiotics 2014, 3 681 

 

 

HNPs are synthesized as 93- to 94-residue prepropeptides, each of which is sequentially processed to 

liberate a signal peptide and an anionic propiece [32,33]. The active, mature peptides are packaged 

principally within azurophil granules of neutrophils, where they comprise nearly 30% of the granules’ 

total protein content [34]. While most of the HNPs are discharged into phagocytic vacuoles where they 

reach millimolar concentrations, recent evidence suggests a potential extracellular arm of HNP-mediated 

host defense through constitutive exocytotic release of unprocessed pro-HNPs from neutrophils [35]. 

The first mention of the anti-HIV-1 activity of an antimicrobial peptide was reported in a short 

correspondence to the journal AIDS in 1993, whereby α-defensins from rats, guinea pigs and rabbits 

were shown to reduce HIV-induced cytopathogenicity of a CD4+ T lymphocytic cell line [36]. Monell 

and Strand then revealed similarities in the structure of the looped motifs from the fusogenic envelope 

protein gp41 of HIV-1 and α-defensins [37], pointing towards potential entry or fusion mechanisms of 

inhibition. Extending these findings, α-defensins were found to be directly virulytic as well as inhibit 

HIV-1 replication by interfering with the activity of protein kinase C [27]. In one study of healthy 

women, low levels (high nanogram/mL) of these α-defensins have been found in the cervicovaginal 

fluids [6]. As α-defensins are a marker of neutrophil influx, even low concentrations of these peptides 

might reveal subclinical inflammation as a constitutive host defense mechanism. Conversely, 

inflammation-induced recruitment of additional target cells to the area might predispose to increased 

susceptibility to HIV-1 infection. 

Originally isolated from the Paneth cells of the small intestinal Crypts of Lieberkuhn [38–40],  

the α-defensins HD5 and HD6 are stored in secretory granules as inactive peptide precursors until 

extracellularly released and proteolytically activated by trypsin [41]. HD5 and HD6 have classically 

been categorized as broad-spectrum antimicrobials; however, these two peptides play interesting and 

contrasting roles in the FRT. An elegant study that comprehensively explored HD5 in the FRT 

determined that this peptide immunolocalized to vaginal and ectocervical epithelium, the granules within 

the columnar epithelium of the endocervix as well as the surface of the endocervix [42]. Even though all 

other human defensins have been shown to inhibit HIV-1 infection, HD5 and HD6 instead promote 

infection by enhancing HIV-1 attachment to target cells [43]. In this light, one might speculate whether 

these peptides are (co-)determinants of the cervix being the initial site for primary HIV-1 infection. HD5 

expression is also modulated during the menstrual cycle, with maximal expression during the secretory 

phase [42]. The relatively recent theme of hormonal regulation of peptides that augment HIV-1 infection 

might provide unique circumstances by which HIV-1 can subvert innate antiviral defenses of the FRT. 

θ-Defensins are 18 residue peptides derived from two nonapeptide precursors, which are fused in  

a head-to-tail fashion and rendered macrocyclic through ligation of the resulting amino and carboxyl 

termini [44]. Humans and nonhuman primates produce α- and β-defensin peptides; however, only select 

nonhuman primates produce θ-defensin peptides [44–46]. In humans, although θ-defensin mRNA 

transcripts are produced within many cells and tissues, a premature termination codon near the end of 

the signal sequence precludes translation. Human θ-defensin genes, called retrocyclins, are nearly 90% 

identical at the nucleotide level as compared to the intact rhesus macaque θ-defensin genes [44–46].  

It is remarkable that even though retrocyclin genes are located in areas of the genome that are highly 

polymorphic [46,47], aside from the premature termination codon, they have been so highly conserved 

evolutionarily over more than 35 million years. This begs questioning the potential contemporary role 

of such a gene, for example whether the premature termination codon is not a true “stop”, but rather a 
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“yield” that can be activated by an unknown molecular process. In support of this conjecture is that while 

under normal circumstances retrocyclin peptides have not been recovered from human cells, 

promyelocytes and vaginal cells and organotypic tissue constructs can be chemically coaxed to produce 

bioactive retrocyclins, revealing that at least the cellular machinery necessary to process these cyclic 

peptides remains intact in humans [48]. 

What we understand about retrocyclin bioactivity has occurred through the analysis of retrocyclins 

produced by solid-phase and other chemical syntheses. Retrocyclins are remarkably active against  

a broad spectrum of microbes, and were found to be particularly antiviral against herpes simplex  

viruses [49], influenza [50], and HIV-1 strains representing most known groups and clades [45,51,52]. 

Retrocyclins inhibit the ability of HIV-1 to enter target CD4+ cells regardless of coreceptor tropism [53], 

by interfering with the six-helix bundle fusogenic complex of the HIV-1 envelope glycoprotein  

gp41 [54]. Given its macrocyclic nature, retrocyclins are very stable peptides, which are resistant to 

exoproteases, a wide pH range, high temperatures (e.g., boiling, 10 min), and other degradative 

environments ([55,56], and A.M.C. unpublished). Due to these beneficial properties and broad activity 

against primary HIV-1 isolates from many worldwide clades, retrocyclins are promising topical vaginal 

microbicides to prevent heterosexual transmission of HIV-1 [57]. 

Human β-defensin (HBD) peptides are predominantly produced by epithelia and although some are 

constitutively expressed, many are induced by inflammatory or microbial stimuli [29,58]. HBD1–3 are 

expressed ubiquitously by most epithelial surfaces, while HBD4–6 appear to be more restricted to the 

testes and gastric antrum (HBD4) and epididymis (HBD5–6). Although HBD1 is produced at 

constitutively low levels throughout the body (low nanograms/mL), the highest levels of HBD1 are 

found in tissues of the urogenital tract, including the kidney, vagina and cervix [59], at concentrations  

(low-to-mid micrograms/mL) likely sufficient to contribute to antimicrobial host defense [60]. HBD1–6 

are broadly active against many bacteria, fungi and viruses, and in particular HBD1–3 have been show 

to inhibit HIV-1 infection [61]. HBD2 and HBD3 can inhibit HIV-1 replication by down-modulating 

expression of CXCR4 [62], or by HBD3 antagonizing CXCR4 [63], the cellular coreceptor required for 

entry of X4 tropic HIV-1 into CD4+ cells. In vaginal fluid and cervical mucus plugs, HBD2 is present at 

concentrations (nanograms/mL) below the amount thought to be essential for effective direct anti-HIV-1 

activity (low micrograms/mL) [6,60]. However, those concentrations are within the range that could 

impart other immunological functions. For example, HBD2 is a natural ligand for cells elaborating the 

chemokine receptor CCR6 such as a potential target of HIV-1, CD45Ro+/CD4+ T cells, as well as 

immature dendritic cells [64]. HBD2 and HBD3 have also been reported to chemoattract cells expressing 

CCR2, including macrophages, monocytes and neutrophils [65]. While unknown for cells within the 

FRT, as described for oral epithelial cells HIV-1 can induce the expression of HBD2 and HBD3, but not 

HBD1 [62]. Although β-defensins might not be directly participating in antiviral host defense, their 

presence and activation might attract additional cellular targets for HIV-1. 

4. Whey Acidic Protein (WAP) Motif-Based Proteins 

Secretory leukocyte protease inhibitor (SLPI) and Trappin-2/Elafin are members of the whey acidic 

protein (WAP) family [66,67], ascribed primary anti-inflammatory functions of inhibiting proteases 

including proteinase-3 and neutrophil elastase from neutrophils [68]. SLPI and Trappin-2/Elafin are 
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secreted into overlying mucosal fluids, and both proteins exhibit antimicrobial activity (reviewed  

in [67]). Reports of the intrinsic anti-HIV-1 activity of SLPI have been mixed. High nanomolar 

concentrations of SLPI were reported to block HIV-1 entry or capsid uncoating independent of the 

protease inhibitor function of SLPI [69,70]. Another study suggested that the anti-HIV-1 activity of SLPI 

was likely due to artifact as even extremely high concentrations (1000 μg/mL) were not active against 

HIV-1 [71]. Evidence providing further support of an anti-HIV-1 role for SLPI has been through clinical 

correlative studies. Increased SLPI concentrations within vaginal fluid were associated with reduced 

rates of perinatal HIV-1 transmission [72], an association that was not observed for other cationic 

antimicrobial proteins or peptides. SLPI has also been shown to be decreased in women suffering from 

various sexually transmitted infections, and these reduced levels may predispose women to HIV-1 and 

other infections [73]. Perhaps the anti-HIV-1 activity of SLPI is best realized in concert with other 

endogenous antivirals. 

In an elegant study, Ghosh and colleagues revealed that epithelia of the upper and lower FRT produce 

constitutive amounts of Trappin-2/Elafin protein and mRNA [74], further supporting findings that 

Trappin-2/Elafin is produced by the cervical glandular epithelium during pregnancy [75]. Interestingly, 

only the uterine cells of the upper FRT could upregulate Trappin-2/Elafin when stimulated with a 

double-stranded RNA mimic, Poly(I:C). This group further explored the direct anti-HIV roles of 

Trappin-2/Elafin against X4 tropic and R5 tropic HIV-1, revealing dose-dependent direct activity against 

HIV-1 virions [74]. Additional studies provided further support for the role of Trappin-2/Elafin in innate 

anti-HIV-1 host defense. CVL from HIV-negative individuals contained higher amounts of  

Trappin-2/Elafin than HIV-infected patients. Similar to other cationic antimicrobial peptides and 

proteins, Trappin-2/Elafin expression is likely under hormonal control as the concentration of this 

protein in CVL was significantly higher during the secretory phase of the menstrual cycle as compared 

to the proliferative phase [74]. 

5. Other Anti-HIV Peptides and Proteins 

Cathelicidins are a family of very diverse antimicrobial peptides that each share a common  

amino-terminal cathelin propiece, which is similar to the thiol protease inhibitor cystatin [76]. Even 

though pigs, cows, and other animals contain numerous different cathelicidins, humans are endowed 

with only one cathelicidin called human cationic protein of 18 kDa (hCAP18) [77,78]. Depending on 

the cellular or histological environment, hCAP18 can be preteolytically cleaved into the mature, active 

forms LL-37, ALL-38, and FALL-39. These three peptides are between 37 and 39 amino acids in  

length and differ only by their amino-terminal phenylalanine (F), alanine (A), and/or leucine residues 

(LL) [79–81]. LL-37, the most common mature form of hCAP18, is found in neutrophils and expressed 

by many epithelia including the mucosa and integument. Aside from direct antimicrobial mechanisms, 

LL-37 can also exhibit chemotactic, immunomodulatory and angiogenic effects that are all mediated by 

antagonistic binding of N-formyl peptide receptor 2 (FPR2), a G-protein coupled receptor. LL-37 was 

recently shown to inhibit HIV-1 replication using this mechanism, by binding to FPR2 which in turn 

down-regulated chemokine receptors necessary for HIV-1 entry in primary CD4+ T cells [81]. In the 

FRT, hCAP18 has been immunolocalized to the upper epithelial layers of inflamed ectocervix in a  
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band-like pattern [82]. Under healthy conditions, LL-37 is present in vaginal fluid at concentrations 

(mid-to-high nanograms/mL) [6] required to act on FPR2 and inhibit HIV-1 replication [81]. 

Due to structural and functional similarities to several antimicrobial peptides, peptide fragments of 

histones have also been implicated in the host defense of mucosal surfaces [83,84]. Histones and the 

related protamines are particularly well-endowed with basic amino acids, and thus their general 

microbicidal activities are likely related to electrostatic attraction to anionic microbial surfaces. 

However, the anti-HIV-1 activity of histones appears to be quite distinct from direct membranolytic 

action. Ubiquitinated histone 1B has been identified as an HIV-resistant factor, possibly regulating viral 

expression and secretion from CD4+ T cells [85]. Although histones are present in the FRT [28],  

it remains to be determined whether histones have a true antiviral host defense role in this environment. 

Larger cationic proteins are also components of human cervicovaginal fluids, and contribute to the 

collective anti-HIV-1 activity of the FRT. Lysozyme is a cationic 14.6 kDa enzyme whose primary 

bacteriolytic properties result from cleaving peptidoglycan between N-acetyl muramic acid and  

N-acetyl-D-glucosamine. Lysozyme also exhibits non-enzymatic properties that likely result from its 

electrostatically charged surface, which enable the protein to disrupt membranes and activate bacterially 

derived autolytic enzymes [86–88]. Alternative mechanisms of action extend to lysozyme’s ability to 

inhibit HIV-1. Lysozyme purified from human neutrophils, breast milk, and β-core human chorionic 

gonadotropin preparations could lower the ability of HIV-1-infected primary T lymphocytes and 

monocytes to produce virus [89], potentially by directly binding to viral RNA [90]. Peptide fragmentation 

and activity mapping of human lysozyme revealed that a core nine-residue peptide derived from 

lysozyme exhibited much greater activity against HIV-1 (IC50 50nM) than the intact protein, and acted 

to prevent viral entry [91]. While the nonapeptide has not been isolated from biological cells or fluids, 

its cleavage sites suggest that trypsin or related human proteases could function to liberate this highly 

active lysozyme-derived anti-HIV-1 peptide in vivo. 

Cathepsin G, a neutrophil-derived serine protease that is present in human CVF [28], has been 

reported to bind the HIV-1 envelope protein gp120 [92,93], and can promote HIV-1 infection of 

macrophages, but not CD4+ T lymphocytes [94]. The mechanism of this antiviral activity likely requires 

Gi protein-mediated signal transduction, as treatment of cells with pertussis toxin abrogated the 

enhancement of HIV-1 infection of macrophages [94]. Interestingly, prolonged exposure of macrophages 

to cathepsin G suppressed HIV-1 infection, an effect that was neutralized by the addition of serine 

protease inhibitors [94]. Cathepsin G has also been reported to generate truncated variants of the 

chemokine RANTES, which exhibited lower binding to CCR5 and reduced antiviral activity [95]. Taken 

together, these studies suggest a multifactorial role for cathepsin G in enhancing HIV-1 infection. 

Lactoferrin is an approximately 78 kDa basic protein, similar in structure and function to the  

iron-carrier protein transferrin. Lactoferrin can directly and indirectly inhibit HIV-1 by binding to the 

V3 loop of the HIV-1 envelope glycoprotein gp120, preventing adsorption of the virus to the surface of 

target cells [96,97]. Although the concentrations of lactoferrin and lysozyme are low in human vaginal 

fluid (1–13 μg/mL), they are extremely high (100–1000 μg/mL) in the cervical mucus plug [6,60]. 

Although the anti-HIV-1 activities for both lysozyme and lactoferrin are modest in vitro, it may be within 

the cervical mucus plug where their antiviral host defense properties are best realized. 
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6. Regulation of Cationic Peptides and Proteins in the FRT 

Deficiencies in the production of antimicrobial peptides, including activation, release, and/or 

concentration, have been implicated in the pathogenesis of inflammatory or infectious conditions. 

Windows of opportunity likely arise in which HIV-1 transmission and infection in the FRT are increased 

due to mechanisms that enable the virus to subvert innate antiviral host defenses. While multiple 

components of innate and adaptive immunity are likely involved, this review is centered on how cationic 

antimicrobial peptides/proteins are modulated, and in the FRT, there are at least three principal strategies 

in which this regulation occurs: hormonal, microbial, and proteolytic. While earlier studies have 

suggested that there is little change in the expression of antimicrobial peptides and proteins in the 

cervicovaginal fluid throughout the menstrual cycle [6], more recently it has been shown that concentrations 

of HNP1–3, SLPI, lysozyme, lactoferrin, and HBD-2 are all highest during the proliferative phase and 

to a lesser extent the secretory phase (reviewed in [98]). Oral contraceptives can also alter the expression 

of a number of peptides and proteins in cervical mucus, including lysozyme [99]. The regulation of 

defensin HD5, a cationic peptide that enhances HIV-1 infection, is under hormonal control, with 

maximal expression during the secretory phase [42]. 

For all studies that measure the concentration of antimicrobial peptides and proteins from lower FRT 

fluids, the method of collection (lavage, tampon, swab, diaphragm) has a large influence on the amounts 

and even types of recovered peptides and proteins. This is one reason (of many) why the field has only 

a coarse understanding of the regulation of antimicrobial peptides in the FRT, as each method of 

collection has its own merits and detractions. It has yet to be determined which fluid recovery technique 

would be best suited for the majority of applications and conditions, but it will be important that the field 

soon adopts a unified approach to reduce inter-study variability. 

Sexually transmitted infections of the FRT, such as genital herpes, and microbial-shift conditions, 

including bacterial vaginosis, have been associated with an increase in the risk of acquiring HIV-1 [100], 

as well as modulating the expression of cationic peptides and proteins. For example, in HIV-exposed 

seronegative women in HIV-serodiscordant relationships, the levels of HNP1-3 and LL-37 were directly 

associated with the partner’s viral load [101]. Selective depletion of cationic peptides and proteins from 

the cervicovaginal fluids rendered the remaining fractions inactive against HIV-1 [101], supporting the 

notion that these peptides are major components of innate antiviral host defense. Neisseria gonorrhoeae-

induced HD5 and HD6 can increase HIV-1 Infectivity [102], which is not surprising since HD-5 is 

known to promote HIV-1 infection through increasing viral attachment to target cells [43]. Interestingly, 

in other co-infections, the presence of certain antiviral cationic peptides and proteins suggest roles that 

run counter to preconceived notions of antiviral defense. LL-37, produced by HSV-2-infected 

keratinocytes, was reported to upregulate the expression of HIV-1 receptors in monocyte-derived 

Langerhans cells, enhancing their HIV susceptibility—an effect that could be blocked by inhibiting  

LL-37 production [103]. While cervicovaginal levels of Trappin-2/elafin are diminished during BV [75], 

up to 200-fold greater concentration of α-defensins were found in the cervicovaginal fluids of women 

during frank BV [104]. In a study that collected cervicovaginal fluids from highly HIV-exposed, 

uninfected Kenyan sex workers, cervicovaginal levels of α-defensins and LL-37 were associated with 

increased HIV acquisition, which was likely due to sexually transmitted bacterial infections [105]. 
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Proteolytic activation is now recognized as an important mechanism to regulate proteins in the FRT, 

which modulate HIV-1 infection. In an exciting study by Sorensen and colleagues, following heterosexual 

intercourse, the human cathelicidin hCAP18 was cleaved into the ALL-38, a peptide that retained 

complete biological activity as compared to LL-37 [80]. An interesting twist is that the enzyme responsible 

for this activation was the prostate-derived protease gastricsin, which is present in semen but not in 

vaginal fluid. Under the slightly basic pH of semen, gastricsin is not able to cleave hCAP18. However, 

upon incubation with low pH buffers in vitro, or contact with the acidic milieu of the vagina in vivo, 

gastricsin was activated and process hCAP18 into ALL-38. Although ALL-38 itself has not been tested 

against HIV-1, given that all biological tests performed confirm its equivalent potency to LL-37 [80] 

and that LL-37 can inhibit HIV-1 replication [81], it reasons that gastricsin-mediated activation of 

hCAP18 represents a novel mechanism to prevent HIV-1 infection following sexual intercourse.  

As with all cationic antimicrobial peptides and proteins of the cervicovaginal mucosa, it is important to 

consider that antiviral activity of the FRT is highly dependent on the majority of these molecules acting 

together, and even slight dysregulation can result in increased susceptibility to HIV-1 transmission and 

infection [28]. 
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