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Abstract: The present study aimed to characterize the mode of action of a novel antimicrobial
peptide isolated from egg yolk hydrolysate. The EYHp6, KGGDLGLFEPTL, exhibited inhibition
against Salmonella enterica serovar Typhimurium TISTR 292 and S. enterica serovar Enteritidis DMST
15679 with a MIC value of 2 mM. In contrast, S. enterica serovar Newport ATCC 6962 and other
strains of Typhimurium and Enteritidis were inhibited at 4 mM. EYHp6 increased the cell membrane
permeability of S. Typhimurium TISTR 292, leading to DNA leakage. Membrane integrity determined
by propidium iodide and SYTO9 staining visualized by confocal microscopy demonstrated that
EYHp6 at 1 × MIC induced disruption of cell membranes. Electron microscopy revealed that
treatment of S. Typhimurium with EYHp6 led to damage to the cell membrane, causing the leakage
of intracellular contents. Synchrotron-based Fourier-transform infrared spectroscopy indicated that
EYHp6 killed S. Typhimurium by targeting fatty acids and nucleic acids in the cell membrane. The
peptide did not show hemolytic activity up to 4 mM. These findings suggest that EYHp6 could be a
promising antibacterial agent for controlling the growth of S. enterica.

Keywords: egg yolk protein; antimicrobial peptide; food-borne pathogens; Salmonella Typhimurium

1. Introduction

Contaminations of animal-based food products during production and retailing pro-
cesses with foodborne pathogenic microorganisms are of serious concern. According to
the World Health Organization (WHO), unsafe food can cause up to 600 million foodborne
illness cases, and 420,000 people die each year, resulting in productivity loss and significant
medical costs in low- and middle-income countries [1]. Salmonella spp. is the third leading
cause of death among foodborne outbreaks worldwide [2]. Approximately 93 million
gastroenteritis cases and 155,000 deaths caused by non-typhoidal Salmonella are reported
annually worldwide [3]. S. enterica serovar Enteritidis is one of two species of Salmonella
spp., comprising six subspecies with approximately 2659 serovars [4]. Serovars can trigger
infections in both humans and animals, including Enteritidis and Typhimurium, which are
mainly transmitted by animal-based foods, such as beef, pork, poultry, and raw eggs [5,6].
The use of antibiotics is one of the common measures for pathogenic bacteria control.
However, various negative side effects of antibiotics have been reported, including the
development of drug resistance, transfer of antibiotic-resistant bacteria to humans, and
hyper sensitivity reaction. Some antibiotics, namely sulfamethazine, oxytetracycline, and
furazolidone, have been reported to have carcinogenicity, while chloramphenicol induces
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bone marrow toxicity. In addition, disturbance of gut microbiota by tetracyclines is re-
ported [7,8]. Natural antimicrobial agents that do not cause drug resistance and are safe for
consumers should be sought.

Antimicrobial peptides (AMPs) are small peptides that play an important role in
host defense from microbial invasion [9]. Since AMPs have broad-spectrum activity and
find it difficult to develop resistance, they have been receiving increasing attention as
alternative antibiotics. Most AMPs, predominantly cationic peptides, comprise less than
50 amino acids [10], which can electrostatically interact with anionic components of bacte-
rial membranes [11]. AMPs disrupt the integrity or function of phospholipid bilayers of
cell membranes directly through toroidal, carpet, aggregate, or barrel models [12]. Thus,
AMPs have a lower possibility of inducing drug resistance. In contrast, specific receptors
and/or targets of antibiotics can be modified to develop resistance [13]. A number of
AMPs have been found to have good antimicrobial potential and are applicable as food
preservatives, such as HX-12C (FFRKVLKLIRKIWR), HSEP3 (RSVIFGCTKSIPPICFVGFK),
LCWAP (FTKPGVCPRRRWGAG), brevilaterins, and various bacteriocins [14–18]. In ad-
dition, the exploration of new bioactive peptides from enzymatic hydrolysis of protein
is a great avenue for alternative AMPs [19]. Enzymatic hydrolysis is well-established
as a rapid and robust method for the production of bioactive peptides [20]. It has been
recently found that enzymatic hydrolysis of certain proteins results in peptides that exhibit
antimicrobial activity [21]. Several AMPs have been isolated from hydrolysates of various
protein sources [22–24].

Egg yolk proteins are the main coproduct obtained from lecithin extraction. Their
biological and biotechnological value is reduced by extraction solvent [25]. In our previous
study, egg yolk proteins hydrolyzed by pepsin exhibited antimicrobial activity against
Staphylococcus aureus ATCC 29213 and S. serovar Typhimurium TISTR 292 when frac-
tionated on C-18 column, with a feasible mechanism targeting the cell membranes. The
most potent peptide responsible for such activity has been identified to be EYHp6 (KG-
GDLGLFEPTL), and it showed potent antimicrobial activity against S. Typhimurium [26].
Therefore, EYHp6 is a good candidate for further development as a new antimicrobial
agent. However, its mode of action against S. Typhimurium is unknown, which would
limit further application. Thus, the objective of this study was to unveil the antimicrobial
mechanism of EYHp6 against S. Typhimurium. Moreover, synchrotron radiation-based
Fourier transform infrared microspectroscopy (SR-FTIR) was applied to evaluate the cellu-
lar changes induced by EYHp6. The toxicity of peptides was also determined by evaluating
the hemolytic activity against human red blood cells.

2. Results and Discussion
2.1. Antimicrobial Activity

The antimicrobial activities of peptide EYHp6 were evaluated against various serovars
of S. enterica, including S. Typhimurium TISTR 292, S. Typhimurium ATCC 14028, S. Enter-
itidis DMST 15679, S. Enteritidis ATCC 13076, and S. serovar Newport ATCC 6962. The
MIC values are shown in Table 1. Peptide EYHp6 showed anti-salmonella activity with
MIC values ranging from 2 to 4 mM, depending on serovar. The peptide was more effective
against S. Typhimurium TISTR 292 and S. Enteritidis DMST 15679 with a MIC value of
2 mM. S. Enteritidis and S. Typhimurium are among the most important serovars causing
enteric infections in various animals and humans [4]. The peptide also showed antibacterial
effects against S. Newport, although with a higher MIC value. S. Newport is considered an
emerging multidrug-resistant serovar, including ampicillin, chloramphenicol, streptomycin,
sulfamethoxazole, and tetracycline, which causes severe infections and death in animals
and humans [27].
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Table 1. Antibacterial activities of peptide EYHp6 against various serovars of S. enterica.

Serotype MIC (mM)

S. Typhimurium TISTR 292 2
S. Typhimurium ATCC 14028 4
S. Enteritidis DMST 15679 2
S. Enteritidis ATCC 13076 4
S. Newport ATCC 6962 4

EYHp6, KGGDLGLFEPTL, revealed antibacterial activity with MIC at 2 mM against
S. Typhimurium TISTR 292, which was consistent with our previous study [26]. EYHp6
did not match with any peptides in the BIOPEP-UWM, NCBI, and APD databases, sug-
gesting it is a novel AMP. EYHp6 contained 12 amino acids with 45% hydrophobicity
and a net charge of −1. The MIC value of EYHp6 was comparable to those of anionic
antimicrobial peptides AP1 (GEQGALAQFGEWL) and MOp3 (MCNDCGA) [28,29] and
cationic antimicrobial peptide BCp12 (YLGYLEQLLRLK) [30], which ranged from 1 to
4.4 mM. Peptides derived from protein hydrolysate usually exhibit MIC values in mM
levels, which are less potent than those derived from natural sources whose MIC values
typically range in µM levels [21,31,32]. The antibacterial activity of peptides depends on
several factors, including net charge, secondary structure, hydrophobicity, and amino acid
sequences [31,33]. The antibacterial activity of the EYHp6 peptide could be attributed to
its anionic characteristic (net charge − 1). Anionic AMP is thought to induce membrane
destabilization by interacting with membrane lipids and/or changing the hydrophobicity
of the cell surface, leading to the alteration of cell membrane permeability [34]. In addition,
some anionic AMPs can form a cationic salt bridge via metal ions like Zn2+, allowing
interactions with negatively charged bacterial membranes. This would ultimately weaken
the cell membrane and increase its permeability [35]. The majority of AMPs are cationic
in nature, binding to the negatively charged bacterial membrane, increasing membrane
permeability and subsequently leading to cell lysis and leakage of intracellular components.
Additionally, the amphiphilicity of most AMPs can facilitate the integration of AMPs into
the lipid bilayers of the membrane, causing the disintegration of the cell membrane and cell
death [36]. Few anionic AMPs have been reported. Zhao et al. [37] reported that anionic
AMP, HVLDTPLL, isolated from hydrolysates of Moringa oleifera seed proteins, displayed
activity against S. Typhimurium CICC 21484 at 4.4 mM RVAPEEHPTL and FFTQATDLLSR,
which were anionic AMPs derived from Maillard reaction products and inhibited the
growth of Escherichia coli at approximately 17 and 15 mM, respectively [38]. These reported
peptides showed less effective antimicrobial activity than the EYHp6 reported in our study.

2.2. Time Kill Kinetics

The time-kill kinetic curves of S. Typhimurium TISTR 292 in the presence and absence
of EYHp6 are shown in Figure 1. In the control (no peptide), bacteria grew continuously
over the period of 24 h. In the presence of 1 × MIC peptide, cell viability was reduced by
approximately 1 Log CFU/mL after 4 h of incubation compared to the initial inoculum.
Subsequently, growth was resumed, reaching 6 Log CFU/mL at 24 h. The final cell count at
24 h was approximately 4 Log CFU/mL lower than that of the control. During the 2 × MIC
treatment, cell count decreased to a greater extent than that of the 1 × MIC treatment. After
24 h incubation, the 2 × MIC treatment showed approximately 2 Log CFU/mL reduction
compared to the initial count. It should be noted that the cell viability of the 2 × MIC
treatment was approximately 6 Log CFU/mL lower than the control (p < 0.05). These
results demonstrated that the growth of S. Typhimurium TISTR292 can be controlled by
EYHp6 at 2 × MIC.
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charged lipid systems. Indolicidin, a small cationic AMP with 13 amino acid residues, was 
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tozoa, fungi, and viruses. A short chain of indolicidin confers it largely linear in structure, 
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capable of inserting themselves into the outer leaflet of the model lipid bilayer [42]. Our 
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Figure 1. Time-killing kinetics of EYHp6 against S. Typhimurium TISTR 292 at 1 × MIC and
2 × MIC concentrations. All data are expressed as the mean values of triplicate ± standard deviation.
* indicates a significant difference (p < 0.05) compared with control at each time interval.

2.3. CD Spectroscopy

The CD spectra of EYH6 in various solvents are shown in Figure 2. The secondary
structure of the peptide in aqueous solution exhibited a random coil structure with a
negative peak around 200 nm. In 50% TFE and 30 mM SDS (mimicking negatively charged
prokaryotic membrane), the CD spectra of EYH6 showed minor alteration in the secondary
structure with predominant random coil structures. Although typical structures adopted
by AMPs in contact with membranes are α-helical and β-sheet, AMPs with random coil
structures have also been reported [39]. Souza et al. [40] showed that two AMPs, PepGAT
(GATIRAVNSR) and PepKAA (KAANRIKYFQ), displayed a random chain conformation
in aqueous solution, organic solvent (50% TFE), and upon binding to negatively charged
lipid systems. Indolicidin, a small cationic AMP with 13 amino acid residues, was reported
to possess a broad spectrum against Gram-negative and -positive bacteria, protozoa, fungi,
and viruses. A short chain of indolicidin confers it largely linear in structure, forming
random coil structures in solution [41]. Peptides with a random coil structure are capable
of inserting themselves into the outer leaflet of the model lipid bilayer [42]. Our study
suggested that EYHp6 exhibited a random coil structure when interacting with lipid
components of the cytoplasmic membrane.

2.4. Membrane Disruption

An increase in OD260 was observed when S. Typhimurium was incubated with EYHp6
at 2 mM for 1 h (Figure 3), indicating leakage of genetic materials. A substantial increase
in absorbance was evident at 4 h of peptide exposure, implying an increase in membrane
permeability. Zhou et al. [43] reported a similar finding, in which the leakage of intracellular
nucleic acid and protein in E. coli increased when exposed to peptide LL-1 isolated from
Dichocrocis punctiferalis. Longer exposure time (>4 h) did not further enhance cell membrane
leakage. This could probably be due to the recovery of injured cells, as evidenced by cell
growth after 4 h of exposure time (Figure 1).
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PI and SYTO 9 are widely used to elucidate cell membrane permeability. SYTO 9 can
pass through living and dead cell membranes and bind DNA and RNA to produce green
fluorescence. Meanwhile, PI can penetrate dead cells or cells with damaged membranes
and bind to DNA, emitting a red fluorescence signal [44]. Most untreated cells (control)
showed only a green fluorescent signal (Figure 4), demonstrating the integrity of cell
membranes. In contrast, red fluorescence signals were detected in S. Typhimurium treated
with 2 mM EYHp6 for 4 h. Song et al. [45] found that AMP (KDFPGRR) increased the
membrane permeability of E. coli, resulting in an increase in PI-signal after exposure to the
peptide at 0.5 mg/mL for 30 min. Hou et al. [46] reported that more than 57.3% of cells
were stained with PI after exposure to the peptide Cp1 (LRLKKYKVPQL) derived from
bovine αS1-casein hydrolysate. Our results indicate that EYHp6 induced disruption of the
cell membrane of S. Typhimurium.

2.5. Electron Microscopy

In the absence of EYHp6, S. Typhimurium TISTR 292 exhibited intact cells with
smooth surfaces (Figure 5A). Cell damage was observed with an irregular cell surface, pore
formation, and cell lysis after the bacterial cells were exposed to EYHp6 at 1 × MIC for
4 h (Figure 5B). In addition, TEM results illustrated that untreated cells showed intact cell
membranes and were full of intracellular contents, while EYHp6-treated cells demonstrated
the collapse of the cytoplasmic membrane with wider periplasmic space (Figure 5C,D). In
addition, leakage of intracellular materials was also observed.
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(A,C) Control sample without peptides, and (B,D) cells treated with EHYp6 at 1 × MIC for 4 h (B,D).
White and red arrows represent the observed morphological changes.

SEM and TEM images showed that EYHp6 inactivated S. Typhimurium by disrupting
the cell membrane, leading to the dissolution of the cytoplasmic space and leakage of
intracellular contents. The peptide CCCPKAF, isolated from chicken plasma, induced
the death of Bacillus cereus by forming pores and damaging cell membranes [47]. The
amphiphilic structure of anionic AMPs is believed to play a key role in bacterial membrane
interactions [48].

2.6. SR–FTIR Microspectroscopy

SR–FTIR microspectroscopy, providing much higher brightness and smaller detec-
tion spots than conventional FTIR, was employed to evaluate the alteration of cellular
components of S. Typhimurium treated with EYHp6 (Figure 6A). SR–FTIR spectra can be
divided into four regions, namely 3000–2800 (fatty acids in the bacterial cell membrane),
1700–1500 (proteins and peptides), 1500–1200 (the mixed regions of fatty acids, proteins and
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phosphate–containing molecules), and 1200–900 cm−1 (polysaccharides as well as nucleic
acids) [49]. The second derivatives of spectra indicated that cells treated with 2 mM EYHp6
exhibited distinct changes in the fatty acid regions at 2923 and 2852 cm−1 and nucleic acid
regions at 1083 cm−1 compared to the control (Figure 6B,D). Slight changes around the
amide I of protein were also observed (Figure 6C). Asymmetrical vibrations of –CH groups
of fatty acids on the membranes and asymmetric stretching of phosphate group P=O of the
phosphodiester bond of nucleic acids indicated that EYHp6 induced structural changes in
lipid membranes and genetic materials of S. Typhimurium. A slight effect on intracellular
proteins could also take place.
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drate regions (1200–950 cm−1). Triplicate experiments were conducted, and a total of 150 spectra
were averaged.

The two–dimensional PCA plot demonstrated that spectra of the untreated control
and cells treated with 1 × MIC of EYHp6 were explicitly separated along PC1 with a
total variation of 46% (Figure 7A). The PC1 loading plots showed the highest positive
spectrum variation at 2921, 2853, and 1648 cm−1 (Figure 7B), indicating changes in fatty
acids and proteins in cells treated with EYHp6. In contrast, the negative loading at 1668,
1631, 1222, and 1085 cm−1 is attributed to C=O stretching of amide groups of proteins and
P=O symmetric stretching from phosphodiester bond of cellular nucleic acids. These results
indicate that EYHp6 induced modification of proteins and nucleic acids of S. Typhimurium.
The antimicrobial peptide (KVFLGLK) from Jatropha curcas inhibits the growth of S. aureus
ATCC 25923 by disrupting the cell wall and cell membrane, as evidenced by FT–IR spectra
of proteins, fatty acids, polysaccharides, and the global glucan portions [50]. Based on these
SR–FTIR results, EYHp6 may primarily affect membrane lipids of the S. Typhimurium
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and induce changes in nucleic acids and intracellular proteins, leading to cellular damage
and death.
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2.7. Hemolytic Activity

The hemolytic activity of EHYp6 on human erythrocytes was used to reflect the
cytotoxic effect of the peptide on mammalian cells. The hemolysis rate of EYHp6 was
increased with various concentrations (Figure 8). A hemolysis rate below 5% is generally
regarded as safe for red blood cell integrity [51]. Complete hemolysis of RBC was observed
in the presence of 0.1% Triton X–100, while PBS had no effect (Figure 8). It was reported that
BCp12 peptide derived from buffalo casein hydrolysate did not disrupt the RBC of rabbit
erythrocytes at 1.3 mM [30]. The SP–1 peptide, KLVDASHRLATGDVAVRA, from protein
hydrolysates of Spirulina platensis exhibited no hemolytic activity up to a concentration of
8 × MIC values at 68.1 mM [52]. In contrast, melittin, a well–known hemolytic peptide,
showed 50% hemolysis in rabbit and human erythrocytes at only 2.6 µM [53]. Our results
suggested that EYHp6 did not show a hemolytic effect at 4 mM, which was two times higher
than the MIC value. This finding implies that EYHp6 is likely safe for food application.
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3. Materials and Methods
3.1. Peptide Synthesis

EYHp6 (KGGDLGLFEPTL), identified by Pimchan et al. [26], was synthesized using
a solid–phase peptide synthesis method (GL Biochem Ltd., Shanghai, China). It was
purified using an HPLC to achieve 95% purity. Liquid chromatography equipped with
a mass spectrometer (LC–MS/ESI) was employed to verify the molecular mass of the
synthetic peptide.

3.2. Antimicrobial Activity Assay

The antibacterial activity of synthetic peptides against S. Typhimurium TISTR 292,
S. Typhimurium ATCC 14028, S. Enteritidis DMST 15679, S. Enteritidis ATCC 13076, and
S. Newport ATCC 6962 was evaluated by the broth microdilution method following the
standard guideline described by the Clinical Laboratory Standard Guideline (CLSI) with
some modifications. All strains were cultured on tryptic soy agar and incubated at 37 ◦C
for 18–24 h. Bacterial cells were then diluted to 105 CFU/mL with Mueller–Hinton broth.
In total, 50 µL of cell suspension and 50 µL of peptide at various concentrations were added
to 96–well plates and then incubated for 18 h at 37 ◦C. Bacterial cells without peptides
served as a negative control. Inhibition of bacterial growth was determined at 600 nm using
a microplate reader (Varioskan LUX, Thermo Scientific, Vantaa, Finland). The minimum
inhibitory concentration (MIC) was defined as the lowest concentration of peptide that
completely inhibits the growth of bacteria.

3.3. Time Killing Assay

The kinetic inhibition of EYH6 against S. Typhimurium TISTR 292 was determined
to confirm its antibacterial action. Briefly, overnight–grown culture was diluted with MH
broth to obtain a cell density of 105 CFU/mL, followed by adding EYH6 at concentrations
of 1 × MIC and 2 × MIC. In total, 100 µL of cell suspension were taken from different
exposure time intervals (0, 1, 2, 4, 6, 8, and 24 h) at 37 ◦C and diluted with normal saline
before dropping 10 µL on a Mueller–Hinton agar plate and incubated at 37 ◦C overnight.
The growing colonies were counted and expressed as CFU/mL.

3.4. Circular Dichroism (CD) Analysis

The secondary structure of EYH6 in different solutions was determined by CD, ac-
cording to Liu et al. [54]. The peptide was solubilized in DI water representing an aque-
ous environment, 30 mM sodium dodecyl sulfate (SDS) simulating negatively charged
membranes, or 50% trifluoroethanol (TFE) mimicking hydrophobic conditions in the cell
membrane. The CD of EYH6 at 0.2 mg/mL was measured using a Jasco J–815 Spectropo-
larimeter (Jasco, Tokyo, Japan) set at 25 ◦C. CD spectra at 190–250 nm were recorded
using a quartz dish with a diameter of 1 mm, a slit of 2 nm, and a scanning speed of
50 nm/min. An analysis of acquired CD spectra was performed using the BestSel server
(http://bestsel.elte.hu/index.php (accessed on 19 May 2023)) to evaluate the secondary
structures of the peptide.

3.5. Leakage of Nucleic Acids

Leakage analysis of nucleic acids of S. Typhimurium TISTR 292 treated with peptide
was conducted following the method of Tian et al. [47] with minor modifications. Bacterial
suspensions were incubated with 1 × MIC EYHp6 37 ◦C for 4 h. The bacterial suspension
without peptide was used as a control. At 1 h intervals, samples were taken for centrifuga-
tion at 10,000× g for 5 min, and supernatants were collected and filtered through a 0.22–µm
syringe filter. Nucleic acid contents were estimated at 260 nm using NanoDrop™ 2000c
spectrophotometers (Thermo Scientific, Waltham, MA, USA).

http://bestsel.elte.hu/index.php
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3.6. Electron Microscopy

The morphology and structural changes in S. Typhimurium TISTR 292 treated with
EYHp6 were evaluated using a scanning electron microscope (SEM) and transmission
electron microscope (TEM). The mid–log grown cultures were treated with 1 × MIC of
EYHp6 at 37 ◦C for 4 h. Cells were collected by centrifuging at 3000× g and 4 ◦C for
10 min and washed twice with sterile PBS. For SEM, samples were fixed overnight with
2.5% (w/v) glutaraldehyde, followed by 1% osmium tetroxide fixation and dehydration by
acetone, as detailed by Pimchan et al. [26]. The samples were coated with carbon and gold.
A field-emission scanning electron microscope (Zeiss AURIGA FESEM/FIB/EDX, Jena,
Germany) was applied with electron energy between 2 and 5 keV.

Sample preparation for TEM was also carried out as described for SEM. After serial
dehydration with acetone, samples were infiltrated in a mixture of absolute acetone and
epoxy resin (v/v) at 1:3 and 1:1 for 3 h, followed by 3:1 overnight. Subsequently, samples
were infiltrated with 100% epoxy resin and polymerized in an oven at 60 ◦C for 24 h in
an embedding capsule. Ultrathin sections with a thickness of 70–90 nm were performed
using an ultramicrotome equipped with a diamond knife. The sections were subsequently
collected on 200–mesh copper grids and poststained with uranyl acetate and lead citrate
for 15 min under ambient conditions. A Tecnai G2 electron microscope (FEI, Hillsboro, OR,
USA) at 120 kV was applied to record micrographs.

3.7. Confocal Laser Scanning Microscopy (CLSM)

Membrane integrity tests of S. Typhimurium TISTR 292 treated with EYHp6 were
carried out following the method of Liao et al. [55]. Cells in the logarithmic growth stage at
a final concentration of 107 CFU/mL were challenged with the peptide at 1 × MIC for 4 h at
37 ◦C. The samples were centrifuged at 3000× g for 10 min. Cells were washed twice with
PBS and stained with 5 µg/mL SYTO–9 and 10 µg/mL propidium iodide (PI) for 30 min
at 4 ◦C in the dark. Excessive staining was removed by washing it with PBS 3 times prior
to dropping it on a glass slide to view under a confocal laser scanning microscope (Nikon
90i A1R, Nikon, Tokyo, Japan). Untreated bacterial cells were set as a negative control.
Excitation and emission wavelengths of 488 and 530 nm were used for SYTO–9-stained
cells, while wavelengths of 538 and 617 nm, respectively, were applied for PI–stained cells.

3.8. Synchrotron–Fourier–Transform Infrared Spectroscopy (SR–FTIR)

Changes in cellular components of S. Typhimurium TISTR 292 treated with EYHp6
peptide were determined by SR–FTIR analysis, as detailed by Tian et al. [47]. Mid–logarithmic
growing cells (108 CFU/mL) were incubated at 37 ◦C for 4 h with 1 × MIC of the peptide.
An IR–transparent 2 mm thick barium fluoride (BaF2) window was used. All spectra
were obtained from transmission mode using a Vertex 70 FTIR spectrometer coupled with
an IR microscope Hyperion 2000 (Bruker Optics, Ettlingen, Germany) connected to the
Synchrotron Light Source at the beamline 4.1 at the Synchrotron Light Research Institute
(Nakhon Ratchasima, Thailand). Data analysis was performed using OPUS 7.5 software
(Bruker Optics Ltd., Ettlingen, Germany). Savitzky–Golay algorithms with seventeen
smoothing points were applied to calculate the signal intensity of second derivatives.
Principal component analysis (PCA) was performed using Unscramble X software version
10.4 (CAMO Software AS, Oslo, Norway).

3.9. Hemolysis

The effect of synthetic peptides on hemolytic activity of erythrocytes was carried out
as previously described by Stark et al. [56]. Fresh blood from healthy donors was obtained
based on the protocol approved by the Human Research Ethics Committee of the Suranaree
University of Technology (EC–64–32). Red blood cells (RBC) were washed three times with
PBS and diluted to 1% RBC in PBS. In total, 50 µL of RBC suspension were added to 50 µL
of various concentrations of peptide and incubated for 1 h at 37 ◦C. The RBC was mixed
with PBS, and 10% Triton–X–100 was also prepared as a negative and positive control,
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respectively. After 5 min centrifugation at 1000× g (4 ◦C), the release of hemoglobin was
measured at 570 nm using a microplate reader (Molecular Devices, Sunnyvale, CA, USA).
The hemolytic activity was calculated as follows:

Hemolysis(%) =
OD570 of the treated sample − OD570 of the negative control
OD570 of the positive control − OD570 of the negative control

× 100

3.10. Statistical Analysis

All experiments were performed in 3 independent replications. Results were expressed
as mean ± SD. Statistical analysis was performed using SPSS version 23.0 software (SPSS
Inc., Chicago, IL, USA), with one–way analysis of variance (one–way ANOVA) and Tukey’s
HSD post hoc test. A p < 0.05 was regarded as statistically significant.

4. Conclusions

The novel EYHp6 peptide isolated from the egg yolk protein hydrolysate is an antibac-
terial agent against several serovars of S. enterica, particularly S. Typhimurium TISTR 292
and S. Enteritidis ATCC 13076. The anionic EYHp6 disrupted the cell membrane, leading
to an increase in permeability and, eventually, cell death. SR–FTIR analysis revealed that
EYHp6 induced alterations in the lipid membranes and nucleic acids of S. Typhimurium.
EYHp6 had no toxicity on human red blood cells at concentrations up to 2 × MIC (4 mM).
This peptide could be a good candidate for further development as a novel antibacterial
agent against foodborne pathogens. Further studies on the efficacy of EYHp6 on microbial
control in food samples and on gut microbiota would pave the way to the application of
AMP in food and functional food products.
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