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Abstract: Pseudomonas aeruginosa with difficult-to-treat resistance has been designated as an urgent
or serious threat by the CDC in the United States; therefore, novel antibacterial drugs and combi-
nation strategies are urgently needed. The sensor kinase RoxS is necessary for the aerobic growth
of Pseudomonas aeruginosa. This study aimed to screen candidate RoxS inhibitors and evaluate their
efficacy in treating multi-drug-resistant and extensively drug-resistant Pseudomonas aeruginosa in com-
bination with meropenem and amikacin to identify promising combination strategies. RoxS protein
structures were constructed using homology modeling and potential RoxS inhibitors, including Eze-
timibe, Deferasirox, and Posaconazole, were screened from the FDA-approved ZINC drug database
using molecular docking and molecular dynamics simulations. MIC and checkerboard assays were
used to determine the in vitro antimicrobial efficacy of the three drugs in combination with antibiotics.
The results of in vitro experiments showed an additive effect of 100 µg/mL Deferasirox or 16 µg/mL
Posaconazole in combination with meropenem and a synergistic effect of 1.5 µg/mL Deferasirox
and amikacin. In summary, these three drugs are potential inhibitors of RoxS, and their combination
with meropenem or amikacin is expected to reverse the resistance of P. aeruginosa, providing new
combination strategies for the treatment of clinically difficult-to-treat Pseudomonas aeruginosa.

Keywords: RoxS; homology modeling; molecular docking; molecular dynamics simulations;
checkerboard assay; Pseudomonas aeruginosa

1. Introduction

Pseudomonas aeruginosa (P. aeruginosa) is a rod-shaped, aerobic, Gram-negative bac-
terium that is an important causative agent of clinically acquired infections [1]. The inci-
dence of life-threatening P. aeruginosa infections in critically ill and immunocompromised
patients is increasing [2–5]. Antibiotics are the cornerstone of modern medicine, however,
they also exert survival pressure on bacteria. In response to the external environment,
bacteria undergo accelerated evolution leading to drug resistance [6,7]. Multidrug-resistant
(MDR) and extensively drug-resistant (XDR) strains have spread worldwide and become a
significant threat to public health, even in the context of combination therapy [8]. A prospec-
tive European study showed that among P. aeruginosa isolates from intensive care units,
32.9% were MDR and 24.9% were XDR [9]. Carbapenems and aminoglycosides are com-
monly used to treat severe P. aeruginosa infections, however, the resistance of P. aeruginosa
to these drugs increases every year [10,11]. Therefore, the treatment of MDR and XDR
P. aeruginosa is a global challenge [12]. There is an urgent need to search for novel antibac-
terial synergists by combining them with antibiotics to overcome antibiotic resistance in

Antibiotics 2023, 12, 1422. https://doi.org/10.3390/antibiotics12091422 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics12091422
https://doi.org/10.3390/antibiotics12091422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0003-4734-5383
https://doi.org/10.3390/antibiotics12091422
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics12091422?type=check_update&version=2


Antibiotics 2023, 12, 1422 2 of 20

P. aeruginosa; therefore, it is necessary to develop novel antimicrobial drugs and therapeu-
tic strategies.

A class of regulatory proteins in P. aeruginosa, known as the two-component sys-
tem (TCS), consists of paired sensors and response regulators [13]. Several activities of
P. aeruginosa are regulated by this mechanism, including motility, metabolic processes, and
biofilm formation [14]. Therefore, TCS has emerged as a target for the development of
novel antibacterial drugs [15]. P. aeruginosa has at least five terminal oxidases involved in
aerobic respiration. P. aeruginosa adapts to different environmental conditions by regulat-
ing the expression of multiple oxidases and anaerobic energy metabolism [16]. Jo J et al.
demonstrated that the cbb3-type cytochrome oxidase subunit supports P. aeruginosa biofilm
growth and virulence [17]; however, an imbalance in the regulatory mechanisms may
inhibit bacterial growth. Osamura T et al. reported that cytochrome c oxidase (aa3 (Cox)) is
expressed at low levels during the normal growth of P. aeruginosa, and its overexpression
significantly inhibits the aerobic growth of the bacteria [18]. RoxSR is a TCS in P. aeruginosa
and a regulator of terminal oxidases that represses the expression of Aa3 oxidase and
activates the expression of the other four terminal oxidases. Abnormal expression of RoxSR
may interfere with the aerobic respiration of bacteria and reduce their adaptability to
unfavorable environments, thereby inhibiting bacterial growth. Azide compounds have an
inhibitory effect on bacteria; Comolli JC et al. observed that P. aeruginosa strains lacking
RoxS were less resistant to azide than the wild type [19]. In addition, Hurley BP et al.
showed that the RoxSR mutant of P. aeruginosa was unable to grow under 500 uM NaN3
conditions, unlike wild-type PAO1 [20]. Therefore, RoxSR may be a promising target for
bacterial inhibition.

Since 2008, our group has been dedicated to reversing drug resistance in P. aerugi-
nosa [21–23]. Jun L et al. found that interfering with bacterial iron metabolism affected
bacterial drug resistance, and the metabolism was closely related to the physiological
activities of bacteria [24]. RoxSR, a two-component system that affects bacterial metabolism,
caught our attention. Several studies have investigated the mechanism by which RoxSR
regulates aerobic respiration; however, its inhibitors have not yet been reported. Sensor
kinase proteins are commonly used as targets in the development of antibacterial agents
for TCS to control the biological functions of the entire TCS [25,26]. RoxS is a sensor ki-
nase of RoxSR; therefore, it was selected as the target of this study. The time required to
develop novel, effective, and safe therapies is a major barrier to the discovery of antibiotics.
Repurposing FDA-approved drugs to improve the efficacy of existing antimicrobial drugs
is a favorable option for expanding the existing antimicrobial drug pool. Therefore, virtual
screening was used to identify potential RoxS inhibitors among FDA-approved drugs and
to explore the optimal combination treatment strategy for inhibitor candidates with both
meropenem (MEM) and amikacin (AMK).

2. Results
2.1. Homology Modeling

A total of 50 templates were searched using the Swiss-Model, and six models were
built (Figure 1). The sequence identity value represents the sequence homology, and it is
required to be at least 30%. In this study, the sequence identity values for the six models
were all <30% (see Table A1 of Appendix A); therefore, the protein models constructed
using the Swiss-Model were of poor quality.
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Figure 1. Structures of RoxS protein predicted using Swiss-Model (A–F). 

The top five prediction models were provided by I-TASSER (Figure 2). These models 
are ranked by I-TASSER’s proprietary C-Score. The C-score is typically in the range of 
[−5.2], with higher values indicating a higher level of confidence in the model and vice 
versa. The C-scores of the five models in order are −1.85, −3.00, −3.35, −3.93, and −4.07, 
respectively. In addition to the C-score, the top-ranked model gives an Estimated TM-
score = 0.49 ± 0.15, which lies between 0.17 and 0.5. TM scores above 0.5 indicate that the 
model has the correct topology, and TM scores below 0.17 indicate that the model is ran-
dom and unreliable. The prediction models provided by I-TASSER had a low level of con-
fidence. A protein structure of RoxS was determined using Alphafold with the biological 
source P. aeruginosa (Figure 3). The confidence level pLDDT of this model was 82.57. Fur-
ther quality assessment of the protein structure models predicted by I-TASSER and Al-
phafold is needed. 
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Figure 1. Structures of RoxS protein predicted using Swiss-Model (A–F).

The top five prediction models were provided by I-TASSER (Figure 2). These models
are ranked by I-TASSER’s proprietary C-Score. The C-score is typically in the range of
[−5.2], with higher values indicating a higher level of confidence in the model and vice
versa. The C-scores of the five models in order are −1.85, −3.00, −3.35, −3.93, and
−4.07, respectively. In addition to the C-score, the top-ranked model gives an Estimated
TM-score = 0.49 ± 0.15, which lies between 0.17 and 0.5. TM scores above 0.5 indicate that
the model has the correct topology, and TM scores below 0.17 indicate that the model is
random and unreliable. The prediction models provided by I-TASSER had a low level
of confidence. A protein structure of RoxS was determined using Alphafold with the
biological source P. aeruginosa (Figure 3). The confidence level pLDDT of this model was
82.57. Further quality assessment of the protein structure models predicted by I-TASSER
and Alphafold is needed.
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AlphaFold had a high resolution. The number of residues in the most favored regions of 
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(76.2%) and 351 (93.9%), respectively. The structure predicted by AlphaFold was reason-
able. The Z-score of Model 1 predicted by I-TASSER was −3.34 and was at the edge of the 
graph area plotted by Z-score values. The Z-score of the protein predicted by Alphafold 
was −5.76, which is within the graph area plotted by the Z-score values of known proteins, 
and its energy was reasonable. Combining the results of the three evaluation systems, ER-
RAT, PROCHECK, and PROSA (Figures 4 and 5), Model 1 predicted by I-TASSER failed 
the quality evaluation. The structure of the RoxS protein predicted in AlphaFold was of 
good quality and was used for further molecular docking and molecular dynamics simu-
lations. 

 

Figure 3. Structure of RoxS protein predicted using Alphafold. Model Confidence: Dark blue: Very
high (pLDDT > 90), light blue: Confident (90 > pLDDT > 70), yellow: Low (70 > pLDDT > 50); Orange:
Very low (pLDDT < 50). AlphaFold produces a per-residue confidence score (pLDDT) between 0 and
100. Some regions with low pLDDT may be unstructured in isolation.

The best model—Model 1—provided by I-TASSER, and the structure predicted by
AlphaFold were evaluated for quality using ERRAT, PROCHECK, and PROSA. The Overall
quality factors of Model 1 predicted by I-TASSER and the structure predicted by AlphaFold
in ERRAT were 82.127% and 96.2312%, respectively. The structure predicted by AlphaFold
had a high resolution. The number of residues in the most favored regions of Model 1
predicted by I-TASSER and the structure predicted by AlphaFold were 292 (76.2%) and
351 (93.9%), respectively. The structure predicted by AlphaFold was reasonable. The
Z-score of Model 1 predicted by I-TASSER was −3.34 and was at the edge of the graph area
plotted by Z-score values. The Z-score of the protein predicted by Alphafold was −5.76,
which is within the graph area plotted by the Z-score values of known proteins, and its
energy was reasonable. Combining the results of the three evaluation systems, ERRAT,
PROCHECK, and PROSA (Figures 4 and 5), Model 1 predicted by I-TASSER failed the
quality evaluation. The structure of the RoxS protein predicted in AlphaFold was of good
quality and was used for further molecular docking and molecular dynamics simulations.
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Figure 4. Quality evaluation results of Model 1 provided by I-TASSER: (A) Overall quality factor of
ERRAT; (B) PROSA-web Z-scores of all protein chains; (C) PROCHECK analysis of the Ramachandran
plot. The Overall quality factor of ERRAT > 95% means the structure has good resolution. The
distribution of >90% of the residues in the most favorable region of the Ramachandran plot indicates
that the protein structure is reasonable. The energy of the target protein structure is considered
reasonable if the Z-score values of the target protein are distributed within the region of the graph
represented by the Z-score values of these known proteins in PROSA.
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2.2. Molecular Docking Studies of RoxS and Candidate Drugs

The RoxSR system of P. aeruginosa and the RegBA system of Rhodobacter capsulatus are
homologous proteins with high sequence identity and functional similarity [27]. Swem
LR [28] reported that coenzyme Q1 is a potent inhibitor of RegB that binds to the heptapep-
tide sequence GGXXNPF in RegB. The active site is generally evolutionarily conserved, and
this conserved sequence has been found in the RoxS sequence of P. aeruginosa. The DeepSite
of PlayMolecule software was used to predict the three possible docking pocket center
axes for the RoxS protein (Table 1). The three computer-predicted docking pockets were
docked with coenzyme Q1 using XP docking. The docking scores were −4.784, −5.562,
and −3.026, with pocket 2 having the best score. In addition, the amino acid residues of the
conserved sequence GGXXNPF were located directly in pocket 2. Therefore, the selection
of the docking pocket requires further evaluation.

Table 1. Docking Pocket Centers for Deepsite Predictions.

Name Scores Centers

Pocket 1 0.998974845 [−29.90999984741211, −5.239999771118164, 23.329999923706055]
Pocket 2 0.998739839 [24.09000015258789, 0.7599999904632568, −38.66999816894531]
Pocket 3 0.988030121 [0.09000000357627869, 2.759999990463257, −8.670000076293945]

GGXXNPF residues on the RoxS protein were selected to generate a new docking
pocket named pocket-GGXXNPF. The docking scores for pocket 2 and pocket-GGXXNPF
were −5.562 and −6.089, respectively, using XP docking coenzyme Q1. Two-dimensional
maps of protein–ligand interactions were observed, and in pocket-GGXXNPF, coenzyme
Q1 formed hydrogen bonds with the key amino acid residue ASN101. In contrast, coen-
zyme Q1 entered pocket 2 and did not interact with the relevant amino acid residues. It
simply fulfilled the principle of energetic complementation and did not fit into the binding
structure or chemical environment (Figure 6). The docking score and amino acid residue
interaction of pocket-GGXXNPF with coenzyme Q1 were consistent with those previously
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reported. Computer prediction results for pocket 2 also confirmed the superiority of
pocket-GGXXNPF in terms of pocket volume and hydrophobicity in RoxS of P. aeruginosa.
Therefore, by combining homology evidence from the literature and computational results,
the conserved sequence GGXXNPF was selected as the center of this docking pocket.
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Molecular docking was performed on 1576 FDA-approved drugs to identify potential
RoxS inhibitors. The higher the absolute value of a compound’s docking score, the better
the compound binds to the active site of the target and may have better potential activity.
After the “SP” docking was completed, the docking score was viewed and tallied. There
were 152 drugs with docking scores less than −8, representing 9.7% of all docked drugs.
These 152 drugs were docked again in XP docking mode, and the docking scores and
docking poses were checked and counted. The 10 drugs with the highest scores in XP
mode were screened (Table 2). The structural formulae and 2D interaction diagrams of the
compounds are shown in Figures A1 and A2 in Appendix B.

Table 2. Compounds with TOP 10 docking scores in XP mode.

Serial Number ZIND ID Docking Score

A ZINC000038945666(Ravicti) −11.249
B ZINC000003792417(Sacubitril) −10.294
C ZINC000012468792(Xalatan) −10.255
D ZINC000019594557(Meclizine) −10.148
E ZINC000004474405(Latisse) −10.084
F ZINC000003810860(Zetia) −9.988
G ZINC000002570895(Celebrex) −9.837
H ZINC000001481815(Exjade) −9.756
I ZINC000019361042(Meclizine) −9.602
J ZINC000003938482(Noxafil) −9.396

To select the most representative drugs, the 10 compounds obtained by docking were
subjected to cluster analysis with the number of clusters being 3 (Table 3). Zetia (Ezetimibe,
EB) and Noxafil (Posaconazole, PCZ) are representative drugs for Cluster 1 and Cluster 2,
respectively. Celecoxib has been reported to be effective in combination with ampicillin
against clinical isolates of Pseudomonas aeruginosa [29]. Therefore, Exjade (Deferasirox, DSX)
was selected as the representative drug for Cluster 3. EB, DSX, and PCZ were chosen for
further investigation. The best energy-docking conformations of these complexes were
used as starting poses in molecular dynamics simulations.
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Table 3. Clustering results of compounds with TOP 10 docking scores.

Cluster Serial Number Drug Candidates

Cluster 1
F ZINC000003810860(Zetia)

Cluster 2
J ZINC000003938482(Noxafil)

Cluster 3
G ZINC000002570895(Celebrex)
H ZINC000001481815(Exjade)
B ZINC000003792417(Sacubitril)
C ZINC000012468792(Xalatan)
E ZINC000004474405(Latisse)
A ZINC000038945666(Ravicti)
D ZINC000019594557(Meclizine)
I ZINC000019361042(Meclizine)

2.3. Molecular Dynamics Simulations

To further explore the stability of target binding to candidate compounds, we per-
formed molecular dynamics simulations. Molecular dynamics simulations of the complexes
of all three candidate compounds with RoxS gradually reached equilibrium at approx-
imately 75 ns. The fluctuation range of RMSD of the proteins and ligand was finally
maintained within 3 Å, indicating that the binding of RoxS to the three candidate com-
pounds we selected was stable (Figures 7 and 8).
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First, EB formed very stable interactions with the VAL33, SER96, and THR100 amino
acid residues, including hydrogen bonding and water-bridged interactions, which were
present throughout the molecular dynamics simulation. The hydrogen bond formed by
SER32 was also a key interaction. The formation of this hydrogen bond is a key factor in
the formation of the stable conformation of EB. LEU144 and LEU146 also gradually formed
hydrophobic interactions with EB after only 20 ns. Although these amino acid residues do
not form stable interactions with EB, they play an important role in the transition from the
starting to the final conformation of EB. DSX formed a stable interaction conformation faster
than EB. The complex of DSX with RoxS reached stability around 40 ns, forming hydrogen
bonds and hydrophobic interactions with SER32 and LEU144, respectively, which both
existed stably throughout. After 40 ns, VAL33 and LEU155 gradually formed hydrophobic
interactions with DSX, and SER39 and ASN101 formed water-bridging interactions with
DSX. These interactions are key amino acid residues for the gradual formation of a stable
conformation at later stages. PCZ formed a stable conformation with RoxS, hydrogen
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bonds with TYPR134, hydrophobic interactions with LEU144, water-bridged interactions,
and hydrophobic interactions with HIS159. Molecular dynamics simulations revealed
the gradual formation of water-bridged interactions with ASN101, LEU158, and finally a
stable conformation.
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In addition, the binding free energies of the three candidate compounds were calcu-
lated after the formation of stable conformations with RoxS. EB (−79.8150 ± 4.68 kcal/mol),
DSX (−65.7558 ± −5.59 kcal/mol), and PCZ (−70.5598 ± −3.55 kcal/mol) all had satisfac-
tory binding free energies, which are better than the binding free energy of the homologous
protein inhibitor coenzyme Q1 (−56.0275 ± 2.83 kcal/mol) in complex with RoxS. The
stability of the binding mode was further verified.

2.4. Individual Drug Candidates and Antibiotic Antibacterial Activity

The two drug-resistant strains of P. aeruginosa were sputum culture isolates obtained
from the Laboratory Department of The Third Affiliated Hospital of Southern Medical
University. According to drug sensitivity reports and the Latin American consensus, one
strain was MDR P. aeruginosa and the other was XDR P. aeruginosa [30]. The MIC values of
the three drug candidates and antibiotics were measured against the selected P. aeruginosa
strains and the results are shown in Table 4. MDR P. aeruginosa was resistant to MEM, and
XDR P. aeruginosa was severely resistant to AMK, according to the CLSI antibiotic threshold
criteria [31]. None of the three drug candidates significantly inhibited either strain at any
concentration tested.

Table 4. MIC50 of drug candidates and antibiotics.

Drugs
MDR P. aeruginosa XDR P. aeruginosa

MIC50(µg/mL) MIC50(µg/mL)

MEM 16 /
AMK / 512

EB >1600 >1600
DSX >1600 >1600
PCZ >512 512

Legends: MIC, minimum inhibitory concentration; MIC50, MIC that inhibited 50% of isolates; EB, Ezetimibe;
DSX, Deferasirox; PCZ, Posaconazole; MEM, meropenem; AMK, Amikacin. MDR, multidrug-resistant; XDR,
extensively drug-resistant. “/” is used to indicate that they were not tested.
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2.5. Checkerboard Assays

The activities of MEM and AMK in combination with EB, DSX, and PCZ were eval-
uated using checkerboard assays. The results are shown in Table 5. MEM was additive
in combination with DSX or PCZ, respectively, and AMK and DSX were synergistic in
combination.

Table 5. FICi Values of drug combinations.

Drug Combinations
FICi Value for P. aeruginosa Strain:

MDR P. aeruginosa XDR P. aeruginosa

MEM + EB >1.00 /
MEM + DSX 0.83–0.90 /
MEM + PCZ 0.83–0.86 /
AMK + EB / >1.00

AMK + DSX / 0.50
AMK + PCZ / >1.00

Legends: Results are shown to 2 decimal places. FICi was and interpreted as follows: Synergism = FICi ≤ 0.5;
antagonist = FICi ≥ 4; additive = FICi > 0.5 and ≤1; indifference = 1 < FICi < 4. EB, Ezetimibe; DSX, Deferasirox;
PCZ, Posaconazole; MEM, meropenem; AMK, Amikacin. MDR, multidrug-resistant; XDR, extensively drug-
resistant; FICi, the fractional inhibitory concentration index. “/” is used to indicate that they were not tested.

The results of MDR P. aeruginosa showed the combined effect of three drug candi-
dates with MEM (Figure 9). In the checkerboard assays with EB, our results showed that
100 µg/mL of EB combined with 8 µg/mL of MEM had an enhancing effect on bacterial
inhibition. The bacterial inhibition rate of 8 µg/mL MEM alone was 23.54%, and the combi-
nation of 100 µg/mL EB increased the inhibition rate to 42.66% (p = 0.03), which increased
the inhibitory effect to 1.81 times that of MEM alone. In the checkerboard assays with DSX,
MEM had an additive effect only in combination with 100 µg/mL DSX. The inhibition
rate with 8 µg/mL of MEM alone was 19.73%, while the combined use of 100 µg/mL DSX
increased the inhibition rate to 39.59% (p = 0.003), twice as effective as single-use. In a
checkerboard test with PCZ, MEM in combination with 16 µg/mL PCZ showed the best
inhibitory effect and reduced the MIC50. The combination of PCZ at 16 µg/mL increased
the inhibition rate to 48.79% (p < 0.001), which was 1.99 times more effective than MEM
alone. The trend was the same for higher concentrations of MEM in combination with PCZ.

To examine the combined inhibition of the three drug candidates with AMK, the
checkerboard assays were performed in XDR P. aeruginosa (Figure 10). In the checkerboard
assay with EB, the combination of 50 µg/mL EB had the best inhibitory effect when the
concentration of AMK was 32 µg/mL to 256 µg/mL. The inhibition rate of 32 µg/mL AMK
alone was −9.46% and had no inhibitory effect on XDR P. aeruginosa. This concentration of
AMK in combination with 50 µg/mL EB increased the inhibition rate to 34.87% (p < 0.001).
Approximately the same trend was seen in the results of 64 µg/mL and 128 µg/mL AMK
in combination with EB; however, when the AMK concentration was 512 µg/mL, the effect
was dramatically increased in combination with 6.25 µg/mL EB. In the checkerboard assays
with DSX, our results showed that the combination of AMK with 0.75 µg/mL to 3 µg/mL
of DSX significantly increased the inhibition rate, AMK combined with 1.5 µg/mL DSX has
a synergistic effect; however, 6 µg/mL and 12 µg/mL of DSX in combination with AMK
had an antagonistic effect. The bacterial inhibition rate of 16 µg/mL AMK alone was 7.36%,
and the combination with 1.5 µg/mL DSX was optimal, increasing the inhibition rate to
35.84% (p = 0.006); this combination was 4.86 times more effective than single use. The
effect of AMK at 64 µg/mL to 256 µg/mL combined with DSX showed the same trend as
16 µg/mL AMK. AMK at 32 µg/mL and 64 µg/mL in combination with DSX at 3 µg/mL
had the best bacterial inhibitory effect. In the checkerboard assays of PCZ and AMK, the
bacterial inhibition rate was −7.01% with 64 µg/mL AMK alone and 10.75% (p = 0.03)
and 9.67% (p = 0.04) with the combination of 32 µg/mL and 128 µg/mL PCZ, respectively,
however, the inhibitory effect was not significant. Only when 256 µg/mL of AMK was
combined with PCZ the effect was seen. The inhibition rate of AMK alone was 17.42%, and
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the combination of PCZ with 32 µg/mL was the most effective, with the inhibition rate
increased to 46.18% (p < 0.001), which was 2.65 times higher than that of the combination.
Additionally, the combination of AMK with 64 µg/mL PCZ had an antagonistic effect.
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Figure 9. Combined antibacterial activity of Ezetimibe and meropenem (A), Deferasirox and
meropenem (B), Posaconazole and meropenem (C). Legends: The vertical bar on each data point
represents the standard error of the mean. The mean value of each group is located above the error
bars. EB, Ezetimibe; DSX, Deferasirox; PCZ, Posaconazole; MEM, meropenem. * indicates p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001.
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Figure 10. Combined antibacterial activity of Ezetimibe and Amikacin (A), Deferasirox and Amikacin
(B), Posaconazole and Amikacin (C). Legends: The vertical bar on each data point represents the
standard error of the mean. The mean value of each group is located above the error bars. EB,
ezetimibe; DSX, Deferasirox; PCZ, Posaconazole; AMK, Amikacin. * indicates p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001.

In conclusion, all three compounds enhanced bacterial inhibition when combined
with MEM and AMK. The combination of 100 µg/mL DSX and 16 µg/mL PCZ with MEM
had additive effects, and the combination of 1.5 µg/mL DSX and AMK had synergistic
effects, showing some potential for reversing resistance in P. aeruginosa. Although EB
did not have additive or synergistic effects with the antibiotics, it increased the rate of
bacterial inhibition.



Antibiotics 2023, 12, 1422 12 of 20

3. Discussion

P. aeruginosa presents a therapeutic challenge because of its inherently low suscep-
tibility to a number of antibiotics and strong ability to develop antibiotic resistance [32].
Combination therapy is a sustainable option for reducing bacterial resistance [33]. Unfortu-
nately, routinely used antibiotics are often ineffective against MDR and XDR strains, even
with combination therapies [34]. Since TCS is currently found in bacteria but not in humans
or other mammals, it can be used as a novel target for antibacterial drug action [35]. RoxS
is a promising target for bacterial inhibition, however, little research has been conducted on
its inhibitors. Virtual screening was performed for the target in this study to improve the
efficiency of inhibitor screening. To better represent the impact in the real clinic, samples of
strains from the clinic were selected to validate the in vitro activity of the drug candidates.

EB is a potent inhibitor of cholesterol absorption and has been approved for the
treatment of hypercholesterolemia [36,37]. EB has potential antibacterial activity because it
contains a beta-lactam ring [38]. Our results showed that in MDR P. aeruginosa, 8 µg/mL
MEM combined with 100 µg/mL EB increased the inhibition rate by 1.81 times that of
antibiotics alone. In XDR P. aeruginosa, the combination of EB inhibited bacterial growth,
while AMK had no inhibitory effect. There have been no reports of EB being used to treat
P. aeruginosa infections; however, the combination therapy of EB with MEM or AMK may
be an alternative therapeutic strategy for multi-drug-resistant P. aeruginosa infections in
patients with preexisting hyperlipidemia to reduce the dose of antibiotics and side effects,
while lowering blood lipid levels.

DSX is an FDA-approved iron chelator for the treatment of iron overload that has
been used clinically for over 40 years [39]. P. aeruginosa requires high levels of iron dur-
ing infection [40]. Several studies have shown that high iron concentrations facilitate
biofilm formation and increase P. aeruginosa resistance to tobramycin and tigecycline [41].
Thus, DSX may be an effective treatment for lung diseases caused by biofilm-resistant
P. aeruginosa [42]. This study confirmed that the combination of DSX and MEM had an
additive effect, whereas the combination of DSX and AMK had a synergistic inhibitory
effect. Combined with previous reports, this study further supports the contention that
FDA-approved iron chelators can be developed for the treatment of multi-drug-resistant
microbial infections. Meanwhile, DSX may also be a dual-target inhibitor that interferes
with iron metabolism on one side and RoxS on the other.

Increased growth of fungal microbiota is a common side effect of antibiotic therapies.
Prolonged use of antibiotics affects the growth of bacterial microbiota, which in turn causes
secondary infections and leads to the proliferation of fungal microbiota [43]. The airways
of patients with cystic fibrosis are susceptible to colonization by various microorganisms,
particularly Aspergillus fumigatus and P. aeruginosa [44,45]. Mixed microbial infections
usually occur in the lungs and can lead to airway inflammation and the worsening of
lung function [46,47]. PCZ is useful in the treatment of Aspergillus-associated cystic
fibrosis [48]. The results of this study show that PCZ in combination with MEM has an
additive effect; therefore, the combination of PCZ and MEM has potential advantages in
patients with multiple microbial infections in the lungs and displays resistance reversal in
MDR P. aeruginosa.

The in vitro data showed that P. aeruginosa remained resistant to the drug combination
treatment; however, the results of the present study are beneficial. The combination of
100 µg/mL DSX or 16 µg/mL PCZ with MEM had additive effects, whereas the combination
of 1.5 µg/mL DSX and AMK had a synergistic effect. The combination therapy improved
the inhibition of MDR and XDR P. aeruginosa. Even in cases where the antibiotics had no
inhibitory effect, the combination showed some inhibition. This suggests that the selected
combination strategy plays a role in reversing drug resistance in P. aeruginosa, and has great
potential to fight infections in certain populations because any small or modest increase
in antimicrobial activity with combination therapy may contribute to clinical success and
recovery in actual clinical practice [49].
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It is difficult to compare administered concentrations derived from in vitro studies
with in vivo concentrations due to the influence of pharmacokinetics in humans; however,
the results of the literature survey preliminarily indicate that the combination strategies
screened in this study show some safety and clinical significance. The peak concentra-
tion in human plasma after injection of a standard dose of 1 g MEM is approximately
30 µg/mL [50]. When MDR or XDR P. aeruginosa causes pneumonia, AMK can be adminis-
tered by nebulization to achieve high blood levels at the site of infection while avoiding the
side effects of high-dose systemic administration [51]. At a dose of 400 mg, bid, AMK con-
centrations in the lungs can reach 976.1 µg/mL [52]. AMK is sufficient to treat meningitis at
drug concentrations of 200 µg/mL in the central nervous system [53]. The concentrations
of MEM and AMK used in this study were within the effective concentrations in vivo
but did not exceed the toxic concentrations. The dosing safety of DSX and PCZ was as-
sessed based on doses and cytotoxic concentrations in the literature because they are not
antibacterial agents. Moreau-Marquis et al. reported that the recommended clinical dose
of DSX is 20 mg/kg/day, which is equivalent to 280 µg/mL administered in vitro [54].
The dose of DSX used in this study was ≤100 µg/mL, which is lower than the daily dose
used in clinical practice. No significant cytotoxicity was observed at PCZ concentrations
below 100 µM (70.07 µg/mL) [55]. The results of in vitro experiments showed an addi-
tive effect of 16 µg/mL PCZ in combination with MEM, which was much lower than the
toxic concentration.

The limitations of this study were that potential RoxS inhibitors were only initially
screened by computational techniques, as well as the limited number of strains selected for
the experiments. This target still has a lot of room for exploration. We will increase samples
of clinical strains and structurally modify three FDA drugs as lead compounds to explore
compounds with stronger inhibitory effects. Through molecular dynamics simulations, we
found that SER32 and ASN101 were important for the formation of stable conformations of
the compounds. Although no interaction between these two amino acids and the ligand
was found in the docking results, these two amino acids guided the conversion of the ligand
to a stable conformation, providing a key idea for further modification of the compound.
In addition, RoxS is present not only in P. aeruginosa but also in other bacteria homologous
to P. aeruginosa, including Rhodobacter capsulatus, Syringae pseudomonas, and so on. The
combination strategy explored in this study may also have potential efficacy in other
bacterial infections, which merits further investigation.

4. Materials and Methods
4.1. Homology Modeling

The RoxS protein sequences were retrieved from the NCBI database in the FASTA for-
mat. Swiss-Model (https://swissmodel.expasy.org/, accessed on 16 July 2022), I-TASSER
(https://seq2fun.dcmb.med.umich.edu//I-TASSER/, accessed on 27 June 2022), and Al-
phafold (https://alphafold.ebi.ac.uk/, accessed on 27 June 2022) were utilized to de-
sign the three-dimensional structure of the proteins. The stereochemical quality, accu-
racy of the predicted models, and energy rationality were observed using PROCHECK
(https://www.came.sbg.ac.at/prosa.php, accessed on 27 June 2022), ERRAT, and PROSA
in SAVES (https://saves.mbi.ucla.edu/, accessed on 27 June 2022), respectively. Based on
the evaluation scores, the best protein model with acceptable quality was selected.

4.2. Molecular Docking Studies of RoxS
4.2.1. Identification of Docking Pockets

The predicted protein structure contained no ligand and could not generate a docking
pocket from the self-containing ligand. In this study, a combination of computer predictions
and homologous protein active sites was used to determine the docking pocket. The
literature reported a conserved active site, GGXXNPF, in the evolution of RoxS, while
further identifying the docking pocket in conjunction with the results of the prediction of

https://swissmodel.expasy.org/
https://seq2fun.dcmb.med.umich.edu//I-TASSER/
https://alphafold.ebi.ac.uk/
https://www.came.sbg.ac.at/prosa.php
https://saves.mbi.ucla.edu/
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the protein docking pocket in DeepSite in Playmolecule (https://www.playmolecule.com/
deepsite/, accessed on 27 June 2022).

4.2.2. Molecular Docking

The RoxS protein and 1576 FDA-approved drugs retrieved from the ZINC drug
repository were prepared using Protein Prep Wizard [56] and LigPrep [57] in Maestro,
respectively, followed by Ligand Docking [58]. Compounds with a docking score of less
than eight were shortlisted using the standard precision mode (SP docking) and then
re-docked using Extra Precision (XP) docking. More detailed and accurate information
regarding the docking analysis was displayed using an XP Visualizer. Compounds with
the TOP 10 docking scores were clustered into three groups based on volume overlap
to screen out representative compounds, and the linkage method of calculation was
weighted centroids.

4.3. Molecular Dynamics Simulation Analysis

The molecular dynamics were determined using Desmond [59]. The dynamic system
was first constructed using the SPC water model by dissolving the complex in a cube box
filled with water adding appropriate amounts of Na+ ions and Cl− ions to neutralize the
charge of the system and an additional 0.15 M concentration to simulate the real protein
environment. We then embedded the complex in the POPE membrane model. Based on the
OPLS4 force field [60], an energy minimization of 200 ps was first performed. The system
was fully relaxed before the formal MD, and, finally, the MD calculation was performed at
300 K and 1 atm pressure for 100 ns. And the script thermal_mmgbsa.py script provided
by Schrödinger was used to calculate the binding free energy values of the complexes in
the steady state. Default settings are used except for the parameters mentioned.

4.4. MIC and Checkboard Assays
4.4.1. MIC Assays

The antimicrobial efficacy of the drugs was determined using the broth microdilution
method of the Clinical and Laboratory Standards Institute (CLSI). On a sterile ultra-clean
bench, 100 µL of MH broth was added to each well of the 96-well plate, followed by 100µL
of drugs (≤2% final concentration for DMSO and ≤4% final concentration for Tween 80
due to the low solubility of FDA drugs. The ratios of DMSO and Tween 80 are shown in the
Table A2 in Appendix A) which were two-fold dilutions. At last, 100 µL standard bacterial
suspension (5 × 105 CFU/mL, 0.5 McFarland’s standard) was added. After incubation
at 37 ◦C for 16–20 h, the OD600 nm of the 96-well plates was measured in an enzyme
marker. And the inhibition rate was calculated (see Appendix C for calculation formulas)
to determine the minimum inhibitory concentration required to inhibit the growth of 50%
of the bacterium (MIC50). Three rows of experimental wells, one row of the positive control
group and one row of the negative control group, were placed in each 96-well plate. FDA
drugs require additional pure drug groups to exclude absorbance effects owing to their
low solubility. The concentrations of DMSO and Tween 80 in the medium of the control
group were the same as those in the experimental group. Each experiment was repeated at
least thrice.

4.4.2. Checkerboard Assays for Antibiotic and Drug Candidates

In each 96-well plate, the drug candidate and antibiotic were diluted in a multiplicative
series (<0.1% final concentration for DMSO and <0.2% final concentration for Tween 80)
and combined in different concentrations to obtain 100 µL of mixed solution. Then, 100 µL
of the bacterial suspension at a final concentration of 5 × 105 CFU/mL was added, and
the final volume of liquid per well was 200 µL. The concentrations of DMSO and Tween
80 in the medium of the control group were the same as those in the experimental group.
Each checkerboard test was repeated at least three times. The plates were incubated, and
the final OD600 was determined as described above. Differences between the combination

https://www.playmolecule.com/deepsite/
https://www.playmolecule.com/deepsite/
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and antibiotic-only groups (p < 0.05) were assessed using two-way analysis of variance
(ANOVA), followed by Fisher’s least significant difference test for multiple comparisons.

The fractional inhibitory concentration index (FICi) was calculated as FIC of drug A
(FICA) + FIC of drug B (FICB) [61], where FICA = MIC of drug A in combination/MIC of
drug A alone, and FICB = MIC of drug B in combination/MIC of drug B alone. FICi was
interpreted as follows: synergism = FICi ≤ 0.5; antagonist = FICi ≥ 4; additive = FICi > 0.5
and ≤1; indifference= 1 < FICi < 4.

5. Conclusions

In this study, potential RoxS inhibitors were identified by virtually screening FDA-
approved drugs. Our results suggested that Ezetimibe, Deferasirox, and Posaconazole are
potential inhibitors of RoxS; in addition, the results of the in vitro experiments showed that
combinations of these three drugs with meropenem or amikacin are promising antibacterial
strategies that are expected to reverse P. aeruginosa resistance and provide new options for
the treatment of clinically MDR and XDR P. aeruginosa.
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Appendix A

Table A1. Results predicted by Swiss-Model.

Model GMQE QMEAN Oligo State Template Seq Identity

Model 1 0.28 0.54 ± 0.05 Homo-dimer 4biv.1.A 22.12%
Model 2 0.28 0.55 ± 0.05 Homo-dimer 5idj.1.A 22.75%
Model 3 0.28 0.54 ± 0.05 Homo-dimer 4biu.1.A 22.12%
Model 4 0.28 0.55 ± 0.05 Homo-dimer 4biv.1.A 22.12%
Model 5 0.27 0.54 ± 0.05 Homo-dimer 4e02.1.B 19.63%
Model 6 0.26 0.54 ± 0.05 Homo-dimer 6paj.1.A 21.63%

Legend: GMQE, Global Model Quality Estimate; QMEAN, Qualitative Model Energy Analysis.
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Table A2. Each drug solution in MIC assays was prepared.

FDA-Approved Drugs The Ratio of DMSO and Tween in the Highest
Concentration Drug Solution

Ezetimibe 2% final concentration for DMSO and 4% final concentration for
Tween 80

Deferasirox 2% final concentration for DMSO and 4% final concentration for
Tween 80

Posaconazole 2% final concentration for DMSO and 1% final concentration for
Tween 80

Legend: FDA, Food and Drug Administration; DMSO, Dimethyl sulfoxide; MIC, minimum inhibitory
concentration.
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Appendix C

Formula (A1). The formula for calculating the inhibition rate of the three FDA-
approved drugs was as follows:

inhibition rate(%) =

[
ODpositive group −

(
ODexperimental group − ODpure drug groups

)
− ODnegative group

]
ODpositive group − ODnegative group

× 100% (A1)

Formula (A2). The inhibition rate of antibiotics was calculated as follows:

inhibition rate(%) =
ODpositive group − OD experimental group

ODpositive group − ODnegative group
× 100% (A2)

Note: OD, optical density.
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