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Abstract: Drain-associated intracerebral infections are life-threatening emergencies. Their treatment is
challenging due to the limited penetration of antibiotics to the site of infection, resulting in potentially
inadequate exposure. The emergence of multidrug-resistant pathogens might force the use of off-
label intrathecal (IT) doses of antibiotics. We reviewed the literature on general aspects determining
intrathecal dosing regimen, using pharmacometric knowledge. We summarised clinical experience
with IT doses of antibiotics that are usually not used intrathecally, as well as the outcome of the cases
and concentrations reached in the cerebrospinal fluid (CSF). Factors determining the IT regimen
are the size of the ventricle system and the CSF drainage volume. With regard to pharmacometrics,
pharmacokinetic/pharmacodynamic indices are likely similar to those in non-cerebral infections. The
following number (N) of cases were described: benzylpenicillin (>50), ampicillin (1), ceftazidime (2),
cephaloridine (56), ceftriaxone (1), cefotiam (1), meropenem (57), linezolid (1), tigecycline (15),
rifampicin (3), levofloxacin (2), chloramphenicol (3) and daptomycin (8). Many side effects were
reported for benzylpenicillin in the 1940–50s, but for the other antibiotics, when administered correctly,
all side effects were minor and reversible. These data might help when choosing an IT dosing regimen
in case there is no alternative option due to antimicrobial resistance.

Keywords: intrathecal administration; antimicrobial; intracerebral infection

1. Introduction

The incidence of community-acquired meningitis caused by multi-resistant micro-
organisms is still low; however, these infections after neurosurgery might become more
prevalent due to the overall rise in antibacterial resistance [1,2]. Infections after neuro-
surgery are also frequently complicated by the presence of intracerebral devices, such as
external ventricular drains (EVD) and external lumbar drains (ELD), used in the treatment
of elevated intracranial pressure, and may present a life-threatening emergency.

Both the blood–brain barrier and the blood–CSF barrier protect the central nervous
system (CNS) from toxic compounds present in the systemic circulation. However, in the
treatment of cerebral infections, both barriers complicate the achievement of adequate
concentrations of antibiotics at the site of infection. Therefore, in some cases, extremely
high intravenous doses have been administered, such as 24 g/24 h cefotaxime, 15 g/24 h
meropenem or 8 g/24 h imipenem [3–5]. Another option to overcome this obstacle might
be to bypass the blood–brain barrier by administering the antibiotics intrathecally. The term
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intrathecal (IT) is a general term including both intraventricular (IVT) and intralumbar (IL)
injection in, respectively, the cerebral ventricles and the lumbar thecal sac.

Currently, the number of antibiotics that are frequently administered, intrathecally, is
limited. Only polymyxin B is registered by the FDA, and the EMA recommends maximum
IVT doses of colistin of 125,000 IU [6,7]. However, the increasing rates of antimicrobial
resistance and the limited penetration of antibiotics through the blood–brain barrier (BBB),
might force the use of IT administration of antibiotics that are usually not used intrathecally
to achieve an effective concentration at the site of infection.

For several antibiotics, IT use has been reviewed [8–10]. The range of doses admin-
istered intrathecally is quite broad. For vancomycin, for example, IT doses reported in
the literature range from 5 to 50 mg q24h [8]. This broad range indicates that potentially
patient-related factors might be involved in determining the dose for an individual patient
and that the dosing regimen might be optimised based on pharmacometric knowledge.
This includes information on the pharmacokinetics at the site of infection and on the
exposure–response relationship in the CNS. We therefore aimed to describe the factors
involved in the designing of an IT dosing regimen in general and give an overview of
available data on the IT use of antibiotics that are normally not administered via this route.
Information on IT dosing of antibiotics more regularly used intrathecally can be found
elsewhere [8,9,11–14].

2. Results
2.1. Physiological Factors Influencing Intrathecal Pharmacokinetics

As antibacterial efficacy is dependent on a certain antibiotic exposure that needs to be
reached at the site of infection, the amount of antibiotics reaching the CSF as well as the
resulting concentration–time profiles in the CSF are of importance. Several factors might
be taken into consideration in choosing a dosing regimen for IT administration. Figure 1
shows a summary of the factors involved.
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2.1.1. Blood–Brain Barrier and the Blood–CSF Barrier

Both the blood–brain barrier (BBB) and the blood–CSF barrier (BCSFB) are lipid layers
surrounding the CNS aiming to protect the brain from toxic agents present in the systemic
circulation. These barriers thereby limit the penetration of antibiotics to the site of infection
when treating meningitis or ventriculitis. For example, the penetration of meropenem into
the CSF in patients with (suspected) ventriculitis has a mean of only 9–18% [15,16], and a
high interpatient variability has been reported. This high interpatient variability is in line
with observations for vancomycin [17]. The low and unpredictable penetration into the
CSF puts several patients at risk for insufficient exposure at the site of infection.

Meningeal inflammation during infection leads to the opening of tight junctions in the
BBB. The level of inflammation, which is more pronounced in meningitis as compared to
that in ventriculitis might, for some antibiotics, lead to an increased penetration into the
CSF [14,18]. This increased penetration mainly applies to hydrophylic antibiotics [19]. It has
also been suggested that the BBB might be disrupted during neurosurgery, resulting in an
increased penetration of systemically administered antibiotics. However, for vancomycin,
it has been shown that the penetration in the CSF in patients after neurosurgery was similar
to the penetration in patients with uninflamed meninges [20], making this statement
questionable. Generally, though inflammation during infection and disruption of the
BBB during surgery might both increase the potential penetration into the CSF, the true
penetration into the CSF will still be highly variable and unpredictable.

From experimental animal models, it is also suggested that the infecting bacterial
species might influence the permeability of the BBB. The presence of Streptococcus pneu-
moniae and Escherichia coli might result in a relatively low permeability, while the pene-
tration into the CSF in infections caused by Haemophilus spp. and Listeria monocytogenes
is higher [21,22]. For ceftriaxone, for example, the CSF/serum penetration was found to
be 2.7% in case of a S. pneumoniae infection, while it was 9.0% in a H. influenzae infection
in the same study [22]. Also, when the mezlocillin penetration into the CSF was com-
pared between an infection with E. coli and Listeria monocytogenes, different values for the
penetration were found of 6–11% and 16–20%, respectively [21].

2.1.2. Size of the CSF System

The size of the CSF compartment is important to determine the volume of distribution
for intrathecal dosing (VCSF). After penetrating the BBB, the size of the CSF compartment
is one of the determinants for the concentrations reached locally. VCSF consists of four
ventricles, an aqueduct, basal cisterns and the subarachnoid space over the convexities
and in the spinal cord. There is considerable interindividual variability in the size of the
VCSF, depending on age, widths of the ventricles and cerebral subarachnoidal space, length
and width of the spinal canal and underlying disease [8]. Several studies estimated the
size of the CSF for healthy adults with mean values between 250 mL and 326 mL [23–25],
patients with communicating hydrocephalus of mean 488 mL [25] and patients with non-
communicating hydrocephalus of mean 593 mL [25]. The size of VCSF might be reduced by
the presence of blot clots in the ventricles of the basal cisterns.

Although the CSF compartment is convoluted, the distribution cannot be considered
homogenous [8,26]. Overall, about two-thirds of the CSF is produced by the choroid plexus,
and the remaining one-third originates from the extracellular space of the brain and spinal
cord. The equilibration in the CSF is facilitated by the oscillations in the CSF based on the
heartbeat and respiration. The net flow of the CSF is from the ventricles to the cisterna
magna and from there to the cerebral convexities and into the spinal canal. As a result,
antibiotic concentrations in CSF sampled by lumbar puncture might differ from those taken
from an extraventricular drain.

Once the antibiotics reach the CSF, they can enter the extracellular fluid of the brain
and spinal cord, since there is not a tight barrier between the CSF and extracellular fluid
of nervous tissue. The diffusion from the CSF into the extracellular space of the brain and
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spinal cord occurs against the gradient of the CSF bulk flow (directed from nervous tissue
into the CSF) [8].

2.1.3. Location of Antibiotic Administration

As the CSF compartment is not homogenous and there is a net flow of CSF out of the
ventricles, the location where the IT doses are administered makes a difference. Differences
in concentrations can occur between the ventricular, cisternal and lumbar part of the CSF
compartment [27]. As IT doses are most frequently prescribed to treat ventriculitis the
antibiotic exposure needs to be optimal in the ventricles and the location of administration is
therefore preferable intraventricular. For most drugs, achieved concentrations in the lumbar
CSF are higher as compared to those in the ventricular CSF after IV administration [14].
Intraventricular dosing results in distribution throughout the CSF compartment, unless
the system is blocked by, for example, bleeding. Due to the net flow of CSF out of the
ventricles, antibiotic dosing intralumbar or intraspinal will result in lower concentrations
in the ventricular CSF then after intraventricular dosing [28] and the concentrations will be
unevenly distributed in the CSF space, more variable and might therefore be inadequate
in the ventricles. Pharmacokinetic data therefore suggest that intraventricular dosing is
preferred over intralumbar dosing, especially in the treatment of ventriculitis. However,
clinically there is no evidence to support this [19].

2.1.4. Drainage Volume

The drainage volume is the volume (in mL/day) that is eliminated from the CSF
compartment per day. The drainage volume is therefore important for the clearance of
antibiotics from the CSF. The external part of the drain is usually kept at a standard level,
and the CSF fluid will be excreted when the intracranial pressure exceeds the pressure in
the drain. Changing the level of the drain might therefore alter the drainage volume. For
vancomycin as well as for meropenem, it has been shown that the drainage volume is a
crucial factor for the determination of the IT dose [29–31].

The drainage volume also depends on the CSF production, which is not constant
over time. Both in healthy volunteers and in patients with external ventriculostomies, the
CSF production appeared to have a circadian variation with the minimum production of
12 ± 7 mL/h around 6 p.m. and the nightly peak around 2 a.m. of 42 ± 2 mL/h [32,33].
Meningeal inflammation might result in a reduced production of CSF, thereby limiting the
drainage volume and the clearance of antibiotics from the CSF [14]. The timing of the IT
dose might therefore also be of importance.

2.2. Other Factors Influencing the Intrathecal Pharmacokinetics
2.2.1. Antibiotic Properties

The clearance of drugs from the CSF to the blood (CLCSF to Blood) depends on several
processes, and these are of importance depending on the properties of the drugs. The
processes important for the CLCSF to Blood are as follows: 1. bulk flow (equals the CSF
production rate); 2. retrograde diffusion across the blood–CSF barrier and the blood–brain
barrier; and 3. active transport. Large hydrophylic molecules, such as aminoglycosides,
are mainly cleared from the CSF by the CSF bulk flow. As a result, these drugs have a
reduced clearance in hydrocephalic patients [8,34]. On the other hand, small moderately
lipophilic molecules, such as quinolones, are mainly cleared through passive elimination
via retrograde diffusion across both barriers [35].

Differences in the permeability of the BBB and the VCSF are also partly explained
by the difference in properties of hydrophylic or lipophylic antibiotics. The hydrophylic
nature of antibiotics limits the penetration into the CSF. Their VCSF equals the volume of
VCSF plus the fraction of the extracellular space of the brain that easily equilibrates with the
CSF [36,37]. Since lipophilic drugs in the CSF equilibrate more easily with adjacent spaces
and are able to bind to lipid membranes, the VCSF of lipophilic drugs is usually larger as
compared to hydrophylic drugs. Penetration through the BBB caused by inflammation
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during meningitis is increased for hydrophilic antibiotics, while for lipophilic antibiotics,
this has a minimal effect [19].

Both molecular weight and protein binding also influence the penetration into the CSF.
In the presence of an intact barrier, only the free fraction can penetrate into the CSF, since
binding proteins pass the barriers only in a small degree [38]. For drugs with a low protein
binding such as ceftazidime, the unbound fraction available for CNS penetration is therefore
high. Protein binding in CSF is believed to be lower as compared to serum/plasma. For
ceftriaxone, for example, serum/plasma protein binding is in the range of 80–95%, while in
the CSF, it is found to be 18% ± 6% [39]. The molecular weight also influences the potential
to penetrate the BBB, and drugs with large molecular weight, such as vancomycin and
daptomycin, have a poor penetration.

2.2.2. Simultaneous Systemic Dosing

As the central volume of distribution is connected with the volume of distribution of
the CSF concentrations in both compartments, they might influence each other (Figure 2).
It is therefore important to consider the effect on the CSF concentrations after multimodal
treatment using both IV and IT administration of antibiotics. Combined dosing of IV with IT
administration is likely to result in slightly higher concentrations in the CSF. In a population
PK model with meropenem in both serum and CSF, it has been shown that in order to
achieve adequate CSF concentrations, relatively low IV doses of 500 mg q12h are needed
for pathogens with MICs up to 4 mg/L and a drainage volume up to 200 mL/day [30].
This illustrates that regular IV dosing regimen are not always required simultaneously with
the IT doses. However, it is questionable whether simultaneous IV dosing has a relevant
effect on the PK in the CSF for all antibiotics [8]. Since most patients are treated with the
combination of IV plus IT doses, there is not enough evidence to reduce the regimens to IT
only.
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2.3. Pharmacodynamics of Antibiotics in the Cerebrospinal Fluid

The penetration of antibiotics into the CSF should be considered in the context that
the principal determinant of the antibacterial efficacy is the antibiotic exposure related
to the minimal inhibitory concentration (MIC) of the pathogen. Conclusions based on
a single concentration in CSF after an IV dose can be incorrect, since the peak of the
concentration–time curve in CSF is often delayed compared to the peak in serum. Ratios
between CSF and plasma concentrations, frequently reported in the literature, can therefore
be misleading. To best describe the penetration into the CSF the ratio between the area
under the concentration–time curve (AUC)CSF and AUCserum or the %fT > MIC should be
determined. After an intraventricular dose, the peak in the ventricular CSF will be reached
immediately, but to describe distribution and clearance, multiple CSF concentrations are
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needed. As IT dosing is usually accompanied by IV dosing, the timing of the IV dose
might also be of influence on the concentration–time profile in the CSF. In patients with an
external ventriculostomy, CSF concentrations can be determined repeatedly, but sampling
is limited by the fact that every manipulation of the ventriculostomy is an infectious risk.

Despite the fact that penetration into the CSF is best described by the AUCCSF/AUCserum
ratio, the interpretation of these penetration ratio values is not straightforward. For the
selected antibiotics for which data on IT dosing are available, the values after IV admin-
istration are presented in Table 1. A low penetration ratio indicates that the amount of
antibiotic entering the CSF is relatively limited. However, a low penetration ratio after IV
dosing does not automatically mean that the antibiotic cannot be used in the treatment of
meningitis. This is illustrated by the very low penetration ratio of ceftriaxone of 0.007 [40].
Ceftriaxone is frequently used to treat meningitis with IV dosing. This low penetration
ratio is likely caused by the high serum protein binding of ceftriaxone [41], and also, the
relatively low MIC values in the wild-type distribution of the pathogens might contribute
to its effectivity in the treatment of meningitis. The penetration ratio by itself therefore
cannot be used to decide whether an antibiotic is suitable in the treatment of meningitis
after IV dosing or that additional IT doses are required. Other factors, such as the serum
protein binding, the range in MIC values in the wild-type distribution of the pathogen and
the pharmacodynamics, should also be taken into account [42].

Table 1. AUCCSF/AUCserum ratios for the selected antibiotics.

Antibiotic
AUCCSF/AUCserum Ratio in
Uninflamed to Mildly
Inflamed Meninges

AUCCSF/AUCserum
Ratio in Inflamed
Meninges

References

Benzylpenicillin - - -

Amoxicillin 0.058 [43]

Cephaloridine - - -

Cefotiam 0 - [44]

Ceftriaxone 0.007 - [40]

Ceftazidime 0.054 - [45]

Meropenem 0.47; 0.21; 0.25 0.39 [14,46]

Linezolid 0.53 - [47]

Tigecycline 0.11 - [48]

Rifampicin 0.22 - [49]

Levofloxacin 0.71 - [50]

Chloramphenicol 0.6–0.7 0.6–0.7 [14,51]

Daptomycin - 0.008; 0.45 [52,53]
AUC: area under the curve; CSF: cerebrospinal fluid.

To predict the antibacterial efficacy in the CSF, knowledge on the pharmacodynamics
(PD) in the CSF is needed. For most antibiotics, the PK/PD index in serum is known;
however, limited data are available on the PD in the CSF. Due to the restricted nutritional
supply and acidic pH of the CSF, bacteria therein multiply less rapidly as compared to those
in blood [8]. Also, because of the absence of complement and antibodies, the PD in CSF
may differ from those in other body sites [19], but there is no indication that the concepts
of time-dependent versus concentration-dependent efficacy are not applicable [19]. The
PK/PD indices that are best correlated with efficacy should also be taken into account in
the design of the dosing regimen.

The magnitude of the PK/PD indices correlated with antibacterial efficacy in the CSF
is largely unknown, and the concentration–time profile of most antibiotics in the CSF is
also unknown. To link concentrations to efficacy, a practical approach is used, correlating
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a single antibiotic concentration to the MIC or minimal bactericidal concentration (MBC)
of the pathogen. A CSF concentration of at least 10 times that of the MIC or MBC has
been correlated to the efficacy of beta-lactams and quinolones [54–56] and a pneumococcal
meningitis model suggested a vancomycin-CSF-peak-to-MBC ratio >4 to be adequate [57].
The IDSA guideline recommend concentrations of 10–20× MIC [58].

Although little is known on the magnitude of the PK/PD indices needed for an
antibacterial effect in the CSF, clinical data suggest an effect after IT dosing. In a study
on the IT dosing of post-neurosurgical patients with meningitis (N = 30) or ventriculitis
(N = 4) with persistent positive CSF culture despite IV treatment, the results showed an
overall mean time to sterilise the CSF after IT administration of 2.9 ± 2.7 days (range
of 1–12 days) [59]. In 50% of patients, the CSF cultures were negative <24 h, and in an
additional 18%, they were negative within 48 h after the IT dose. The average time to
sterilisation in the ventriculitis patients was 6.5 days.

2.4. General Aspects of IT Treatment
2.4.1. Micro-Organisms

All micro-organisms have the potential to cause drain-associated infections. But, the
most frequently reported micro-organisms are coagulase-negative staphylococci (especially
Staphylococcus epidermidis), S. aureus, P. acnes and Gram-negative bacilli (including Escherichia
coli, Klebsiella species, Enterobacter species, Citrobacter species, Serratia species, Acinetobacter spp.
and Pseudomonas aeruginosa) [58,60].

A. baumannii is an important pathogen in this patient category. Of all healthcare-
associated meningitis, 3.6–11.2% of cases are caused by A. baumannii [13]. It is a difficult-
to-treat pathogen, for which the IDSA guidelines even recommend treating meningitis or
ventriculitis with a combination of IV and IVT treatment with polymyxins [58].

The distribution in the MICs between various species for a specific antibiotic can be
quite different. Even for a single antibiotic–pathogen combination, there is a considerable
amount of variation that needs to be taken into account when determining the MIC [61].
Therefore, the epidemiological cut-off value (ECOFF) is usually taken into account when
designing a dosing regimen for susceptible pathogens or when performing therapeutic
drug monitoring. This ECOFF value is the highest value of the wildtype distribution and
can be found on the EUCAST website [62].

2.4.2. Therapeutic Drug Monitoring

The choice whether to perform therapeutic drug monitoring (TDM) or not depends
on several factors. There needs to be information on how to interpret the concentration. In-
terpretation of the concentration in the CSF is complex, since very little is known regarding
the PD and the target concentrations. In a retrospective cohort study of 105 patients with
vancomycin or an aminoglycoside administered via IVT, there is a higher proportion of
the survivors that had TDM on CSF concentrations as compared to the non-survivors [11],
suggesting a potential benefit of TDM.

On the other hand, it could be used to avoid toxicity by detecting extremely high
concentrations, although CSF concentrations associated with toxicity are also not known.
For vancomycin, for example, serious toxicity and adverse events do not appear to be
correlated with the CSF concentration [63]. Systematic monitoring of CSF concentrations
and correlating them with neurotoxicity could increase our knowledge and predict toxicity
in the future. In general, it could be useful to detect IT doses that are administered as bolus
or as short infusions and to determine the concentration–time profile in individual patients
when multiple samples are needed.

2.4.3. Clinical Outcome

To study the clinical outcome after IT administration compared to IV administration
of antibiotics, comparative studies are needed. Obviously, for antibiotics that are not fre-
quently used with IT administration, those studies are not available. Only for meropenem is
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there one retrospective study in combination with vancomycin [64], showing the beneficial
effect of IL administration as compared to IV only. A review on cephalosporin cephalori-
dine concluded that IT dosing had a positive effect on the outcome in the treatment of
bacterial meningitis [65].

Only for colistin 2 has a meta-analysis been performed. In 2019, Hu et al. published a
review with a meta-analysis to compare IT/IVT administration with IV administration in
patients with post-neurosurgical intracranial infection due to multidrug-resistant Gram-
negative bacteria [9]. The vast majority of the studies included in the meta-analysis for
the outcome ‘mortality’ included the use of colistin. The use of IT/IVT antibiotics was
associated with a lower risk on mortality (nine studies were included; pooled OR 0.15; CI
0.08–0.28; p < 0.001; pooled number of deaths: in the IVT group, 22 of 127 cases, and in the
IV group, 95 of 152 cases) and with a high microbiological clearance rate (two studies were
included; pooled OR 0.02; CI 0.01–0.1; p < 0.001; pooled number of bacterial clearance: in
the IVT group, 30 of 32 cases, and in the IV group, 10 of 47 cases.) [9]. Another meta-analysis
was performed on IT plus IV colistin versus IV colistin only for Acinetobacter baumannii
infections in post-neurosurgical patients [66]. They included five studies, and four of those
were also included in the meta-analysis of Hu et al. The overall conclusion was that patients
treated with a combination of IT and IV colistin had an 84% lower risk of dying due to an
A. baumannii infection [66].

Gower et al. published a case series of 39 adults with a Gram-negative bacillary
meningitis [67]. The study included various micro-organisms, but also many different
antibiotic regimen. IT gentamicin, tobramycin, amikacin, polymyxin B and cefamandole
were used. The overall mortality was 36%, and when the groups were divided into
subgroups based on IT therapy, the mortality rates were as follows: 36.4% in patients
without IT therapy (N = 22), 37.5% in patients with a short course of IT therapy (N = 8)
and 26.6% in patients with a full course of IT therapy. Although this is in line with the
results of Hu et al., the results must be interpreted with caution since there is no detailed
information on the antibiotic combinations nor on the reasons behind the choice of a specific
regimen [67].

Although several studies reported a beneficial effect of IT administration of antibiotics
on the outcome as compared to conventional dosing, there is also a study on IT gentamicin
in 52 children, reporting an increased mortality rate in the IT group [9,63,67,68]. Another
study found that for carbapenem-resistant isolates the outcome was better in the patient
group treated with IT dosing, but this beneficial effect was not found for other micro-
organisms [69]. This is in line with the studies on the polymyxins, which are usually
prescribed in the treatment of carbapenem-resistant Gram-negatives. This underlines the
previous conclusion that IT dosing should only be used in patients when there is no reliable
alternative.

In general, studies on clinical outcome compare standard treatment to IT dosing. Since
the group of patients that is treated for meningitis or ventriculitis is severely ill, this might
result in larger variability in PK than usual [70]. For the standard IV dosing regimens
used, there might therefore be a risk of underdosing. When patients with the standard IV
regimens are indeed underdosed, this might increase the difference in outcome with IT
dosing, while part of the difference might be explained by underdosing of the IV group.
The actual benefit of IT dosing could therefore be smaller than that reported in studies.

2.4.4. Adverse Events and Risks of IT Administration

Most reported side effects of IT administration are chemical ventriculitis or meningitis,
seizures or local adverse events or infection [60,71]. A meta-analysis including 23 studies
(229 patients) reported that the overall complication rate was 13%; chemical meningitis
and seizures represented the majority of the complications, with an occurrence rate of 11%
and 7%, respectively [71]. However, since patients in the need for IT treatment are usually
very sick, there might be underreporting of side effects. On the other hand, side effects as
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described for IT dosing have also been described after IV administration only. For colistin,
the prevalence of side effects after IT was similar to those after IV dosing [72].

Neurotoxic side effects of beta-lactam antibiotics are known to occur when there is
high exposure what can be caused by very high doses or in the presence of renal failure.
They can induce confusion, encephalopathy, myoclonus and epileptic seizures particularly
in patients with underlying neurological disorders [73,74]. The potency to induce seizures
is relatively high for cefazolin, cefepime, benzylpenicillin and imipenem, whereas this is
much lower for ampicillin, ceftazidime and meropenem [74].

An important side effect of IT dosing is chemical ventriculitis or meningitis, usually
mild and reversible. Clinically, it resembles bacterial meningitis, presenting with fever,
altered mental state, elevation of white blood cell count in the CSF and low glucose
concentrations [13]. It is difficult to distinguish a chemical reaction on an antibiotic from
the reappearance of signs of meningitis, which can be caused by a relapse of the existing
infection or an infection with a new pathogen due to the multiple manipulations [13].

The IT administration of antibiotics often involves a drain system. Every manipulation
of the system increases the risk on drain/device infection. Though the antibiotics might be
indicated for a specific pathogen, there is a risk of introducing another pathogen through
manipulation of the system, such as irrigation [75]. Therefore, preparation of the antibiotics
administered intrathecally must be performed under sterile circumstances, and precautions
must be taken to avoid causing an infection.

2.5. Clinical Experience with IT Administration of Selected Antibiotics

The literature search revealed for most antibiotics only case reports. Only for meropenem
2 population pharmacokinetic are models available. The data found will be described
below. For fosfomycin, ciprofloxacin, moxifloxacin, piperacillin, cefotaxime, imipenem,
ertapenem, metronidazole, co-trimoxazole, tetracycline and doxycycline, no data were
found. Data for the cases of several antibiotics are shown in Table 2.
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Table 2. Cases with IT doses of miscellaneous antibiotics.

Year (Ref.) Antibiotic Age/Sex Diagnosis Pathogen (ECOFF) IT Dose Number IT
Doses

Accompanying IV
Dose of Same AB Concentration in CSF Outcome (M/C) Side Effects

1951 [76] Chloramphenicol 44 y/M Meningitis S. aureus (16 mg/L)
Increasing from

100 to 750 µg q24h
IT

19 2 g q6h oral

400 µg D: 10 mg/L;
500 µg D: 20 mg/L;

600 µg D: 30 mg/L and
750 µg: 40 mg/L

C None

1951 [76] Chloramphenicol 47 y/M Meningitis S. aureus (16 mg/L) 600–750 µg q24h
IT 6 2 g q6h oral 40 mg/L C None

2005 [77] Chloramphenicol 46 y/M Meningitis E. faecium (32 mg/L) 25 mg/day 35 3 g q24h IV n.a. C None

2001 [78] Levofloxacin 25 y/M Meningitis M. tuberculosis (n.a.) 1–1.5 mg q48h 90 500 mg IV
1 mg D: 0.38 mg/L (+2 h)

and 0.57 mg/L (+6 h).
1.5 mg D: 1.64 mg/L (+6 h)

M, C
Insomnia, myalgia,

arthralgia during first
1–2 months

2009 [79] Levofloxacin 39 y/M Meningitis M. tuberculosis (n.a.)

1.5–2 mg
First ~1.5 mo:

3×/wk
~4.5 mo 2×/wk
~3 mo: 1×/wk

~66 750 mg oral

1.5 mg D: 9.16/11.36 mg/L
(+2 h); 2.06/ND (+6 h);
0.19/1.41 mg/L (+24 h).

ND/ND (+48 h)

M, C none

2016 [80] Linezolid 31 y/F Ventriculitis E. faecalis (4 mg/L 1) 10 mg q24h 15 600 mg q12h oral n.a. M, C none

1981 [81] rifampicin 23 y/? Meningitis M. tuberculosis (n.a.)
5 mg q24h for

7 days; then 3 mg
q48h

~34 n.a. n.a. Clinically
improved none

1992 [82] Rifampicin 59 y/M Meningo-
encephalitis M. tuberculosis (n.a.) 5 mg q24h 50 600 mg q24h IV n.a. C none

2005 [83] rifampicin 41 y/?

Postoperative
infection after

spinal
decompression

n.a.
600 mg infused

over 4 h IT
(accidental)

1 no n.a. n.a. none

1962 [84] Ampicillin 17 y/M Meningitis E. coli (8 mg/L) 20 mg q12h
40 mg q12h

10
32 500 mg q6h oral

Ranging between 1.8 and
18.8 mg/L (8 of

12 measurements ≤8 mg/L)
M, C none

1992 [85] ceftazidime 70 y/M Meningitis P. aeruginosa
(8 mg/L)

10 mg 2×/wk
15 mg 2×/wk

104
n.a. no n.a.

Patient died of
infection 2 y after
start of IT therapy

None for 10 mg doses
Psychological changes

for the 15 mg doses

1992 [85] ceftazidime 26 y/M Ventriculitis unknown 20 mg 2×/wk
20 mg 1×/wk

8
8 no n.a. C none

n.a.: not available; ND: not detectable; mo: month; D: dose; M: microbiological cure, C: clinical cure. IT: intrathecal; AB: antibiotic; CSF: cerebrospinal fluid; M: male; F: female. Doses
were administered via IVT injection, unless stated otherwise. 1: no official ECOFF; values of 4 mg/L can be expected based on available distributions.
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2.5.1. Penicillins

In the 1940s and 1950s, the use of IT penicillin was quite common. In 1941, it was con-
cluded that IT administration of penicillin was safe, as after the administration of penicillin
in the cisterna magna of rabbits there were no histological disturbances [86]. The usual
dose for adults was 6 mg (10,000 units) [87], and it was used for pneumococcal meningitis,
which used to be a fulminating and rapidly fatal disease in those days [88]. Many case
reports have been published describing the serious side effects of IT administration of peni-
cillin, such as generalised flaccid paralysis, flaccid paraplegia or death [89–92]. In several
cases, doses administered intrathecally were higher than the usual dose of 10,000 unit, as
described by Wood [87]; the described effects are very serious, but it was also mentioned
that the pneumococcal meningitis itself might in part contribute to the side effects. Sweet
et al. described 16 patients with pneumococcal meningitis, 9 of whom died, and of the
other 7 patients, the side effects of IT penicillin were reported in 4 patients [91]. Due to
the side effects and the optimized IV dosing regimen, IT administration of penicillin is no
longer used.

One case on the use of IT ampicillin [84] is described in the literature of a patient with
E. coli meningitis. He started with a regimen of 20 mg q12h IT ampicillin with 500 mg q6h
oral doses. But, due to microbiological failure the IT doses were increased to 40 mg q12h.
The patient was cured and experienced no side effects.

2.5.2. Cephalosporins

Several cephalosporins, such as ceftriaxone and ceftazidime are commonly used in
the treatment of bacterial meningitis and are usually not administered intrathecally. There
are some data on the IT administration of cephaloridine, a first-generation cephalosporin
that is no longer available for therapeutic use possibly due to renal toxicity. Furthermore,
two cases on the use of ceftazidime have been described, as well as two cases in which the
cephalosporin was dosed extremely high after an error in the preparation of the solution or
the administration [65,85,93].

In 1975, a review was published on the use of cephaloridine [94]. They found that
patients receiving concomitant IT and IV cephaloridine (N = 56) responded significantly
better (p < 0.005) in the treatment of bacterial meningitis, as compared to those treated only
with IV cephaloridine (N = 16). The IT doses administered varied from 5 to 100 mg/day.

Two cases have been described who were treated with intraventricular ceftazidime
in doses of 10–20 mg twice per week. One patient with P. aeruginosa meningitis, who was
treated as an out-patient for nearly two years, died after an attempted withdrawal of the
intraventricular treatment [85]. The other patient was cured from a ventriculitis with an
unknown pathogen after 16 IT doses of ceftazidime. Both patients did not have irreversible
side effects [85].

Furthermore, there are two case reports on accidental high doses via IT administration
of cephalosporins. In the first case, 800 mg ceftriaxone was administered intrathecally
as a consequence of a dilution error (instead of the intended 8 mg) [93]. A solution of
50 mg ceftriaxone/mL was injected in a 74-year-old patient treated for pneumococcal
meningitis and pansinusitis. After the injection, the patient experienced severe burning
pain in the lumbosacral region radiating into both extremities. Since the pain did not
respond to analgesics, 240 mL of CSF was exchanged. At 1 h after the injection, the CSF
concentration was 4387 mg/L, and after the exchange of 240 mL CSF, the concentration
decreased to 3384 mg/L. There were no permanent side effects. The second case was in a
66-year-old patient accidentally receiving 1.5 g cefotiam via an intrathecal port system put
in place for pain management [65]. After the injection, the patient experienced muscular
cramps, abdominal pain, massive general myoclonic jerks, massive pain and dyspnoea.
Approximately 20 h after the injection, the CSF concentration was 198.8 mg/L. On day 5, the
CSF concentration was 10.1 mg/L. The patient was intubated and dialysed, but afterwards,
he returned to his previous neurological state, with no signs of permanent damage due to
the cefotiam.
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2.5.3. Carbapenems

Meropenem is frequently used to treat meningitis with a regimen of 2 g q8h. How-
ever, this IV regimen might not be sufficient for infections caused by difficult-to-treat
micro-organisms. Therefore, the dosing regimen is sometimes increased up to even 15 g
meropenem per day [4]. The need for a higher dosing regimen of meropenem in the treat-
ment of Pseudomonas aeruginosa cerebral infections was also suggested by Konig et al. [95],
who based their recommendations on a PK/PD model and a target in the CSF of 100%
f T > 2× ECOFF of Pseudomonas aeruginosa. Instead of very high IV doses, IT administration
might be an option. For meropenem, three studies are available. One is a retrospective
study comparing the clinical outcome and the occurrence of side effects of vancomycin and
meropenem [64]. Two studies determined concentrations in CSF as well as in plasma and
analysed the data using population pharmacokinetic modelling [30,31]. In the retrospec-
tive study, 86 patients were included with an infection after cranial trauma surgery [64].
Two groups were compared. In both groups CSF was released by lumbar cistern drainage,
and the control group received vancomycin and meropenem IV, whereas the experimental
group was treated with vancomycin and meropenem intrathecally (20 mg q12h) via the
drain. The recovery rate in the experimental group was 95% versus 72% in the control
group (p < 0.05). Also the cure time was lower in the experimental group (11 ± 5 days
and 23 ± 9 days for the experimental and control group, respectively; p < 0.001). Side
effects occurred less in the experimental group (p < 0.05). While these dosing regimens
are frequently used in clinical practice, vancomycin is usually guided based on TDM. This
study did not mention the use of TDM. Since this patient group of the critically ill is known
to have a large variability in the PK, the possibility of underdosing should be taken into
account in the interpretation of the data. No data were found on imipenem and ertapenem.

The two other studies measured concentrations in plasma as well as in the CSF and
analysed the data with a population pharmacokinetic analysis to be able to describe the
time course over time, find important covariates and use the population model to predict
the most optimal dosing regimen [30,31]. In both studies, a group of patients (9 patients
with an aneurysm and 15 patients after neurosurgery) meropenem was dosed at 1990 mg IV
q12h and 10 mg IT q12h, and after the intrathecal dose, the drain was clamped for 15 min.
Meropenem was administered via IL injection in the first study and via IVT injection in the
second study. An important factor that determines the exposure to meropenem in the CSF
is the drainage volume per day. Based on simulations with the final model of the first study,
the IV doses needed to be increased in patients with a drainage volume of >250 mL/day [31]
for regimens designed from MIC values of 4 mg/L and 8 mg/L. In the second study, an
increase in the IV as well as in the IVT dose was recommended for patients with a drainage
volume of 200–300 mL/day and an MIC of 4, 8 or 16 mg/L and a second increase in both
dosages in patients with a drainage volume of 300–400 mL/day [30]. Dosing regimens
suggested are based on a target value of 100% fT > MIC. The suggested regimens are quite
complex and based on mathematical modelling. Overall, MIC values of micro-organisms
that are reported susceptible to meropenem using EUCAST breakpoints [96] will include
MIC values up to 4 mg/L. Assuming, based on available data, that IT doses of 10 mg
meropenem are well tolerated, and based on the pharmacokinetic models, an overall
dosing regimen of 2 g IV and 10 mg IT q12h might be an option. In case the aim is to treat
micro-organisms with MIC values higher than the wild-type distribution, especially in
patients with a drainage volume > 200 mL/day, higher doses might be needed. Given the
elimination rate of meropenem, an IT dosing regimen of q24h is likely not feasible. In both
studies, a high variability between concentrations in the CSF was found.

For meropenem, it is also important to mention the study of Hosmann et al. [97].
This study highlighted the importance of measuring concentrations at the site of infection.
They measured meropenem concentrations after IV dosing in plasma, CSF as well as in
the cerebral tissue via microdialysis. Concentrations in cerebral microdialysate were more
than three times higher than those in CSF, showing that measuring CSF concentrations
would highly underestimate brain tissue concentrations. Since the magnitude of the PK/PD
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indices needed for bacterial efficacy might also differ between an infection in the CSF and
in brain tissue, it is not possible to interpret these values. The study clearly shows that
designing optimal dosing regimen to treat intracerebral infection is very complex.

2.5.4. Linezolid

Little is known on the use of linezolid for the treatment of intracerebral infections. It
has a bioavailability of 100%, and penetration in the central nervous system is variable,
ranging from 28 to 70% [98]. Since this is relatively high [99], linezolid is normally not
administered intrathecally.

Only one case report on IT administration has been described in the literature, and
concentrations in the CSF were not determined [80]. The IT doses of 10 mg were adminis-
tered once daily in a concentration of 2 mg/mL for 15 days in total. No side effects were
reported.

2.5.5. Tigecycline

Tigecycline is currently approved for three indications: complicated skin and skin
structure infections, complicated intra-abdominal infections and community-acquired bac-
terial pneumonia. Within the label, there is a box warning that there was an unexplained
increased all-cause mortality in patients treated with tigecycline as compared to the com-
parators in a meta-analysis of clinical trials. It should therefore be reserved for use in
situations when alternative treatments are not suitable [100].

Due to the poor BBB permeability of tigecycline, it is not recommended in the treatment
of intracerebral infections with IV administrations. Tigecycline CSF concentrations after
the usual 100 mg IV dose per day are only 0.035–0.048 mg/L, and increasing the daily
dose to 200 mg is not well tolerated [101,102]. Several case reports (N = 14) have been
described in the literature of IVT tigecycline in the treatment of infections caused by
A. baumannii, K. pneumoniae and K. oxytoca (Table 3) [103–115]. The dosing regimen using
IVT ranged from 1 mg q12h to 10 mg q12h. About half of the regimen used an IVT
tigecycline dosing of q24h. In only two patients were concentrations determined in the
CSF [103,112]. In the first patient, several concentrations were determined after an IVT
dose of 1 mg and after a 2 mg IVT dose. The AUC0–12h was calculated to be 230 h·mg/L
and 1132 h·mg/L after the 1 mg and 2 mg IVT dose, respectively. Based on the reported
concentrations in another patient after a 5 mg IVT dose, the AUC0–12h can be estimated to be
887–1166 h·mg/L [112]. The magnitude of the PK/PD index correlated with bacteriostasis
in a neutropenic thigh infection mouse model for E. coli and K. pneumoniae is a f AUC/MIC
of median 5–6 h·mg/L [116]. As the AUCs in the CSF reached in these two patient
are much higher than the PK/PD target value, high IVT doses might not be necessary.
However, in both patients, the tigecycline was cleared from the CSF quite rapidly, resulting
in undetectable or very low concentrations 12 h after the dose. It seems therefore to indicate
the administration of IVT doses at q12h. Some patients failed on the initial regimen and
were cured after the IVT dose was increased: in one patient, the dose was increased from
3 mg q24h to 4 mg q12h [104]; in the second patient, from 2 mg q24h to 2 mg q12h [105];
and from 2 mg q12h to 4 mg q12h in the third case [110].



Antibiotics 2023, 12, 1291 14 of 25

Table 3. Cases with IT tigecycline.

Year (Ref.) Age/Sex Diagnosis Pathogen
(ECOFF) IT Dose Number of IT

Doses

Accompanying
IV Dose of Same

AB

Concentration in
CSF Outcome (M/C) Side Effects

2016 [103] 67 y/M Meningitis K. pneumoniae
(2 mg/L)

1 mg q12 or q48h;
2 mg dose (final one)

4
1

49 mg q12h;
48 mg q12h

1 mg D: AUC0–12h:
230 h·mg/L;

2 mg D: AUC0–12h
1132 h·mg/L

n.a. none

2017 [104] 50 y/M Intracranial
infection

A. baumannii
(0.5 mg/L)

3 mg q24h
(1 h closed system after

administration);
M failure dose increased to

4 mg q12g

6 days 3 mg q24h,
6 days high dose 50 mg q12h n.a.

M: 3 days after
start high dose.

C
none

2017 [105] 22 y/M Meningitis A. baumannii
(0.5 mg/L)

2 mg q24h (drain closed
2 h);

2 mg q12h;
Relapse of meningitis:

4 mg/day restarted

45 days
Relapse: 1 month 100 mg q12h n.a.

M: after month of
treatment of

relapse.
12-month

follow-up pt cured

Ventriculitis and
holocord myelitis
(also colistin IT)

2017 [115] 45 y/M Meningitis A. baumannii
(0.5 mg/L)

10 mg q12h IL (drain
closed 2 h) 12 no n.a. M, C none

2018 [106] 70 y/F Ventriculitis A. baumannii
(0.5 mg/L) 2 mg q12h 20 50 mg q12h n.a. M, C none

2018 [107] 55 y/F Ventriculitis +
meningitis

A. baumannii
(0.5 mg/L)

4 mg q24h (drain closed
4 h) 15 100 mg bid n.a. C none

2018 [107] 50 y/M
Postoperative
intracerebral

infection

A. baumannii
(0.5 mg/L)

4 mg q24h (drain closed
4 h) 15 no n.a. Discharged to

rehab centre None

2018 [107] 48 y/M Ventriculitis +
meningitis

K. pneumoniae
(2 mg/L)

4 mg q24h (drain closed
4 h) 9 100 mg bid n.a. Discharged (ICU

to ward) none

2018 [108] 67 y/M Ventriculitis +
meningitis

K. pneumoniae
(2 mg/L)

1 mg q12h;
5 mg q12h;
10 mg q12h

1 mg bid: 23 days;
5 mg bid: 19 d;

10 mg bid: 39 days

1 mg IT dose:
50 mg bid

5 mg IT dose:
45 mg bid;

10 mg IT dose:
40 mg bid

n.a. Discharged to
rehab centre none

2019 [109] 17 y/M
Postoperative
intracerebral

infection

A. baumannii
(0.5 mg/L)

4 mg q12h (drain closed
2 h) IVT;

After 4 days: 4 mg q24h IT
Total: 34 47.5 mg q12h n.a. M, C none
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Table 3. Cont.

Year (Ref.) Age/Sex Diagnosis Pathogen
(ECOFF) IT Dose Number of IT

Doses

Accompanying
IV Dose of Same

AB

Concentration in
CSF Outcome (M/C) Side Effects

2020 [110] 56 y/M Ventriculitis A. baumannii
(0.5 mg/L)

2 mg q12h (clamped 4 h);
After 21 days increased to

4 mg q12h
14 in total 100 mg q12h n.a.

3 days after
increased dose: M.

Discharged to
ward

8 h after first IVT
dose, myoclonic

seizures for 4 min.

2020 [111] 28 y/M Intracerebral
infection

A. baumannii
(0.5 mg/L) 5 mg q24h IL 9 100 mg q12h n.a.

Spinal
arachnoiditis was

resolved at
12-month
follow-up;

Infection was
cured

Spinal
arachnoiditis after

9 IL doses

2020 [112] 38 y/M Ventriculitis K. oxytoca
(1 mg/L) 5 mg/24 h (clamped 2 h) 11 no

D + 2 h:
178.9/310.1 mg/L

D + 6 h:
35.1/41.3 mg/L

D + 24 h: ND

M none

2020 [113] 33 y/M Intracranial
infection

A. baumannii
(0.5 mg/L) 5 mg q12h 14 100 mg q12h n.a. Unknown

Reduced liver
function after

7 days.

2022 [114] 57 y/M Ventriculitis K. pneumoniae
(2 mg/L)

3 mg q12h
(clamped 2 h) 46 100 mg q12h n.a. M, C none

D: Dose; mo: month; IL: intralumbar; ND: not determined; n.a.: not available; M: microbiological cure; C: clinical cure; ECOFF: epidemiological cut-off; AB: antibiotic; CSF: cerebrospinal
fluid; M: male; F: female; IT: intrathecal. Doses were administered via IVT injection, unless stated otherwise.
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In four cases, potential side effects were reported [105,110,111,113]. As tigecycline is
used in these cases for the treatment of multidrug-resistant micro-organisms, it is often
difficult to determine whether the observed side-effect is attributable to the tigecycline
or to other co-administered drugs. In one case, a ventriculitis and a holocord myelitis
were reported [105]. This patient also received colistin via IVT injection, and since this is a
known side-effect of IVT colistin, this could well be caused by the colistin [13,117]. This is
supported by the fact that in this patient, the IVT administration of colistin and tigecycline
were stopped, and because the meningitis reoccurred, IVT tigecycline was restarted after
one day, without further problems. One patient had a myoclonic seizure 8 h after the first
IVT tigecycline dose [110]. This was treated, and due to a lack of alternative antibiotic
options, the IVT tigecycline was continued while the patient used maintenance doses of
phenytoin.

Without further seizures, the patient completed the IVT tigecycline treatment of
14 days. For two other patients receiving IVT doses of 5 mg, the potential side effects were
described: spinal arachnoiditis (after nine IVT doses); and reduced liver function after
7 days of IVT treatment [111,113].

2.5.6. Rifampicin

Rifampicin is used as part of the combination regimen in the treatment of tuberculosis
or as additive antibiotic to flucloxacillin or vancomycin to increase penetration in a biofilm.
Two cases have been described in which rifampicin was switched to IT administration be-
cause of the failing efficacy of IV-administered combinations of antibiotics in the treatment
of intracerebral tuberculosis infections (Table 2) [81,82]. The targeted concentration in the
CSF was 15 mg/L [81]. In both cases, IT doses of 5 mg were used without side effects.
In addition, Senbaga et al. described a case in which a 41-year-old patient accidentally
received a dose of 600 mg rifampicin infusion intrathecally over 4 h [83]. The intention was
to administer vancomycin IT and rifampicin IV, but the infusion systems were swapped.
No adverse events occurred in this case. It is noteworthy to mention that intravenous
preparations of rifampicin have trace doses of formaldehyde [83].

2.5.7. Quinolones

Quinolones are known to have a potent seizure-inducing activity [118,119]. Over-
all, the incidence of central and peripheral nervous system reactions is estimated to be
0.9–2.1% [118]. A history of epilepsy, cerebral trauma and alcohol abuse are risk factors.
Though severe reactions, such as hallucinations, depression and even convulsive seizures,
are rare, intraventricular use of quinolones might not be a tempting option. But, since
fluoroquinolones enter the CSF readily, IT use might not be necessary.

Two cases of intraventricular administration of levofloxacin have been described and
summarised in Table 2 [78,79]. In both cases, patients were treated with an antibiotic
regimen consisting of several drugs to treat meningitis due to multidrug-resistant My-
cobacterium tuberculosis. Intraventricular doses of 1–2 mg per dose were administered for
a prolonged duration without causing serious side effects. In one case, the levofloxacin
dose was calculated assuming a CSF volume of 120 mL and a target CSF concentration
of 8–10 mg/L [78]. During the first 1–2 months of treatment, there were minor adverse
events ascribed to the levofloxacin: insomnia, myalgias and arthralgia. These later sub-
sided [78]. Both patients were cured after months of treatment, but due to the regimens
containing several antibiotics, it is unclear whether this is attributable to the intraventricular
administration of levofloxacin.

2.5.8. Chloramphenicol

Chloramphenicol is an antibiotic that is little used in industrialised countries, but
it is included in the WHO list of essential medicines to be used for several indications,
such as meningitis [120]. Three cases were reported in the literature on IT use of chlo-
ramphenicol [76,77]. After IT administration, chloramphenicol sodium succinate will be
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hydrolysed to the microbiologically active chloramphenicol in the ventricular fluid. There
is a considerable difference in the doses used in the first two cases in 1951 (up to 750 µg) [76]
and the more recent case in 2005 (25 mg/day) [77]. The accompanying systemic doses were
also different (12 g oral vs. 3 g IV), and in the recent case, no concentrations in the CSF
were measured. Furthermore, besides the two cases Anderson et al. described in detail
(Table 2), they also mentioned that several patients were treated with 3 mg administered
into the lumbar theca for at least one week [76]. But, no further details on accompanying
systemic therapy or CSF concentrations were given on these patients. In the cases reported
in 1951, chloramphenicol was administered in pure crystalline form as an IT solution
at a concentration of 100 µg/mL [76]. In the recent case, the formulation used was not
mentioned. Due to the differences and incomplete information, an overall conclusion with
regard to the IT doses therefore cannot be drawn.

In all three cases that were described in detail, no side effects were reported (Table 2).
But, in the group of patients receiving 3 mg into the lumber theca, several side effects were
noted: all patients reported depression with tearfulness, and patients with pre-existing
cerebral tremor experienced marked accentuation of the tremor [76]. Both side effects
disappeared with cessation of IT therapy.

2.5.9. Daptomycin

Daptomycin is a cyclic lipopeptide that is used to treat infections due to Gram-
positive micro-organisms. After systemic administration, daptomycin penetrates poorly
into the CSF compartment, due to its low lipophilicity, significant protein binding and
large molecular weight, thus resulting in insufficient concentrations to treat intracerebral
infections [52,121]. In total, eight cases have been described in the literature with IT admin-
istration of daptomycin in the treatment of intracerebral infections due to Enterococci or
Staphylococci (see Table 4) [122–129]. The IT doses administered ranged from 2.5 mg to
10 mg per dose, with the dosing frequency ranging from once per day to once per 72 h.
The dose of 5 mg was used most frequently. For seven out of the eight cases, a positive
outcome was reported. The patient in the eighth reported case relapsed and needed a
second (extended) period of treatment before he was cured [125]. No serious side effects
were reported in these eight cases.
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Table 4. Cases with IT daptomycin.

Year (Ref.) Age/Sex Diagnosis Pathogen (ECOFF) IT Dose Number IT Doses
Accompanying

IV Dose of Same
AB

Concentration in CSF Outcome (M/C) Side Effects

2008 [125] 62 y/M Ventriculitis E. faecalis (4 mg/L)

10 mg every third
day

Second episode:
5 mg every third

day

First episode: 5
Second episode:

10
1 g 1 dd

23 mg/L (through, after
10 mg dose)

483 mg/L (peak; after 10 mg
dose)

9.9 mg/L (through; 5 mg
dose)

139 mg/L (peak, 5 mg dose)

Treatment for
2 weeks: M, C.

But, relapse after
28 days.

Treatment for
4 weeks: M, C and

no relapse.

Transient pyrexia
after each

installation of
daptomycin

2012 [126] 52 y/F Ventriculitis
Coagulase negative

staphylococcus
(1 mg/L)

10 mg for first
2 days and then

10 mg every other
day

4 10 mg/kg 1 dd 6.3 mg/L (peak)
1.39 mg/L (through) M, C none

2012 [127] 59 y/F Meningitis E. faecium (8 mg/L) 5 mg every 72 h IT 7 yes n.a. M none

2012 [128] 64 y/M Ventriculitis E. faecium (8 mg/L) 5 mg 1 dd IT 7 no

Different concentration from
right and left EVD. Right:

peak 112.2 mg/L and
through 1.34 mg/L. Left:

peak 37.4 mg/L and
0.37 mg/L. Accumulation

after 3 days

M none

2014 [122] 23 y/M
Ventriculostomy-

associated
meningitis

S. epidermidis
(1 mg/L)

5 mg once daily
for 3 days and

then 5 mg every
72 h

9 750 mg 1 dd n.a. M, C

Infusion over
4 min in 5 mL NS

not tolerated.
Infusion over

4 min in 3 mL NS
was tolerated.

2014 [129] 19 y/F Ventriculitis Enterococcus spp.
(4–8 mg/L) 5 mg every 48 h 47 8 mg/kg 1 dd n.a. M none

2019 [124] 45 y/M Subdural infection E. faecium (8 mg/L)

2 doses of 5 mg at
both subdural
sites, and after

72 h, a dose of 2.5
mg, subdural

3 12 mg/kg n.a. M none

2022 [123] 30–40
y/M Ventriculitis E. faecium (8 mg/L) 10 mg 1 dd for

3 days 3 no n.a. M, C none

n.a.: not available; M: microbiological cure; C: clinical cure; IT: intrathecal; NS: normal saline; ECOFF: epidemiological cut-off; AB: antibiotic; CSF: cerebrospinal fluid; M: male; F: female.
Doses were administered via IVT injection, unless stated otherwise.
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3. Discussion, Overall Conclusions and Recommendations

Intrathecal administration of the antibiotics described in this review is off-label and is
limited to those patients for whom clinicians run out of therapeutic options. When used
without administration/preparation errors, and with the exception of benzylpenicillin, the
reported side effects are generally mild and reversible. As side effects have been reported
after both IV and IT administration, and due to the lack of clear correlation between CSF
concentrations and toxicity, it could be questioned whether the administration of extremely
high IV doses puts patients at lower risk of side effects compared to IT administration. It is
possible that the CSF concentration that is aimed for causes a toxic effect regardless of the
route of administration.

With the current limited knowledge of PK/PD in the CSF, it is not possible to choose
an evidence-based efficacious dosing regimen, and also, routine TDM is not recommended
in the literature. Generally, for lipophilic drugs with a molecular weight > 1000 g/mol
and hydrophylic drugs with a molecular weight > 400 g/mol, once-daily IT dosing is
usually performed [8]. For antibiotics for which there is experience with multiple-dosing
regimen, the highest regimen can be used in case of a high drainage volume, a pathogen
with a relatively high ECOFF and/or a large distribution of the CSF. All available data
are summarised in Table 5. Clamping of the drain is necessary to make sure that the
administered antibiotic is distributed over the CSF space. The duration of clamping
depends on the intracranial pressure and the tolerance of the patient.

Table 5. Summary of antibiotics with molecular weight, protein binding, hydrophylic or lipophilic
nature and overview of IT doses used in clinical cases.

Antibiotic MW
(g/mol)

Approx.
Serum PB (%) Lipophilic/Hydrophylic Number of

Cases Sources IT Doses

Benzylpenicillin 334.4 60 Hydrophylic many Cases Usually 6 mg q24h

Ampicillin 349.4 15–20 Hydrophylic 1 Case 20–40 mg q12h

Cephaloridine 415.5 10 Hydrophylic 56 5–100 mg q24h

Ceftazidime 546.6 0–20 Hydrophylic 2 Cases 10–20 mg 2×/wk or
20 mg 1×/wk

Ceftriaxone 554.6 80–95 Hydrophylic 1 Case Intended 8 mg

Cefotiam 525.6 40 Hydrophylic 1 Case n.a.

Meropenem 383.5 2 Hydrophylic 14 (popPK)
43 (retrosp.)

PopPK model;
Retrospective study

10 mg q12h
20 mg q12h

Linezolid 337.3 30 Mod. lipophylic 1 Case 10 mg q24h

Tigecycline 585.7 70–90 Mod. lipophylic 15 Cases Recent cases mostly
used 3–5 mg q12h

Rifampicin 822.9 70–90 Lipophylic 3 Cases 5 mg q24h

Levofloxacin 361.4 20–40 Lipophylic 2 Cases 1.5–2 mg 1–3×/wk

Chloramphenicol 323.1 50 Lipophylic 3 Cases 100–750 µg q24h or
25 mg q24h

Daptomycin 1621 90–95 Hydophylic core lipophilic tail 8 Cases 5–10 mg q24–72h

Amikacin * 585.6 <10 Hydrophylic n.a. n.a. 30 mg q24h (R:5–100 mg
q24–48h)

Tobramycin * 467.5 0 Hydrophylic n.a. n.a. 5–10 mg q24h
(R:5–50 mg q24h)

Gentamicin * 477.6 0 Hydrophylic n.a. n.a. 4–10 mg q24h
(R:1–20 mg q24h)

Colisitin * ~1155 60–80 Mixture ** n.a. n.a. 10 mg q24h (R:1.6–40 mg
q24h)

Polymyxin B * ~1203 60–95 Mixture ** n.a. n.a. 5 mg q24h

Vancomycin * 1449 0–100 Hydrophylic n.a. n.a. 10–20 mg q24h
(R:5–50 mg q24h)

Teicoplanin * 1880 95 Mod. Lipophylic n.a. n.a. 5–20 mg q24h

MW: molecular weight; PB protein binding; IT: intrathecal; mod: moderately; R: range. *: these antibiotics were
not included in this review, but they were added for completeness based on a previous review [8]. ** mixture of
hydrophylic/lipophylic groups.
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4. Methods

A search was conducted in PubMed using the name of the individual antibiotic in
combination with ‘intrathecal’ or ‘intraventricular’. References from the papers included
were also checked to find missing references. The antibiotics selected were based on those
mentioned in the review paper of Nau et al. [8] as antibiotics are usually not administered
intrathecally. Included in the final search were the following: benzylpenicillin, ampicillin,
piperacillin, cefuroxime, cefotaxime, ceftriaxone, ceftazidime, imipenem, meropenem,
ertapenem, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, linezolid, metronida-
zole, chloramphenicol, rifampicin, fosfomycin, doxycycline and tetracycline.
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data extraction, A.E.M. and P.v.V.; interpretation data A.E.M. and P.v.V.; writing—original draft
preparation, A.E.M.; writing—review and editing, A.E.M. and P.v.V. and B.C.P.K.; visualization,
A.E.M. and B.C.P.K. All authors have read and agreed to the published version of the manuscript.
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